留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响

盛况 杨森 毕俊峰 袁小亚

盛况, 杨森, 毕俊峰, 等. 有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响[J]. 复合材料学报, 2022, 39(11): 5486-5498. doi: 10.13801/j.cnki.fhclxb.20220113.001
引用本文: 盛况, 杨森, 毕俊峰, 等. 有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响[J]. 复合材料学报, 2022, 39(11): 5486-5498. doi: 10.13801/j.cnki.fhclxb.20220113.001
SHENG Kuang, YANG Sen, BI Junfeng, et al. Effect of organic dye assisted dispersion of graphene oxide on mechanical properties and durability of cement mortar[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5486-5498. doi: 10.13801/j.cnki.fhclxb.20220113.001
Citation: SHENG Kuang, YANG Sen, BI Junfeng, et al. Effect of organic dye assisted dispersion of graphene oxide on mechanical properties and durability of cement mortar[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5486-5498. doi: 10.13801/j.cnki.fhclxb.20220113.001

有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响

doi: 10.13801/j.cnki.fhclxb.20220113.001
基金项目: 国家自然科学基金(51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017jcyjBX0028);重庆市教育委员会科学技术研究项目(KJZD-K201800703)
详细信息
    通讯作者:

    袁小亚,博士,教授,硕士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域 E-mail:yuanxy@cqjtu.edu.cn

  • 中图分类号: TU528

Effect of organic dye assisted dispersion of graphene oxide on mechanical properties and durability of cement mortar

  • 摘要: 研究了采用有机染料罗丹明B (RhB)辅助聚羧酸减水剂(PCE)分散氧化石墨烯(GO)及其对水泥砂浆强度和耐久性的影响。通过吸光度试验、Zeta电位及AFM表征研究了RhB对GO在饱和氢氧化钙(CH)溶液中的分散性能,结果表明在掺入少量RhB情况下可以大幅度提升GO在CH溶液中的分散性,且当GO与RhB质量比为1∶2时,GO的分散效果最佳。力学强度测试表明,在RhB的辅助分散下,当GO掺量为水泥质量的0.03wt%时,28天抗折、抗压强度相较于不掺入RhB的GO砂浆试件提升最大分别为14.78%、33.29%。耐久性试验表明RhB能促进GO在水泥水化产物的模板作用,使结构更为致密,减少受冻融与硫酸盐的侵蚀,耐久性能显著提高。微观测试表明RhB的加入可以促进GO调控水化产物生长的作用,明显减少内部结构孔洞、裂缝等缺陷。本文提供了一种引入低成本的有机染料来提升GO在水泥孔隙液中的分散性能,具有许多潜在的应用价值。

     

  • 图  1  GO和RhB溶液 (a) 及RhB水溶液和RhB在Ca2+溶液中的200~800 nm的紫外可见光图谱 (b)

    Figure  1.  UV-Vis spectra of GO and RhB solutions (a) and RhB aqueous solution and RhB in Ca2+ solution at 200-800 nm (b)

    图  2  RhB对GO在饱和CH溶液中吸光度的影响

    Figure  2.  Effect of RhB on absorbance of GO in saturated CH solution

    图  3  RhB对GO在饱和CH溶液中表面电位的影响

    Figure  3.  Effect of RhB on the Zeta potential of GO in saturated CH solution

    图  4  RhB与GO质量比为2∶1的饱和CH溶液中GO分散的AFM图像

    Figure  4.  AFM image of GO dispersion in saturated CH solution using the 2∶1 mass ratio of RhB to GO

    图  5  RhB对不同掺量GO掺配水泥砂浆3天和28天抗压强度和抗折强度的影响

    Figure  5.  Effect of RhB on 3 days and 28 days compressive strength and flexural strength of mixed cement mortar with different dosages of GO

    图  6  GO与RhB质量比恒定为1∶2时不同掺量GO掺配水泥砂浆XRD图谱

    AFm—C3A·CaSO4·12H2O; AFt—C3A·3CaSO4·32H2O

    Figure  6.  XRD patterns of cement mortar mixed with different amount of GO when the mass ratio of GO to RhB is constant 1∶2

    图  7  不同掺量RhB和GO掺配水泥砂浆SEM图像:(a) Control CM;(b)0.06%RhB/CM;(c) 0.03%GO/CM;(d) 0.03%GO-0.06%RhB/CM

    C-S-H—Gel of calcium silicate hydrated

    Figure  7.  SEM images of cement mortars mixed with different dosages of RhB and GO: (a) Control CM; (b) 0.06%RhB/CM; (c) 0.03%GO/CM; (d) 0.03%GO-0.06%RhB/CM

    图  8  RhB对GO掺配水泥净浆不同龄期的化学结合水含量的影响

    Figure  8.  Effect of RhB on chemical bound water content of GO blended cement paste at different ages

    图  9  RhB对GO不同掺量掺配水泥砂浆冻融循环后质量损失率与力学强度损失率的影响

    Figure  9.  Effect of RhB on mass loss rate and compressive strength loss rate of cement mortar mixed with different GO contents after freeze-thaw cycles

    图  10  不同掺量GO掺配水泥砂浆冻融循环150次前后的SEM图像:((a), (b)) Control CM;((c), (d)) 0.03%GO/CM;((e), (f)) 0.03%GO-0.06%RhB/CM

    Figure  10.  SEM images of different cement mortars with different GO contents before and after 150 freeze-thaw cycles: ((a), (b)) Control CM; ((c), (d)) 0.03%GO/CM; ((e), (f)) 0.03%GO-0.06%RhB/CM

    图  11  RhB对GO不同掺量掺配水泥砂浆抗硫酸盐干湿循环后质量损失率与耐腐蚀系数的影响

    Figure  11.  Effect of RhB on mass loss rate and corrosion resistance coefficient of cement mortars mixed with different amount of GO after sulfate dry wet cycles

    图  12  不同掺量GO掺配水泥砂浆抗硫酸盐150次干湿循环后的SEM图像:(a) Control CM;(b) 0.03%GO/CM;(c) 0.03%GO-0.06%RhB/CM

    Figure  12.  SEM images of cement mortars mixed with different amount of GO after 150 dry-wet cycles: (a) Control CM; (b) 0.03%GO/CM; (c) 0.03%GO-0.06%RhB/CM

    表  1  水泥化学成分

    Table  1.   Chemical components of cement

    MineralAl2O3SiO2Fe2O3CaOMgOSO3NaOf-CaO
    Content/wt%4.4721.503.3765.843.180.300.490.78
    下载: 导出CSV

    表  2  水泥砂浆和净浆试件配合比

    Table  2.   Mixture ratio of cement mortar and cement paste

    SampleCement/gWater/mLSand/gGO/wt%RhB/wt%PCE/wt%
    Control CM45016613500.000.000.3
    0.06%RhB/CM45016613500.000.060.3
    0.03%GO/CM45016613500.030.000.3
    0.01%GO-0.02%RhB/CM45016613500.010.020.3
    0.03%GO-0.06%RhB/CM45016613500.030.060.3
    0.05%GO-0.1%RhB/CM45016613500.050.100.3
    Control CP3008700.000.000.3
    0.06%RhB/CP3008700.000.060.3
    0.03%GO/CP3008700.030.000.3
    0.01%GO-0.02%RhB/CP3008700.010.020.3
    0.03%GO-0.06%RhB/CP3008700.030.060.3
    0.05%GO-0.1%RhB/CP3008700.050.100.3
    Notes: Content of GO, RhB and PCE is mass ratio to cement; GO—Graphene oxide; RhB—Rhodamine B; PCE—Polycarboxylic acid water reducer; CM—Cement mortar; CP—Cement paste.
    下载: 导出CSV

    表  3  GO和RhB混合溶液配比

    Table  3.   Mix solution ratio of GO and RhB

    SampleWater/gPCE/mLGO/mgRhB/mgCH/g
    2.5GO-0RhB123.740.12.50.000.2
    2.5GO-1.25RhB123.740.12.51.250.2
    2.5GO-2.5RhB123.740.12.52.500.2
    2.5GO-3.75RhB123.740.12.53.750.2
    2.5GO-5RhB123.740.12.55.000.2
    2.5GO-6.25RhB123.740.12.56.250.2
    Note: CH—Calcium hydroxide.
    下载: 导出CSV
  • [1] KORAYEM A H, TOURANI N, ZAKERTABRIZI M, et al. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective[J]. Construction and Building Materials,2017,153:346-357. doi: 10.1016/j.conbuildmat.2017.06.164
    [2] RECHES Y. Nanoparticles as concrete additives: Review and perspectives[J]. Construction and Building Materials,2018,175:483-495. doi: 10.1016/j.conbuildmat.2018.04.214
    [3] ABEDI M, FANGGUEIRO R, GOMES C A. Ultra-sensitive affordable cementitious composite with high mechanical and microstructural performances by hybrid CNT/GNP[J]. Materials,2020,13(16):3484. doi: 10.3390/ma13163484
    [4] GAO Y, JING H, ZHOU Z, et al. Graphene oxide-assisted multi-walled carbon nanotube reinforcement of the transport properties in cementitious composites[J]. Journal of Materials Science,2020,55(2):603-618. doi: 10.1007/s10853-019-04040-3
    [5] XU Y, ZENG J, CHEN W, et al. A holistic review of cement composites reinforced with graphene oxide[J]. Construction and Building Materials,2018,171:291-302. doi: 10.1016/j.conbuildmat.2018.03.147
    [6] XU G, DU S, HE J, et al. The role of admixed graphene oxide in a cement hydration system[J]. Carbon,2019,148:141-150. doi: 10.1016/j.carbon.2019.03.072
    [7] KARTHIKEYAN P, ELANCHEZHIYAN S S D, BANU H A T, et al. Hydrothermal synthesis of hydroxyapatite-reduced graphene oxide (1D-2D) hybrids with enhanced selective adsorption properties for methyl orange and hexavalent chromium from aqueous solutions[J]. Chemosphere,2021,276:130200. doi: 10.1016/j.chemosphere.2021.130200
    [8] 王宝民, 姜瑞双, 赵汝英. 石墨烯的分散性及石墨烯水泥基复合材料的研究进展[J]. 混凝土, 2016(12):68-72, 75. doi: 10.3969/j.issn.1002-3550.2016.12.018

    WANG Baomin, JIANG Ruishuang, ZHAO Ruying, et al. Researceh progress of the dispersibility of graphene and graphene cement-based composite materials[J]. Concrete,2016(12):68-72, 75(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.12.018
    [9] TAO J, WANG X, WANG Z, et al. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites[J]. Construction and Building Materials,2019,209:665-678. doi: 10.1016/j.conbuildmat.2019.03.173
    [10] 吕生华, 张佳, 罗潇倩, 等. 氧化石墨烯/水泥基复合材料的微观结构和性能[J]. 材料研究学报, 2018, 32(3):233-240. doi: 10.11901/1005.3093.2016.679

    LV Shenghua, ZHANG Jia, LUO Xiaoqian, et al. Microstructure and properties of graphene oxide/cement-based composites[J]. Chinese Journal of Materials Research,2018,32(3):233-240(in Chinese). doi: 10.11901/1005.3093.2016.679
    [11] 吕生华, 朱琳琳, 李莹, 等. 氧化石墨烯复合材料的研究现状及进展[J]. 材料工程, 2016, 44(12):107-117. doi: 10.11868/j.issn.1001-4381.2016.12.017

    LV Shenghua, ZHU Linlin, LI Ying, et al. Current situation and progress of graphene oxide composites[J]. Journal of Materials Engineering,2016,44(12):107-117(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.12.017
    [12] 杨凌俊, 袁小亚. 氧化石墨烯复掺石墨烯对水泥砂浆力学性能的提升及机理研究[J]. 功能材料, 2019, 50(12):12089-12096.

    YANG Lingjun, YUAN Xiaoya. The improvement of the mechanical properties of cement mortar and the mecha-nism of graphene oxide mixed with graphene[J]. Functional Materials,2019,50(12):12089-12096(in Chinese).
    [13] 李相国, 任钊锋, 徐朋辉, 等. 氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J]. 硅酸盐通报, 2018, 37(1):245-250.

    LI Xiangguo, REN Zhaofeng, XU Penghui, et al. Research on mechanical properties and durability of graphene oxide composite PVA reinforced cement-based material[J]. Bulletin of the Chinese Ceramic Society,2018,37(1):245-250(in Chinese).
    [14] CHUAH S, PAN Z, SANIAYAN J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials,2014,73:113-124. doi: 10.1016/j.conbuildmat.2014.09.040
    [15] LI X, WANG L, LIU Y, et al. Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength[J]. Cement and Concrete Composites,2018,92:145-154. doi: 10.1016/j.cemconcomp.2018.06.008
    [16] WANG M, YAO H, WANG R, et al. Chemically functionalized graphene oxide as the additive for cement-matrix composite with enhanced fluidity and toughness[J]. Construction and Building Materials,2017,150:150-156. doi: 10.1016/j.conbuildmat.2017.05.217
    [17] ZHAO L, GUO X, LIU Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon,2018,127:255-269. doi: 10.1016/j.carbon.2017.11.016
    [18] LU Z, HOU D, HANIF A, et al. Comparative evaluation on the dispersion and stability of graphene oxide in water and cement pore solution by incorporating silica fume[J]. Cement and Concrete Composites,2018,94:33-42. doi: 10.1016/j.cemconcomp.2018.08.011
    [19] 胡章记, 郭桂全, 王双. 石墨烯/银复合材料的制备及光催化降解罗丹明B研究[J]. 河南化工, 2020, 37(11):20-24.

    HU Zhangji, GUO Guiquan, WANG Shuang. Study on preparation of graphene/silver composites and its photocatalytic degradation of rhodamine B[J]. Henan Chemical Industry,2020,37(11):20-24(in Chinese).
    [20] 张杰, 杨忠林, 黄鹤勇, 等. 氧化石墨烯固定Ag3PO4光催化降解染料罗丹明的机理研究[J]. 南京师大学报(自然科学版), 2018, 41(3): 65-69.

    ZHANG Jie, YANG Zhonglin, HUANG Heyong, et al. Study on degradation of rhodamine by graphite oxide-Ag3PO4[J]. Journal of Nanjing Normal University (Natural Science Edition), 2018, 41(3): 65-69(in Chinese).
    [21] HU C, GRANT D, HOU X, et al. High rhodamine B and methyl orange removal performance of graphene oxide/carbon nanotube nanostructures[J]. Materials Today: Proceedings,2021,34:184-193. doi: 10.1016/j.matpr.2020.02.711
    [22] 莫俏, 李妮鸿, 沈飞, 等. 氧化石墨烯(GO)对罗丹明B染料的吸附行为研究[J]. 广东化工, 2019, 46(2):8-11. doi: 10.3969/j.issn.1007-1865.2019.02.005

    MO Qiao, LI Nihong, SHEN Fei, et al. Study of adsorption behavior of graphene oxide (GO) towards rhodamine B (RhB)[J]. Guangdong Chemical Industry,2019,46(2):8-11(in Chinese). doi: 10.3969/j.issn.1007-1865.2019.02.005
    [23] 张静, 周天晴, 黄逸轩, 等. 还原氧化石墨烯/辐照改性氮化碳降解罗丹明B[J]. 广州化工, 2021, 49(17):74-77. doi: 10.3969/j.issn.1001-9677.2021.17.023

    ZHANG Jing, ZHOU Tianqing, HUANG Yixuan, et al. Irradiation modified carbon nitride/reduced graphene oxide nanocomposites for degradation of rhodamine B[J]. Guangzhou Chemical Industry,2021,49(17):74-77(in Chinese). doi: 10.3969/j.issn.1001-9677.2021.17.023
    [24] XIAO H, WANG T. Graphene oxide (rGO)-metal oxide (TiO2/Ag2O) based nanocomposites for the removal of rhodamine B at UV-visible light[J]. Journal of Physics and Chemistry of Solids, 2021, 154: 110100.
    [25] WANG X, GUO Y, JIA Z, et al. Fabrication of graphene oxide/polydopamine adsorptive membrane by stepwise in-situ growth for removal of rhodamine B from water[J]. Desalination, 2021, 516: 115220.
    [26] 中国国家标准化管理委员会. 水泥胶砂强度检验方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 2004.

    Standardization Administration of the People’s Republic of China. Cement mortar strength inspection method: GB/T 17671—1999[S]. Beijing: China Standards Press, 2004(in Chinese).
    [27] 中国国家标准化管理委员会. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Standardization Administration of the People’s Republic of China. Standard for test methods of long-term perfor-mance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [28] 王琴, 李时雨, 王健, 等. 氧化石墨烯对水泥水化进程及其主要水化产物的影响[J]. 硅酸盐学报, 2018, 46(2):163-172.

    WANG Qin, LI Shiyu, WANG Jian, et al. Effect of graphene oxide on hydration process and main hydration products of cement[J]. Journal of the Chinese Ceramic Society,2018,46(2):163-172(in Chinese).
    [29] 袁小亚, 高军, 王远贵, 等. 氧化石墨烯分散方式及其对水泥砂浆力学性能的影响[J]. 混凝土与水泥制品, 2020(8):18-22, 26.

    YUAN Xiaoya, GAO Jun, WANG Yuangui, et al. Graphene oxide dispersion method and its influence on the mecha-nical properties of cement mortar[J]. Concrete and Cement Products,2020(8):18-22, 26(in Chinese).
    [30] NGUYEN H D, ZHANG Q, LIN J, et al. Dispersion of silane-functionalized GO and its reinforcing effects in cement composites[J]. Journal of Building Engineering,2021,43:103228. doi: 10.1016/j.jobe.2021.103228
    [31] SHENG K, LI D, YUAN X. Methyl orange assisted dispersion of graphene oxide in the alkaline environment for improving mechanical properties and fluidity of ordinary portland cement composites[J]. Journal of Building Engi-neering,2021,43:103166. doi: 10.1016/j.jobe.2021.103166
    [32] HU M, GUO J, LI P, et al. Micromechanical recovery of waste cement via efficient rehydration under the effect of tris(2-hydroxyethyl) amine-graphene oxide (TEA-GO)[J]. Construction and Building Materials,2018,188:470-479. doi: 10.1016/j.conbuildmat.2018.08.059
    [33] 吕生华, 张佳, 朱琳琳, 等. 氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报, 2017, 68(6):2585-2595.

    LV Shenghua, ZHANG Jia, ZHU Linlin, et al. The control effect of graphene oxide on the microstructure of cement-based composites and the influence of compressive and flexural strength[J]. CIESC Journal,2017,68(6):2585-2595(in Chinese).
    [34] 李东波, 张鸿驰, 刘春燕, 等. 氧化石墨烯与粉煤灰增强水泥基材料的协同机理及其抗压性能尺寸效应[J]. 应用力学学报, 2021, 38(5):1869-1876.

    LI Dongbo, ZHANG Hongchi, LIU Chunyan, et al. Synergis-tic mechanisms and size effect of cement-based materials enhanced by graphene oxide and fly ash[J]. Chinese Jour-nal of Applied Mechanics,2021,38(5):1869-1876(in Chinese).
    [35] WEI Z, WANG Y, QI M, et al. The role of sucrose on enhancing properties of graphene oxide reinforced cement composites containing fly ash[J]. Construction and Building Materials,2021,293:123507. doi: 10.1016/j.conbuildmat.2021.123507
    [36] PENG H, GE Y, CAI C S, et al. Mechanical properties and microstructure of graphene oxide cement-based compo-sites[J]. Construction and Building Materials,2019,194:102-109. doi: 10.1016/j.conbuildmat.2018.10.234
    [37] 魏致强, 王远贵, 齐孟, 等. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10):10042-10047. doi: 10.11896/cldb.20040258

    WEI Zhiqiang, WANG Yuangui, QI Meng, et al. The synergistic effect of gallic acid and polycarboxylic water-reducer on aqueous GO dispersion and the enhanced mecha-nical properties of cement mortar composites[J]. Materials Reports,2021,35(10):10042-10047(in Chinese). doi: 10.11896/cldb.20040258
    [38] 王远贵, 袁小亚, 高军, 等. 蔗糖对氧化石墨烯掺配砂浆流动性与力学性能影响研究[J]. 硅酸盐通报, 2020, 39(11):3453-3462.

    WANG Yuangui, YUAN Xiaoya, GAO Jun, et al. Effect of sucrose on fluidity and mechanical properties of graphene oxide mixed mortar[J]. Bulletin of the Chinese Ceramic Society,2020,39(11):3453-3462(in Chinese).
    [39] ZHAO L, ZHU S, WU H, et al. The improved resistance against the degradation of sisal fibers under the environment of cement hydration by surface coating of graphene oxide (GO) based membranes[J]. Construction and Building Materials,2021,305:124694. doi: 10.1016/j.conbuildmat.2021.124694
    [40] 董健苗, 余浪, 王慧敏, 等. 氧化石墨烯的分散程度对水泥基材料力学性能的影响[J]. 广西科技大学学报, 2021, 32(3):27-33.

    DONG Jianmiao, YU Lang, WANG Huimin, et al. Effect of dispersion degree of GO on mechanical properties of cement-based materials[J]. Journal of Guangxi University of Science and Technology,2021,32(3):27-33(in Chinese).
    [41] 富恩昊. 氧化石墨烯再生混凝土力学性能和抗冻耐久性试验研究[D]. 沈阳: 沈阳建筑大学, 2018.

    FU Enhao. Experimental study on mechanical properties and frost resistance of recycled graphene oxide concrete[D]. Shenyang: Shenyang Jianzhu University, 2018(in Chinese).
    [42] 蒙坤林, 黄小青, 杨义, 等. 氧化石墨烯改善水泥材料抗蚀性的研究[J]. 广西科技大学学报, 2019, 30(2):86-92.

    MENG Kunlin, HUANG Xiaoqing, YANG Yi, et al. Research on the erosion resistance of graphene oxide improved cement materials[J]. Journal of Guangxi University of Science and Technology,2019,30(2):86-92(in Chinese).
    [43] 龚建清, 林立. 氧化石墨烯/碳纳米管水泥基复合材料的抗冻性研究[J]. 硅酸盐通报, 2018, 37(11):3410-3415.

    GONG Jianqing, LIN Li. Study on frost resistance of GO/CNTs cementitious composites[J]. Bulletin of the Chinese Ceramic Society,2018,37(11):3410-3415(in Chinese).
    [44] 张慢. 化学外加剂对水泥水化历程的调控及作用机理研究[D]. 武汉: 武汉理工大学, 2010.

    ZHANG Man. Regulation and mechanism of chemical admixtures on cement hydration process[D]. Wuhan: Wuhan University of Technology, 2010(in Chinese).
    [45] 汪金花, 曹兰杰, 徐国强, 等. 混凝土硫酸钠腐蚀产物的高光谱检测方法研究[J]. 光谱学与光谱分析, 2019, 39(6):1724-1730.

    WANG Jinhua, CAO Lanjie, XU Guoqiang, et al. Research on hyper-spectral test of concrete corrosion product under sodium sulfate attack[J]. Spectroscopy and Spectral Analysis,2019,39(6):1724-1730(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  790
  • HTML全文浏览量:  359
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2022-01-04
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-14
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回