留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿鱼鳞片结构的防护装具抗穿甲燃烧弹性能

朱德举 镇鑫楼

朱德举, 镇鑫楼. 仿鱼鳞片结构的防护装具抗穿甲燃烧弹性能[J]. 复合材料学报, 2022, 39(12): 5958-5965. doi: 10.13801/j.cnki.fhclxb.20220105.004
引用本文: 朱德举, 镇鑫楼. 仿鱼鳞片结构的防护装具抗穿甲燃烧弹性能[J]. 复合材料学报, 2022, 39(12): 5958-5965. doi: 10.13801/j.cnki.fhclxb.20220105.004
ZHU Deju, ZHEN Xinlou. Performance of the protective gear inspired by fish scale structure against armor-piercing incendiary bullets[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5958-5965. doi: 10.13801/j.cnki.fhclxb.20220105.004
Citation: ZHU Deju, ZHEN Xinlou. Performance of the protective gear inspired by fish scale structure against armor-piercing incendiary bullets[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5958-5965. doi: 10.13801/j.cnki.fhclxb.20220105.004

仿鱼鳞片结构的防护装具抗穿甲燃烧弹性能

doi: 10.13801/j.cnki.fhclxb.20220105.004
基金项目: 国防科技创新特区项目(19-H863-03-ZT-003-033-01);湖南省高新技术产业科技创新引领计划项目(2020GK2079)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生设计制备、高性能纤维织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析 E-mail: dzhu@hnu.edu.cn

  • 中图分类号: Q66

Performance of the protective gear inspired by fish scale structure against armor-piercing incendiary bullets

  • 摘要: 借鉴硬骨鱼鳞片的多级结构,采用软硬复合防护理念,本文提出了一种新型双层式柔性防护装具。该仿生防护装具的上层采用周期性叠加的复合鳞片构建鳞片层,下层采用多层超高分子量聚乙烯(UHMWPE)无纺布作为垫层。根据GJB 4300A—2012标准 III 级要求,对防护装具进行弹道测试和有限元仿真,验证了防护装具的抗穿甲燃烧弹性能和有限元模型的可靠性。结果表明:复合鳞片的陶瓷层厚度是影响防护装具抗侵彻性能的主要因素之一,在总厚度不变的情况下,复合鳞片的层厚比为2∶1时满足防护要求,倾斜复合鳞片对子弹的钝化作用及子弹的横向偏转,叠加鳞片的整体协同能量耗散及UHMWPE垫层的能量分散作用都是决定仿生装具防护能力的重要作用机制。

     

  • 图  1  仿生防护装具设计示意图:(a) 真实鱼鳞片排列模式[15];(b) 超高分子量聚乙烯(UHMWPE)垫层;(c) 仿生鳞片排列;(d) 单个复合鳞片设计;(e) 仿生防护装具

    Figure  1.  Schematic illustration of the design of bio-inspired protection device: (a) Real fish scale arrangement pattern[15]; (b) Ultra-high molecular weight polyethylene (UHMWPE) backing layers; (c) Bionic scale arrangement; (d) Single composite scale design; (e) Bio-inspired protection devices

    e—Epidermis; s—Scale; sp—Scale pouch; h—Hypoderm; d—Dermis; m—Muscle; θ1—Overlapping angle; θ2—Incline angle; R—Radius

    图  2  防护装具X射线照片

    Figure  2.  X-ray photographs of protection gears

    图  3  防弹装具 (a) 与穿甲燃烧弹 (b) 的有限元模型

    Figure  3.  Finite element model of bulletproof gear (a) and armor-piercing incendiary bullet (b)

    图  4  模型网格划分:(a) 子弹;(b) 整体;(c) 复合鳞片;(d) 垫层

    Figure  4.  Model grid division: (a) Bullet; (b) Overall; (c) Composite scale; (d) Backing layers

    图  5  弹道测试后防护装具背部破坏形貌:(a) 样件A;(b) 样件B

    Figure  5.  Damage morphologies in the back of protection gears after ballistic tests: (a) Sample A; (b) Sample B

    图  6  弹道测试后防护装具X射线照片与破坏形貌:(a) 样件A;(b) 样件B

    Figure  6.  X-ray photographs and damage morphologies of protection gears after ballistic tests: (a) Sample A; (b) Sample B

    图  7  7.62 mm穿甲燃烧弹的破坏形貌对比:(a) 试验;(b) 有限元模拟

    Figure  7.  Comparison of the failure morphologies of 7.62 mm armor-piercing incendiary bullets: (a) Experiments; (b) Finite element modelling simulations

    图  8  穿甲燃烧弹侵彻防护装具的过程示意图

    Figure  8.  Schematic illustration of the process of the armor-piercing incendiary bullet penetrating the protection gear

    图  9  侵彻过程穿甲燃烧弹的速度与加速度时程曲线

    Figure  9.  Time history curves of the velocity and acceleration of armor-piercing incendiary bullet during penetration

    图  10  Von Mises应力分布:(a) SiC陶瓷层;(b) UHMWPE纤维层;(c) 背部垫层

    Figure  10.  Von Mises stress distributions: (a) SiC ceramic layer; (b) UHMWPE fiber layer; (c) Backing layer

    表  1  防护装具的仿生鳞片尺寸及垫层数量

    Table  1.   Bionic scale size and number of backing layers in protection gears

    Samplet/mmt1/mmt2/mmRatio of t1/t2Number of backing layers
    Sample A12661∶150
    Sample B12842∶150
    Notes: t—Thickness of composite scale; t1—Thickness of SiC layer; t2—Thickness of UHMWPE layer.
    下载: 导出CSV

    表  2  穿甲燃烧弹的弹壳与弹芯材料参数

    Table  2.   Material parameters of the shell and the core of the armor-piercing incendiary bullet

    Material parameterρ/(kg·m−3)E/GPaνSIGY/GPaETAN/GPaBETAFS
    Bullet jacket88581170.40.3450.00.01.0
    Bullet core78502070.330.3550.00.23.0
    Notes: ρ—Density; E—Young's modulus; ν—Poisson's ratio; SIGY—Yield stress; ETAN—Tangent modulus; BETA—Hardening parameter; FS—Failure strain.
    下载: 导出CSV

    表  3  两套防护装具弹道测试结果

    Table  3.   Experimental result of ballistic tests of two protection gears

    Sample
    name
    Reference
    point
    Bullet
    velocity/
    (m·s−1)
    Backface
    signature/
    mm
    Number of
    penetrated
    backing
    layers
    Sample A(1)843
    (2)840
    (3)840
    Sample B(4)84620.85
    (5)84023.46
    (6)84926.69
    下载: 导出CSV

    表  4  样件B试验结果与数值模拟结果对比

    Table  4.   Comparison of experimental and numerical results of sample B

    ParametersReference
    point
    Experi-
    ments
    Simula-
    tions
    Differ-
    ence/%
    Remaining length
    of bullet/mm
    (4) 12.8 13.4 4.5
    (5) 14.4 15.5 7.1
    (6) 16.3 15.5 5.2
    Number of
    penetrated
    backing layers
    (4) 5 6 16.7
    (5) 6 8 25.0
    (6) 9 8 −12.5
    Backface
    signature/mm
    (4) 20.8 19.7 5.6
    (5) 23.4 24.2 3.3
    (6) 26.6 24.2 9.9
    Notes: (4)—Located in the center of the target scale; (5), (6)—Located at the junction of two target scales.
    下载: 导出CSV
  • [1] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms-A review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures,2019,223:110966. doi: 10.1016/j.compstruct.2019.110966
    [2] WEI Z, XU X. FEM simulation on impact resistance of surface gradient and periodic layered bionic composites[J]. Composite Structures,2020,247:112428. doi: 10.1016/j.compstruct.2020.112428
    [3] FELI S, ASGARI M R. Finite element simulation of ceramic/composite armor under ballistic impact[J]. Composites Part B: Engineering,2011,42(4):771-780. doi: 10.1016/j.compositesb.2011.01.024
    [4] CHEN J, HAO C, ZHANG J. Fabrication of 3D-SiC network reinforced aluminum–matrix composites by pressureless infiltration[J]. Materials Letters,2006,60(20):2489-2492. doi: 10.1016/j.matlet.2006.01.027
    [5] JIANG H, REN Y, LIU Z, et al. Low-velocity impact resis-tance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups[J]. Composite Structures,2019,214:463-475. doi: 10.1016/j.compstruct.2019.02.034
    [6] LIU P, ZHU D, YAO Y, et al. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system[J]. Materials & Design,2016,99:201-210.
    [7] MARTINI R, BARTHELAT F. Stability of hard plates on soft substrates and application to the design of bioinspired segmented armor[J]. Journal of the Mechanics and Physics of Solids,2016,92:195-209. doi: 10.1016/j.jmps.2016.04.009
    [8] RUDKH S, BOYCE M C. Analysis of elasmoid fish imbricated layered scale-tissue systems and their bio-inspired analogues at finite strains and bending[J]. IMA Journal of Applied Mathematics,2014,79(5):830-847. doi: 10.1093/imamat/hxu005
    [9] REZAEE JAVAN A, SEIFI H, LIN X, et al. Mechanical behaviour of composite structures made of topologically interlocking concrete bricks with soft interfaces[J]. Materials & Design,2020,186:108347.
    [10] 刘鹏, 汪俊文, 朱德举. 草鱼鳞片的多级结构及力学性能[J]. 复合材料学报, 2016, 33(3):657-665.

    LIU Peng, WANG Junwen, ZHU Deju. Hierarchical structure and mechenical properties of scales from grass carp[J]. Acta Materiae Compositae Sinica,2016,33(3):657-665(in Chinese).
    [11] DALAQ A S, BARTHELAT F. Strength and stability in architectured spine-like segmented structures[J]. International Journal of Solids and Structures,2019,171:146-157. doi: 10.1016/j.ijsolstr.2019.04.012
    [12] CHANDLER M Q, ALLISON P G, RODRIGUEZ R I, et al. Finite element modeling of multilayered structures of fish scales[J]. Journal of the Mechanical Behavior of Biomedical Materials,2014,40:375-389. doi: 10.1016/j.jmbbm.2014.09.013
    [13] 朱德举, 汤兴. 基于犰狳外壳仿生的SiC-超高分子量聚乙烯柔性防护板的试验测试和有限元模拟[J]. 复合材料学报, 2020, 37(10):2561-2571.

    ZHU Deju, TANG Xing. Experimental testing and finite element simulation of SiC-ultrahigh molecular weight polyethylene flexible protective plate inspired by armadillo shell[J]. Acta Materiae Compositae Sinica,2020,37(10):2561-2571(in Chinese).
    [14] 朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6):1411-1417.

    ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica,2020,37(6):1411-1417(in Chinese).
    [15] ZHANG C, RAWAT P, LIU P, et al. A new design and performance optimization of bio-inspired flexible protective equipment[J]. Bioinspir Biomim. 2020, 15(6): 066003.
    [16] 中国人民解放军总后勤部. 军用防弹衣安全技术性能要求: GJB 4300A—2012[S]. 北京: 中国标准出版社, 2012.

    The General Logistics Department of PLA. Requirements of safety technical performance for military body armor: GJB 4300A—2012[S]. Beijing: Standars Press of China, 2012(in Chinese).
    [17] 朱德举, 彭恋. SiC-超高分子量聚乙烯仿生柔性叠层结构防弹性能关键影响因素的仿真与试验[J]. 复合材料学报, 2020, 37(11):2928-2940.

    ZHU Deju, PENG Lian. Simulation and experiment of key influencing factors on the ballistic performance of SiC-ultra-high molecular weight polyethylene biomimetic flexible laminated structure[J]. Acta Materiae Compositae Sinica,2020,37(11):2928-2940(in Chinese).
    [18] ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE)[J]. Composite Structures,2015,133:191-201. doi: 10.1016/j.compstruct.2015.06.081
    [19] PARK E H, LEE S H. Scale growth and squamation chronology for the laboratory-reared hermaphroditic fish rivulus marmoratus (cyprinodontidae)[J]. Ichthyological Research, 34(4): 476-482.
    [20] FLORES-JOHNSON E A, SHEN L, GUIAMATSIA I, et al. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates[J]. Composites Science and Technology,2014,96:13-22. doi: 10.1016/j.compscitech.2014.03.001
    [21] DHANDAPANI K. Experimental investigation and development of a constitutive model for ultra high molecular weight polyethylene materials[D]. Phoenix: Arizona State University, 2009.
    [22] KRISHNAN K, SOCKALINGAM S, BANSAL S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact[J]. Composites Part B: Engineering,2010,41(8):583-593. doi: 10.1016/j.compositesb.2010.10.001
    [23] 崔凤单, 马天, 李伟萍, 等. SiC和B4C防弹插板抗多发弹打击损伤特性研究[J]. 无机材料学报, 2017, 32(9):967-972. doi: 10.15541/jim20160667

    CUI Fengdan, MA Tian, LI Weiping, et al. Damage characteristics of SiC and B4C ballistic insert plates subjected to multi-hit[J]. Journal of Inorganic Materials,2017,32(9):967-972(in Chinese). doi: 10.15541/jim20160667
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  475
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-12-06
  • 录用日期:  2021-12-26
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回