Axial energy absorption characteristics and trigger mechanism of C-channel CFRP thin-walled structures
-
摘要:
碳纤维增强树脂复合材料(CFRP)具有轻质、高比强度等优异的力学性能在航空等领域得到了大量的应用。虽然航空工业技术已非常发达,但飞机坠撞事故时有发生,与地面发生强烈撞击所带来的冲击能量对乘员的生命造成了巨大的威胁。C型CFRP薄壁结构常作为大型飞机的座舱或货舱地板下部支撑结构,在发生紧急迫降时,其能够通过变形、破坏等吸收大量冲击能量从而保障乘员安全。然而,缺乏一种合理的触发机制,C型CFRP薄壁结构将发生横向断裂等灾难性失效模式,严重影响结构吸能。基于连续损伤力学,建立了一种考虑层间与层内失效的C型CFRP薄壁结构的渐进损伤模型,该模型能够准确预测C型CFRP薄壁结构在轴向压溃载荷下的吸能特性及失效行为。针对C型CFRP薄壁结构提出了混合角度倒角触发和尖顶触发两种触发机制,研究了不同触发配置对该结构吸能特性和失效模式的影响。相比典型的45°倒角触发,合理配置的混合角度倒角触发能够进一步降低初始峰值,其中H45/60所对应的初始峰值降低了21.15%,且对整个破碎过程的影响很小;另外,混合角度尖顶触发能够促进结构的渐进失效,所对应的比吸能均显著提升。相比其他混合角度尖顶触发,SIO60/45不仅具有较低的初始峰值,值得注意的是其比吸能相比典型的45°倒角触发提高了18.41%。另外,还发现采用60°/45°混合角度尖顶触发所对应的初始峰值明显低于采用45°/60°混合角度尖顶触发,这为进一步降低C型CFRP薄壁结构的初始峰值提供了思路。 (a)混合角度倒角触发和尖顶触发分别所对应的典型荷载位移曲线对比;(b)不同触发所对应的初始峰值和比吸能(SEA)对比 Abstract: To improve the crashworthiness of C-channel carbon fiber reinforced polymer (CFRP) thin-walled structures, the energy absorption characteristics and failure behavior of the structures under axial crushing load were studied. Considering the delamination effect, the progressive damage model of C-channel CFRP thin-walled structure was established. The quadratic stress failure and the nonlinear damage evolution criterion based on the mixed-mode energy method were used to predict the initial interlaminar failure and damage evolution, respectively. For this structure, the hybrid-angle chamfer trigger and steeple trigger were proposed, and the effects of different trigger configurations on the crashworthiness index and failure mode of C-channel CFRP thin-walled structures were compared and analyzed. The results show that the initial peak load corresponding to the hybrid-angle chamfer trigger decreases with the increase of the hybrid angle; The initial peak load can be effectively reduced by reducing the contact area between the hybrid-angle chamfer trigger and the loading plate at the initial crushing stage; The hybrid-angle steeple trigger can improve the failure process and has a positive effect on improving the crashworthiness of the structure.-
Key words:
- composite /
- triggering mechanism /
- crashworthiness /
- damage model /
- progressive failure
-
图 7 不同混合角度尖顶触发所对应的C型CFRP薄壁结构载荷响应对比
Figure 7. Comparison of load responses of C-channel CFRP thin-walled structures corresponding to different hybrid-angle steeple triggers
S−Steeple trigger; O−Steeple trigger with hybrid angle on the outside; I−Steeple trigger with hybrid angle on the inside; IO−Steeple trigger with hybrid angles on the inside and outside; 45/60−Hybrid angle is 45°/60°; 60/45−Hybrid angle is 60°/45°
表 1 T700/2510碳纤维/树脂复合材料材料及损伤参数[27,30]
Table 1. T700/2510 carbon fiber/resin composite material and damage parameters[27,30]
Parameter Value Parameter Value $ {E_{11}} $/GPa 55.8 $ {X_{{\text{2 c}}}} $/MPa 703.3 $ {E_{22}} $/GPa 54.9 $ {X_{12}} $/MPa 131 $ {v_{12}} $ 0.043 $ G_{\text{f}}^{1{\text{t}}} $/(kJ·m−2) 125 $ {G_{12}} $/GPa 4.2 $ G_{\text{f}}^{{\text{1 c}}} $/(kJ·m−2) 250 $ {X_{{\text{1 t}}}} $/MPa 910.1 $ G_{\text{f}}^{{\text{2 t}}} $/(kJ·m−2) 95 $ X{}_{{\text{1 c}}} $/MPa 710.2 $ G_{\text{f}}^{{\text{2 c}}} $/(kJ·m−2) 245 $ {X_{{\text{2 t}}}} $/MPa 772.2 Notes: $ {E_{11}} $/$ {E_{22}} $−Young’s modulus in the longitudinal/transverse direction; $ {v_{12}} $−Poisson’s ratio; $ {G_{12}} $−Shear modulus; $ {X_{{\text{1t}}}} $/$ {X_{{\text{1c}}}} $−Longitudinal tensile/compressive strength; $ {X_{{\text{2t}}}} $/$ {X_{{\text{2c}}}} $−Transverse tensile/compressive strength; $ {X_{12}} $−Shear strength; $ G_{\text{f}}^{{\text{1t}}} $/$ G_{\text{f}}^{{\text{1c}}} $−Tensile/compressive fracture energy in the longitudinal direction; $ G_{\text{f}}^{{\text{2t}}} $/$ G_{\text{f}}^{{\text{2c}}} $−Tensile/compressive fracture energy in the transverse direction. -
[1] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210107.002 [2] 宋涛, 余许多, 江晟达, 等. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J]. 复合材料学报, 2021, 38(11):3586-3600. doi: 10.13801/j.cnki.fhclxb.20210126.002SONG Tao, YU Xuduo, JIANG Shengda, et al. Axial crushing response and failure mechanism of variable stiffness carbon fiber/epoxy resin composite thin-walled tube[J]. Acta Materiae Compositae Sinica,2021,38(11):3586-3600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210126.002 [3] 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验[J]. 复合材料学报, 2020, 37(9):2200-2206. doi: 10.13801/j.cnki.fhclxb.20200111.001WANG Yang, WU Zhibin, LIU Fu. Crush experiment of composite cargo floor stanchions[J]. Acta Materiae Compositae Sinica,2020,37(9):2200-2206(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200111.001 [4] JIANG H, REN Y. Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load[J]. Composite Structures,2019,229:111375. doi: 10.1016/j.compstruct.2019.111375 [5] 任毅如, 向锦武, 罗漳平, 等. 飞行器机身结构耐撞性分析与设计[J]. 工程力学, 2013, 30(10):296-304. doi: 10.6052/j.issn.1000-4750.2012.07.0478REN Yiru, XIANG Jinwu, Luo Zhangping, et, al. Crashworthiness analysis and design of aircraft fuselage structure[J]. Engineering Mechanics,2013,30(10):296-304(in Chinese). doi: 10.6052/j.issn.1000-4750.2012.07.0478 [6] 王雪琴, 张震东, 马大为, 等. 碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验[J]. 复合材料学报, 2021, 38(9):2887-2896. doi: 10.13801/j.cnki.fhclxb.20201201.003WANG Xueqin, ZHANG Zhendong, MA Dawei, et al. Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes[J]. Acta Materiae Compositae Sinica,2021,38(9):2887-2896(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201201.003 [7] 庄蔚敏, 刘洋, 刘西洋. 碳纤维增强环氧树脂基复合材料圆管轴向压溃分层失效仿真[J]. 机械工程学报, 2020, 56(12):107-115. doi: 10.3901/JME.2020.12.107ZHUANG Weimin, LIU Yang, LIU Xiyang. Simulation on delamination failure of carbon fiber reinforced epoxy resin composite circular tube under axial crushing[J]. Journal of Mechanical Engineering,2020,56(12):107-115(in Chinese). doi: 10.3901/JME.2020.12.107 [8] KIM J S, YOON H J, SHIN K B. A study on crushing behaviors of composite circular tubes with different reinforcing fibers[J]. International Journal of Impact Engineering,2011,38(4):198-207. doi: 10.1016/j.ijimpeng.2010.11.007 [9] 肖培, 苏璇, 牟浩蕾, 等. 复合材料波纹板准静态轴压性能试验及数值模拟[J]. 振动与冲击, 2021, 40(15):156-164. doi: 10.13465/j.cnki.jvs.2021.15.020XIAO Pei, SU Xuan, MOU Haolei, et al. Quasi-static axial compression performance tests and numerical simulation for composite corrugated plate[J]. Journal of Vibration and Shock,2021,40(15):156-164(in Chinese). doi: 10.13465/j.cnki.jvs.2021.15.020 [10] ZHU G, SUN G, LI G, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures,2018,184:41-55. doi: 10.1016/j.compstruct.2017.09.001 [11] FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption[J]. Journal of Composite Materials,2008,42(3):229-256. doi: 10.1177/0021998307086202 [12] 邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为[J]. 复合材料学报, 2022, 39(4):1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002DENG Y, REN Y, JIANG H. Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism[J]. Acta Materiae Compositae Sinica,2022,39(4):1790-1797(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210617.002 [13] JIANG H, REN Y, GAO B. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness[J]. Thin-Walled Structures,2017,119:531-543. doi: 10.1016/j.tws.2017.07.004 [14] RAN T, REN Y, JIANG H. Design and assessments of gradient chamfer trigger for enhancing energy-absorption of CFRP square tube[J]. Applied Composite Materials,2022:1-20. [15] PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Experimental study on the axial crushing behaviour of pultruded composite tubes[J]. Polymer Testing,2010,29(2):224-234. doi: 10.1016/j.polymertesting.2009.11.005 [16] LUO H, YAN Y, ZHANG T, et al. Progressive failure numerical simulation and experimental verification of carbon-fiber composite corrugated beams under dynamic impact[J]. Polymer Testing,2017,63:12-24. doi: 10.1016/j.polymertesting.2017.08.004 [17] 黄建城, 王鑫伟, 卞航. SMA 薄弱环节对复合材料圆管耐撞性影响的试验研究[J]. 工程力学, 2011, 28(10):222-227.HUANG J, WANG X, BIAN H. Effect of SMA trigger on the crashworthiness of composite tubes[J]. Engineering Mechanics,2011,28(10):222-227(in Chinese). [18] TONG Y, XU Y. Improvement of crash energy absorption of 2 D braided composite tubes through an innovative chamfer external triggers[J]. International Journal of Impact Engineering,2018,111:11-20. doi: 10.1016/j.ijimpeng.2017.08.002 [19] MOU H, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology,2020,107:106305. doi: 10.1016/j.ast.2020.106305 [20] FERABOLI P, WADE B, DELEO F, et al. Crush energy absorption of composite channel section specimens[J]. Composites Part A:Applied Science and Manufacturing,2009,40(8):1248-1256. doi: 10.1016/j.compositesa.2009.05.021 [21] LV R, REN Y, LIU Z, et al. Energy absorption characteristics and failure mechanism of fabric composite channel section structure under axial crushing loading[J]. Journal of Aerospace Engineering,2022,35(4):04022046. doi: 10.1061/(ASCE)AS.1943-5525.0001440 [22] 解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性[J]. 复合材料学报, 2018, 35(12):3261-3270. doi: 10.13801/j.cnki.fhclxb.20180319.002XIE J, ZHANG X H, SONG S S, et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression[J]. Acta Materiae Compositae Sinica,2018,35(12):3261-3270(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180319.002 [23] RICCIO A, RAIMONDO A, DI CAPRIO F, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system[J]. Composites Part B:Engineering,2018,150:93-103. doi: 10.1016/j.compositesb.2018.05.044 [24] 张欣玥, 惠旭龙, 葛宇静, 等. 中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析[J]. 爆炸与冲击, 2022, 42(6):36-49.ZHANG X, HUI X, GE Y, et al. Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading[J]. Explosion and shock waves,2022,42(6):36-49(in Chinese). [25] MATZENMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials,1995,20(2):125-152. doi: 10.1016/0167-6636(94)00053-0 [26] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. A thermodynamically consistent damage model for advanced composites: NASA/TM-2006-214282 [R]. Washington, D. C. : NASA, 2006. [27] SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A:Applied Science and Manufacturing,2011,42(9):1119-1126. doi: 10.1016/j.compositesa.2011.04.017 [28] ABAQUS 6.13. Analysis user’ s manual [M]. Dassault Systemes, 2013. [29] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X [30] T700 SC 12 K/2510 plain weave fabric. Composite materials handbook (CMH-17): vol. 2 [M], West Conshohocken, Pennsylvania, USA: ASTM International, 2009. [31] JIMENEZ M A, MIRAVETE A, LARRODE E, et al. Effect of trigger geometry on energy absorption in composite profiles[J]. Composite Structures,2000,48(1-3):107-111. doi: 10.1016/S0263-8223(99)00081-1 -

计量
- 文章访问数: 113
- HTML全文浏览量: 73
- 被引次数: 0