留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C型CFRP薄壁结构轴向吸能特性及其触发机制

吕睿 任毅如

吕睿, 任毅如. C型CFRP薄壁结构轴向吸能特性及其触发机制[J]. 复合材料学报, 2023, 40(10): 5948-5957. doi: 10.13801/j.cnki.fhclxb.20230112.003
引用本文: 吕睿, 任毅如. C型CFRP薄壁结构轴向吸能特性及其触发机制[J]. 复合材料学报, 2023, 40(10): 5948-5957. doi: 10.13801/j.cnki.fhclxb.20230112.003
LV Rui, REN Yiru. Axial energy absorption characteristics and trigger mechanism of C-channel CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5948-5957. doi: 10.13801/j.cnki.fhclxb.20230112.003
Citation: LV Rui, REN Yiru. Axial energy absorption characteristics and trigger mechanism of C-channel CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5948-5957. doi: 10.13801/j.cnki.fhclxb.20230112.003

C型CFRP薄壁结构轴向吸能特性及其触发机制

doi: 10.13801/j.cnki.fhclxb.20230112.003
基金项目: 国家自然科学基金 (52172356);湖南省自然科学基金(2022JJ10012)
详细信息
    通讯作者:

    任毅如,博士,教授,博士生导师,研究方向为先进结构设计 E-mail: renyiru@hnu.edu.cn

  • 中图分类号: TB332;V214.8

Axial energy absorption characteristics and trigger mechanism of C-channel CFRP thin-walled structures

Funds: National Natural Science Foundation of China (52172356); Hunan Provincial Natural Science Foundation of China (2022JJ10012)
  • 摘要: 为了提高C型碳纤维增强树脂复合材料(CFRP)薄壁结构的耐撞性,对其在轴向压溃载荷作用下的吸能特性和失效行为进行研究。考虑层间分层效应,建立了C型CFRP薄壁结构的渐进损伤模型。采用二次名义应力失效和基于混合模式能量方法的非线性损伤演化准则分别对层间初始失效和损伤演化进行预测。针对该结构提出混合角度倒角触发和尖顶触发,对比分析了不同触发配置对C型CFRP薄壁结构耐撞性指标和失效模式的影响。结果表明混合角度倒角触发所对应的初始峰值随着混合角度的增大呈减小的趋势。通过减小混合角度尖顶触发与加载板在初始压溃阶段的接触面积,能够有效降低初始峰值。混合角度尖顶触发能够改善失效过程,对提高该结构的耐撞性有积极的影响。

     

  • 图  1  C型碳纤维增强树脂复合材料(CFRP)薄壁结构有限元模型(FEM)

    Figure  1.  Finite element model (FEM) of C-channel carbon fiber reinforced polymer (CFRP) thin-walled structure

    图  2  C型CFRP薄壁结构最终失效形貌:(a) 仿真;(b) 试验[20]

    Figure  2.  Final failure morphologies of C-channel CFRP thin-walled structure: (a) Simulation; (b) Experiment[20]

    图  3  C型CFRP薄壁结构的试验[20]与仿真的载荷响应

    Figure  3.  Load response of experiment[20] and simulation of C-channel CFRP thin-walled structure

    图  4  不同混合角度倒角触发所对应的C型CFRP薄壁结构载荷响应对比

    Figure  4.  Comparison of load responses of C-channel CFRP thin-walled structures corresponding to different hybrid-angle chamfer triggers

    C45—45° chamfer trigger; H—Hybrid-angle chamfer trigger; 30/45—Hybrid angle is 30°/45°; 45/30—Hybrid angle is 45°/30°;45/60—Hybrid angle is 45°/60°; 60/45—Hybrid angle is 60°/45

    图  5  不同混合角度倒角触发所对应的C型CFRP薄壁结构吸能特性对比

    Figure  5.  Comparison of energy absorption characteristics of C-channel CFRP thin-walled structures corresponding to different hybrid-angle chamfer triggers

    SEA—Specific energy absorption

    图  6  不同混合角度倒角触发所对应的C型CFRP薄壁结构失效形貌对比

    Figure  6.  Comparison of failure morphologies of C-channel CFRP thin-walled structures corresponding to different hybrid-angle chamfer triggers

    S—Stress

    图  7  不同混合角度尖顶触发所对应的C型CFRP薄壁结构载荷响应对比

    Figure  7.  Comparison of load responses of C-channel CFRP thin-walled structures corresponding to different hybrid-angle steeple triggers

    S—Steeple trigger; O—Steeple trigger with hybrid angle on the outside; I—Steeple trigger with hybrid angle on the inside; IO—Steeple trigger with hybrid angles on the inside and outside; 45/60—Hybrid angle is 45°/60°; 60/45—Hybrid angle is 60°/45°

    图  8  不同混合角度尖顶触发所对应的C型CFRP薄壁结构吸能特性对比

    Figure  8.  Comparison of energy absorption characteristics of C-channel CFRP thin-walled structures corresponding to different hybrid-angle steeple triggers

    图  9  不同混合角度尖顶触发所对应的C型CFRP薄壁结构失效形貌对比

    Figure  9.  Comparison of failure morphologies of C-channel CFRP thin-walled structures corresponding to different hybrid-angle steeple triggers

    图  10  不同触发所对应的C型CFRP薄壁结构吸能特性对比

    Figure  10.  Comparison of energy absorption characteristics of C-channel CFRP thin-walled structures corresponding to different triggers

    图  11  C45、H45/30、H60/45、SIO45/60和SIO60/45所对应的C型CFRP薄壁结构失效过程对比

    Figure  11.  Comparison of failure process of C-channel CFRP thin-walled structures corresponding to C45, H45/30, H60/45, SIO45/60 and SIO60/45

    l—Crushing displacement

    表  1  T700/2510碳纤维/树脂复合材料材料及损伤参数[27, 30]

    Table  1.   T700/2510 carbon fiber/resin composite material and damage parameters[27, 30]

    ParameterValueParameterValue
    $ {E_{11}} $/GPa 55.8 $ {X_{{\text{2c}}}} $/MPa 703.3
    $ {E_{22}} $/GPa 54.9 $ {X_{12}} $/MPa 131
    $ {v_{12}} $ 0.043 $ G_{\text{f}}^{1{\text{t}}} $/(kJ·m−2) 125
    $ {G_{12}} $/GPa 4.2 $ G_{\text{f}}^{{\text{1c}}} $/(kJ·m−2) 250
    $ {X_{{\text{1t}}}} $/MPa 910.1 $ G_{\text{f}}^{{\text{2t}}} $/(kJ·m−2) 95
    $ X{}_{{\text{1c}}} $/MPa 710.2 $ G_{\text{f}}^{{\text{2c}}} $/(kJ·m−2) 245
    $ {X_{{\text{2t}}}} $/MPa 772.2
    Notes: $ {E_{11}} $/$ {E_{22}} $—Young's modulus in the longitudinal/transverse direction; $ {v_{12}} $—Poisson's ratio; $ {G_{12}} $—Shear modulus; $ {X_{{\text{1t}}}} $/$ {X_{{\text{1c}}}} $—Longitudinal tensile/compressive strength; $ {X_{{\text{2t}}}} $/$ {X_{{\text{2c}}}} $—Transverse tensile/compressive strength; $ {X_{12}} $—Shear strength; $ G_{\text{f}}^{{\text{1t}}} $/$ G_{\text{f}}^{{\text{1c}}} $—Tensile/compressive fracture energy in the longitudinal direction; $ G_{\text{f}}^{{\text{2t}}} $/$ G_{\text{f}}^{{\text{2c}}} $—Tensile/compressive fracture energy in the transverse direction.
    下载: 导出CSV
  • [1] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210107.002
    [2] 宋涛, 余许多, 江晟达, 等. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J]. 复合材料学报, 2021, 38(11):3586-3600. doi: 10.13801/j.cnki.fhclxb.20210126.002

    SONG Tao, YU Xuduo, JIANG Shengda, et al. Axial crushing response and failure mechanism of variable stiffness carbon fiber/epoxy resin composite thin-walled tube[J]. Acta Materiae Compositae Sinica,2021,38(11):3586-3600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210126.002
    [3] 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验[J]. 复合材料学报, 2020, 37(9):2200-2206. doi: 10.13801/j.cnki.fhclxb.20200111.001

    WANG Yang, WU Zhibin, LIU Fu. Crush experiment of composite cargo floor stanchions[J]. Acta Materiae Compositae Sinica,2020,37(9):2200-2206(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200111.001
    [4] JIANG H Y, REN Y R. Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load[J]. Composite Structures,2019,229:111375. doi: 10.1016/j.compstruct.2019.111375
    [5] 任毅如, 向锦武, 罗漳平, 等. 飞行器机身结构耐撞性分析与设计[J]. 工程力学, 2013, 30(10):296-304. doi: 10.6052/j.issn.1000-4750.2012.07.0478

    REN Yiru, XIANG Jinwu, LUO Zhangping, et, al. Crashworthiness analysis and design of aircraft fuselage structure[J]. Engineering Mechanics,2013,30(10):296-304(in Chinese). doi: 10.6052/j.issn.1000-4750.2012.07.0478
    [6] 王雪琴, 张震东, 马大为, 等. 碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验[J]. 复合材料学报, 2021, 38(9):2887-2896. doi: 10.13801/j.cnki.fhclxb.20201201.003

    WANG Xueqin, ZHANG Zhendong, MA Dawei, et al. Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes[J]. Acta Materiae Compositae Sinica,2021,38(9):2887-2896(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201201.003
    [7] 庄蔚敏, 刘洋, 刘西洋. 碳纤维增强环氧树脂基复合材料圆管轴向压溃分层失效仿真[J]. 机械工程学报, 2020, 56(12):107-115. doi: 10.3901/JME.2020.12.107

    ZHUANG Weimin, LIU Yang, LIU Xiyang. Simulation on delamination failure of carbon fiber reinforced epoxy resin composite circular tube under axial crushing[J]. Journal of Mechanical Engineering,2020,56(12):107-115(in Chinese). doi: 10.3901/JME.2020.12.107
    [8] KIM J S, YOON H J, SHIN K B. A study on crushing behaviors of composite circular tubes with different reinforcing fibers[J]. International Journal of Impact Engineering,2011,38(4):198-207. doi: 10.1016/j.ijimpeng.2010.11.007
    [9] 肖培, 苏璇, 牟浩蕾, 等. 复合材料波纹板准静态轴压性能试验及数值模拟[J]. 振动与冲击, 2021, 40(15):156-164, 174. doi: 10.13465/j.cnki.jvs.2021.15.020

    XIAO Pei, SU Xuan, MOU Haolei, et al. Quasi-static axial compression performance tests and numerical simulation for composite corrugated plate[J]. Journal of Vibration and Shock,2021,40(15):156-164, 174(in Chinese). doi: 10.13465/j.cnki.jvs.2021.15.020
    [10] ZHU G H, SUN G Y, LI G Y, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures,2018,184:41-55. doi: 10.1016/j.compstruct.2017.09.001
    [11] FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption[J]. Journal of Composite Materials,2008,42(3):229-256. doi: 10.1177/0021998307086202
    [12] 邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为[J]. 复合材料学报, 2022, 39(4):1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002

    DENG Yabin, REN Yiru, JIANG Hongyong. Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism[J]. Acta Materiae Compositae Sinica,2022,39(4):1790-1797(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210617.002
    [13] JIANG H Y, REN Y R, GAO B H. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness[J]. Thin-Walled Structures,2017,119:531-543. doi: 10.1016/j.tws.2017.07.004
    [14] RAN T, REN Y R, JIANG H Y. Design and assessments of gradient chamfer trigger for enhancing energy-absorption of CFRP square tube[J]. Applied Composite Materials,2022,30:1333-1352.
    [15] PALANIVELU S, VAN PAEPEGEM W, DEGRIECK J, et al. Experimental study on the axial crushing behaviour of pultruded composite tubes[J]. Polymer Testing,2010,29(2):224-234. doi: 10.1016/j.polymertesting.2009.11.005
    [16] LUO H B, YAN Y, ZHANG T H, et al. Progressive failure numerical simulation and experimental verification of carbon-fiber composite corrugated beams under dynamic impact[J]. Polymer Testing,2017,63:12-24. doi: 10.1016/j.polymertesting.2017.08.004
    [17] 黄建城, 王鑫伟, 卞航. SMA薄弱环节对复合材料圆管耐撞性影响的试验研究[J]. 工程力学, 2011, 28(10):222-227.

    HUANG Jiancheng, WANG Xinwei, BIAN Hang. Effect of SMA trigger on the crashworthiness of composite tubes[J]. Engineering Mechanics,2011,28(10):222-227(in Chinese).
    [18] TONG Y, XU Y M. Improvement of crash energy absorption of 2D braided composite tubes through an innovative chamfer external triggers[J]. International Journal of Impact Engineering,2018,111:11-20. doi: 10.1016/j.ijimpeng.2017.08.002
    [19] MOU H L, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology,2020,107:106305. doi: 10.1016/j.ast.2020.106305
    [20] FERABOLI P, WADE B, DELEO F, et al. Crush energy absorption of composite channel section specimens[J]. Composites Part A: Applied Science and Manufacturing,2009,40(8):1248-1256. doi: 10.1016/j.compositesa.2009.05.021
    [21] LYU R, REN Y R, LIU Z H, et al. Energy absorption characteristics and failure mechanism of fabric composite channel section structure under axial crushing loading[J]. Journal of Aerospace Engineering,2022,35(4):04022046. doi: 10.1061/(ASCE)AS.1943-5525.0001440
    [22] 解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性[J]. 复合材料学报, 2018, 35(12):3261-3270. doi: 10.13801/j.cnki.fhclxb.20180319.002

    XIE Jiang, ZHANG Xuehan, SONG Shanshan, et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression[J]. Acta Materiae Compositae Sinica,2018,35(12):3261-3270(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180319.002
    [23] RICCIO A, RAIMONDO A, DI CAPRIO F, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system[J]. Composites Part B: Engineering,2018,150:93-103. doi: 10.1016/j.compositesb.2018.05.044
    [24] 张欣玥, 惠旭龙, 葛宇静, 等. 中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析[J]. 爆炸与冲击, 2022, 42(6):36-49.

    ZHANG Xinyue, HUI Xulong, GE Yujing, et al. Energy absorption characteristics and failure analysis of composite thinwalled structures with different cross-sectional configurations under medium-and low-speed compression loading[J]. Explosion and Shock Waves,2022,42(6):36-49(in Chinese).
    [25] MATZENMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials,1995,20(2):125-152. doi: 10.1016/0167-6636(94)00053-0
    [26] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. A thermo dynamically consistent damage model for advanced composites: NASA/TM-2006-214282[R]. Washington: NASA, 2006.
    [27] SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing,2011,42(9):1119-1126. doi: 10.1016/j.compositesa.2011.04.017
    [28] CAMANHO P P, DAVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials: NASA/TM-2002-211737[R]. Virginia: NASA, 2002.
    [29] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X
    [30] ASTM. Composite materials handbook (CMH-17): T700SC 12K/2510 plain weave fabric[M]. West Conshohocken: ASTM International, 2009.
    [31] JIMÉNEZM A, MIRAVETE A, LARRODÉ E, et al. Effect of trigger geometry on energy absorption in composite profiles[J]. Composite Structures,2000,48(1-3):107-111. doi: 10.1016/S0263-8223(99)00081-1
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  233
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2022-12-16
  • 录用日期:  2022-12-29
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回