留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羟基磷灰石改性膨润土对铀的吸附效果及其机制

张益硕 周仲魁 李龙祥 郭亚丹 孙占学

张益硕, 周仲魁, 李龙祥, 等. 羟基磷灰石改性膨润土对铀的吸附效果及其机制[J]. 复合材料学报, 2023, 41(0): 1-17
引用本文: 张益硕, 周仲魁, 李龙祥, 等. 羟基磷灰石改性膨润土对铀的吸附效果及其机制[J]. 复合材料学报, 2023, 41(0): 1-17
Yishuo ZHANG, Zhongkui ZHOU, Longxiang LI, Yadan GUO, Zhanxue SUN. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite[J]. Acta Materiae Compositae Sinica.
Citation: Yishuo ZHANG, Zhongkui ZHOU, Longxiang LI, Yadan GUO, Zhanxue SUN. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite[J]. Acta Materiae Compositae Sinica.

羟基磷灰石改性膨润土对铀的吸附效果及其机制

基金项目: 国家自然科学基金 (41662024);江西省重点研发计划重点项目(20212BBG71011)
详细信息
    通讯作者:

    周仲魁,博士,教授,硕士生导师,研究方向为铀矿山环境治理与修复 E-mail: zhkzhou80@163.com

  • 中图分类号: X703.1

Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite

Funds: National Natural Science Foundation of China(41662024);Key Projects of Jiangxi Province Key R&D Programme (20212BBG71011)
  • 摘要: 膨润土(BTN)的团聚性(图1)及缺少吸附官能团严重制约其对含铀废水的去除性能,需对其进行改性使其成为复合材料以提高膨润土的吸附性能。膨润土TEM图TEM diagram of bentonite本文以膨润土、磷酸氢二钠、硝酸钙为原料,采用简单易行的一步水热法成功制备出羟基磷灰石改性膨润土复合材料(HAP/BTN),即克服了膨润土的团聚性又使吸附材料的制备简单化,且由于HAP/BTN的组成为天然膨润土和羟基磷灰石,因此,其对环境产生的二次污染较小,提升了环境吸附材料的工业应用潜力。本工作采用较成熟的单因素试验和正交试验考察了HAP/BTN吸附铀的性能,得出其对铀的去除率可达98%,吸附等温线拟合得出其吸附量为186.45 mg/g,最后通过表征及Zeta电位分析得出其吸附机制如图2所示。HAP/BTN吸附铀机制Mechanism of uranium adsorption by HAP/BTN

     

  • 图  1  BTN的TEM图像(a)、羟基磷灰石改性膨润土复合材料(HAP/BTN)的TEM图像(b)

    Figure  1.  TEM images of BTN (a), TEM images of hydroxyapatite modified bentonite (HAP/BTN) (b)

    图  2  BTN的SEM图像(a)、HAP/BTN的SEM图像(b)

    Figure  2.  SEM images of BTN (a), SEM images of HAP/BTN (b)

    图  3  HAP/BTN的红外光谱图

    Figure  3.  Infrared spectra of HAP/BTN

    图  4  HAP/BTN和BTN两种吸附材料对铀的吸附性能比较

    Figure  4.  Comparison of adsorption properties of HAP/BTN and BTN for uranium

    图  5  pH值对HAP/BTN吸附铀的影响(a)、铀在不同pH下的物种形态(C0=10 mg·L−1PCO2=0.00039 atm)(b)

    Figure  5.  Effect of pH on uranium adsorption by HAP/BTN (a), Species morphology of uranium at different pH (C0=10 mg·L−1, PCO2=0.00039 atm) (b)

    图  6  振荡转速对HAP/BTN吸附铀的影响

    Figure  6.  Effect of shaking speed on the adsorption of uranium by HAP/BTN

    图  7  投加量对HAP/BTN吸附铀的影响

    Figure  7.  Effect of dosage on adsorption of uranium by HAP/BTN

    图  8  吸附时间对HAP/BTN吸附铀的影响

    Figure  8.  Effect of adsorption time on the adsorption of uranium by HAP/BTN

    图  9  水溶液温度对HAP/BTN吸附铀的影响

    Figure  9.  The effect of aqueous solution temperature on the adsorption of uranium by HAP/BTN

    图  10  铀溶液体积对HAP/BTN吸附铀的影响

    Figure  10.  The effect of uranium solution volume on the adsorption of uranium by HAP/BTN

    图  11  铀废水初始浓度对HAP/BTN吸附铀的影响

    Figure  11.  Effect of initial concentration on uranium adsorption by HAP/BTN

    图  12  材料粒径对HAP/BTN吸附铀的影响(a)、材料煅烧温度对HAP/BTN吸附铀的影响(b)

    Figure  12.  The effect of particle size on the adsorption of HAP/BTN(a), Effect of calcination temperature on the adsorption of uranium by HAP/BTN(b)

    图  13  HAP/BTN吸附铀的Langmuir和Freundlich拟合曲线(a)、不同铀浓度下HAP/BTN Langmuir等温线吸附模型分离因子(b)

    Figure  13.  Langmuir and Freundlich fitting curves of uranium adsorption by HAP/BTN (a), Separation factor of HAP/BTN Langmuir isotherm adsorption model at different uranium concentrations(b)

    图  14  HAP/BTN吸附铀的动力学研究:准一级动力学(a)、准二级动力学(b)、Elovich动力学(c)、Morrist颗粒内扩散模型(d)

    Figure  14.  Kinetic study of uranium adsorption on HAP/BTN: Quasi-first-order kinetics(a), Quasi-second-order kinetics(b), Elovich kinetics(c), Morrist intraparticle diffusion model(d)

    图  15  HAP/BTN对铀(VI)的吸附热力学拟合

    Figure  15.  Adsorption thermodynamics of uranium (VI) on HAP/BNT

    图  16  HAP/BTN循环试验(a)、BTN或HAP/BTN吸附铀前/吸附后的Zeta电位值(b)、吸附时间对HAP/BTN吸附铀稳定性的影响(c)、不同水样稀释对HAP/BTN吸附铀的影响(pH=6.0,R=100 r•min-1T=298.15 K,m=1 g•L-1V=50 mL,t=30 min)(d)

    Figure  16.  HAP/BTN cycle test(a), Zeta potential values of BTN or HAP/BTN before and after adsorption(b), The effect of time on the stability of HAP/BTN(c), Effect of different water samples on H (pH=6.0,R=100 r•min-1T=298.15 K,m=1 g•L-1V=50 mL,t=30 min) (d)

    图  17  离子强度对HAP/BTN吸附铀的影响(a)、阳离子对HAP/BTN吸附铀的影响(b)、阴离子对HAP/BTN吸附铀的影响(c)

    Figure  17.  Effect of ionic strength on uranium adsorption by HAP/BTN(a), effect of cations on uranium adsorption by HAP/BTN(b), effect of anions on uranium adsorption by HAP/BTN(c)

    图  18  HAP/BTN吸附铀前后的XPS分析(a, c~e)、铀的精细谱(b)、不同材料的XRD分析(f)、HAP/BTN吸附铀的机制(g)

    Figure  18.  XPS analysis before and after adsorption of uranium (a,c~e), Fine spectrum of uranium(b), XRD analysis before and after uranium adsorption(f), Adsorption mechanism of HAP/BNT(g)

    图  19  HAP的TEM形貌

    Figure  19.  TEM morphology of HAP

    表  1  白色块状物质EDS分析

    Table  1.   EDS analysis of white block material

    ElementMass fraction/%
    O39.07
    P22.65
    Ca38.28
    下载: 导出CSV

    表  2  HAP/BTN吸附铀的正交试验因素及水平设计

    Table  2.   Orthogonal test factors and level design of HAP/BTN adsorption of uranium

    FactorABCDE
    1 2 0298.150.01 1
    2 6 60308.150.0210
    311100318.150.0530
    Notes: A—pH of aqueous solution;B—revolution speed/(r·min−1);C—temperature/K;D—addition amount/g;E—adsorption time/min
    下载: 导出CSV

    表  3  HAP/BTN吸附铀的正交试验设计方案和结果

    Table  3.   Orthogonal experimental design and results of HAP / BTN adsorption of uranium

    FactorABCDES/%
    1 2 0 298.15 0.01 1 18.55
    2 2 60 308.15 0.02 10 22.32
    3 2 100 318.15 0.05 30 24.26
    4 6 0 298.15 0.02 10 46.30
    5 6 60 308.15 0.05 30 92.05
    6 6 100 318.15 0.01 1 71.51
    7 11 0 308.15 0.01 30 50.05
    8 11 60 318.15 0.02 1 40.76
    9 11 100 298.15 0.05 10 70.63
    10 2 0 318.15 0.05 10 23.56
    11 2 60 298.15 0.01 30 26.78
    12 2 100 308.15 0.02 1 20.13
    13 6 0 308.15 0.05 1 44.25
    14 6 60 318.15 0.01 10 86.12
    15 6 100 298.15 0.02 30 99.48
    16 11 0 318.15 0.02 30 53.26
    17 11 60 298.15 0.05 1 42.14
    18 11 100 308.15 0.01 10 74.42
    K1 135.6 235.97 303.88 327.43 237.34
    K2 439.71 310.17 303.22 282.25 323.35
    K3 331.26 360.43 299.47 296.89 345.88
    k1 45.20 78.66 101.29 109.14 79.11
    k2 146.57 103.39 101.07 94.08 107.78
    k3 110.42 120.14 99.823 98.96 115.29
    R 101.37 41.48 1.47 15.06 36.18
    主次顺序 A>B>E>D>C
    Notes: A—pH of aqueous solution;B—revolution speed/(r·min-1);C—temperature/K;D—addition amount/g;E—adsorption time/min;Ki—The i (i=1,2,3) level of the factor is the test index.;ki—the average value of Ki;R-range; S—Adsorption rate
    下载: 导出CSV

    表  4  HAP/BTN吸附铀的吸附等温线参数

    Table  4.   Adsorption isotherm parameters of HAP/BTN adsorbing uranium

    TLangmuirFreundlich
    qm/
    (mg·g−1)
    Kc/
    (L·mg−1)
    R2n−1Kf
    (mg·g−1)/(mg·L−1)1/n)
    R2
    273.15 K186.450.042150.999920.5711214.298260.91888
    Notes: qm is the saturated adsorption capacity of monolayer adsorption;Kc is a constant related to adsorption energy;Kf is a constant related to the adsorption capacity;n−1 is a measure of the adsorption strength; R2—Correlation coefficient
    下载: 导出CSV

    表  5  HAP/BTN吸附铀的动力学模型参数

    Table  5.   HAP/BTN kinetic fitting data

    Model typesEquationqe/
    (mg·g−1)
    R2
    Pseudo first-order modelln(qeqt)=−0.10035t+1.261043.530.911
    Pseudo second-order modelt/q=0.09797t+0.145999.980.997
    Elovich modelqt=0.87196 lnt+6.801590.981
    Morrist intraparticle diffusion modelqt=0.67023t1/2+6.521630.930
    qt=0.62663t1/2+6.501410.961
    qt=0.299508t1/2+7.785420.956
    Notes: qe, qt—Adsorption amount at time t and adsorption equilibrium, respectively;t—adsorption time;
    下载: 导出CSV

    表  6  HAP/BTN对铀(VI)的吸附热力学具体参数

    Table  6.   Thermodynamic parameters of uranium (VI) adsorption on HAP/BTN

    T/KΔHθ/
    (KJ·mol−1)
    ΔSθ/
    (J·mol−1·K−1)
    ΔGθ/
    (KJ·mol−1)
    298.15 45.27 157.58 −1.71
    308.15 −3.29
    318.15 −4.86
    328.15 −6.44
    338.15 −8.01
    348.15 −9.59
    358.15 −11.16
    368.15 −12.76
    Notes:ΔHθ—The heat of the adsorption;ΔSθ—Standard entropy change;ΔGθ—Gibbs free energy of adsorption
    下载: 导出CSV
  • [1] 荣丽杉, 夏麟, 周书葵, 等. UiO-66/壳聚糖的制备及其对U(VI)的吸附机制[J]. 复合材料学报, 2022, 39(10):4879-4888. doi: 10.13801/j.cnki.fhclxb.20211025.002

    RONG Lishan, XIA Lin, ZHOU Shukui, et al. Preparation of UiO-66/chitosa n and its adsorption mechanism of U(VI)[J]. Acta Materiae Composita Sinica,2022,39(10):4879-4888(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211025.002
    [2] SALEH T A, TUZEN M, SARI A. Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution[J]. Chemical Engineering Research and Design,2017,117:218-227. doi: 10.1016/j.cherd.2016.10.030
    [3] BILAL M, IHSANULLAH I, YOUNAS M, et al. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review[J]. Separation and Purification Technology,2021,278:119510. doi: 10.1016/j.seppur.2021.119510
    [4] LIU J, SHI S, LI C, et al. U (VI) adsorption by one-step hydrothermally synthesized cetyltrimethylammonium bromide modified hydroxyapatite-bentonite composites from phosphate-carbonate coexisted solution[J]. Applied Clay Science,2021,203:106027. doi: 10.1016/j.clay.2021.106027
    [5] 马磊, 黄毅, 邓浩, 等. 氟磷灰石对酸性水溶液中铀(VI)的去除研究[J]. 无机材料学报, 2022, 37(4):395-405. doi: 10.15541/jim20210255

    MA Lei, HUANG Yi, DENG Hao, et al. Removal of Uranium (VI) from Ac idic Aqueous Solution by Fluorapati te[J]. Journal of Inorganic Material s,2022,37(4):395-405(in Chinese). doi: 10.15541/jim20210255
    [6] 张益硕, 周仲魁, 杨顺景, 等. 重金属污染土壤修复原理与技术[J]. 有色金属(冶炼部分), 2022(10):124-134.

    ZHANG Yishuo, ZHOU Zhongkui, YANG Shunjing, et al. Principles and Technologies for Remediation of Heavy Metal Contaminated Soil[J]. Nonferrous Metals(Extractive Metallurgy),2022(10):124-134(in Chinese).
    [7] ORTABOY S, ACAR E T, ATUN G, et al. Performance of acrylic monomer based terpolymer/montmorillonite nanocomposite hydrogels for U (VI) removal from aqueous solutions[J]. Chemical Engineering Research and Design,2013,91(4):670-680. doi: 10.1016/j.cherd.2012.12.007
    [8] 于静, 王建龙. 无机吸附材料处理放射性废水中铀的研究进展[J]. 核化学与放射化学, 2018, 40(2):81-88. doi: 10.7538/hhx.2018.40.02.0081

    YU JING, WANG JIANLONG. Research Advances in Inorganic Adsorption Materials Processing for Uranium From Radioactive Wastewater[J]. Journal of Nuclear and Radiochemistry,2018,40(2):81-88(in Chinese). doi: 10.7538/hhx.2018.40.02.0081
    [9] 熊小红, 林周梁, 王魏, 等. 铁钛柱撑吸附水中U(Ⅵ)的性能研究[J]. 铀矿冶, 2018, 37(04): 296-303.

    XIONG Xiaohong, LIN Zhouliang, WANG Wei, et al. Charateristics Study on Removal of U(Ⅵ) From AqueousSolution by Ironand Titanium Pillared Bentonite Adsorption[J] Uranium Mining and Metallurgy, 2018, 37 (04): 296-303(in Chinese).
    [10] CHEN X, LI P, ZENG X, et al. Efficient adsorption of methylene blue by xanthan gum derivative modified hydroxyapatite[J]. International journal of biological macromolecules,2020,151:1040-1048. doi: 10.1016/j.ijbiomac.2019.10.145
    [11] 刘国, 徐丽莎, 李知可, 等. 羟基磷灰石/膨润土复合材料对水中Cd2+吸附研究[J]. 硅酸盐学报, 2018, 46(10):1414-1425.

    LIU GUO, XU LISA, LI ZHIKE, et al. Adsorption of Cadmium on Hydroxyapatite/Bentonite Composites in Aqueous Solution[J]. Journal of the Chinese Ceramic Society,2018,46(10):1414-1425(in Chinese).
    [12] 王丝雨, 周仲魁, 张益硕, 等. 十二烷基三甲基溴化铵膨润土处理低浓度U(Ⅵ)废水试验研究[J]. 中国有色冶金, 2022, 51(5):128-136. doi: 10.19612/j.cnki.cn11-5066/tf.2022.05.018

    WANG Siyu, ZHOU Zhongkui, ZHANG Yishuo, et al. Removal of low concentration U( VI) in wastewater by dodecyl trimethyl ammonium bromide-modified bentonite[J]. China Nonferrous Metallurgy,2022,51(5):128-136(in Chinese). doi: 10.19612/j.cnki.cn11-5066/tf.2022.05.018
    [13] 张益硕, 周仲魁, 王丝雨, 等. STAC改性有机膨润土去除水体中U(Ⅵ)试验[J]. 有色金属(冶炼部分), 2022(1):127-132.

    ZHANG Yishuo, ZHOU Zhongkui, WANG Siyu, et al. Study on Removal of U(Ⅵ) from Water Bodiesby STAC Modified Bentonite[J]. Nonferrous Metals(Extractive Metallurgy),2022(1):127-132(in Chinese).
    [14] 张益硕, 周仲魁, 杨顺景, 等. 用CTAB改性膨润土从低浓度废水中吸附去除U(Ⅵ)[J]. 湿法冶金, 2022, 41(2):145-149. doi: 10.13355/j.cnki.sfyj.2022.02.011

    ZHANG Yishuo, ZHOU Zhongkui, YANG Shunjing, et al. Adsorption of Low Concentration U(Ⅵ) in Wastewater With CTAB Modified Bentonite[J]. Hydrometall. China,2022,41(2):145-149(in Chinese). doi: 10.13355/j.cnki.sfyj.2022.02.011
    [15] 张益硕, 周仲魁, 杨顺景, 等. KH550改性膨润土对低浓度U(Ⅵ)的吸附[J]. 有色金属工程, 2022, 12(9):154-164. doi: 10.3969/j.issn.2095-1744.2022.09.21

    ZHANG Yishuo, ZHOU Zhongkui, YANG Shunjing, et al. Adsorption Performance of KH550 Modified Bentoniteat Low Concentrations of U(Ⅵ)[J]. Nonferrous Metals,2022,12(9):154-164(in Chinese). doi: 10.3969/j.issn.2095-1744.2022.09.21
    [16] LEI Y, LI K, LIAO J, et al. Design of 3 D alumina-doped magnesium oxide aerogels with a high efficiency removal of uranium (vi) from wastewater[J]. Inorganic Chemistry Frontiers,2021,8(10):2561-2574. doi: 10.1039/D1QI00259G
    [17] LIAO D, ZHENG W, LI X, et al. Removal of lead (II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste[J]. Journal of hazardous materials,2010,177(1-3):126-130. doi: 10.1016/j.jhazmat.2009.12.005
    [18] KOLODYNSKA D, WNETRZAK R, LEAHY J J. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical engineering journal,2012,197:295-305. doi: 10.1016/j.cej.2012.05.025
    [19] MEI D, LIU L, YAN B. Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water[J]. Coordination Chemistry Reviews,2023,475:214917. doi: 10.1016/j.ccr.2022.214917
    [20] 李鑫璐, 赵建海, 王康, 等. 氢氧化镁改性活性炭对Cu(Ⅱ)的吸附[J]. 精细化工, 2020, 37(01): 130-134+146.

    XIN Lu, ZHAO Jianhai, WANG Kang, et al. Magnesium hydroxide modified activated carbon for the adsorption of copper (Ⅱ) ions [J] Fine Chemicals, 2020, 37 (01): 130-134+146
    [21] LIU H, FU T, MAO Y. Metal–Organic Framework-Based Materials for Adsorption and Detection of Uranium (VI) from Aqueous Solution[J]. ACS omega,2022,7(17):14430-14456. doi: 10.1021/acsomega.2c00597
    [22] ZHONG Z, LI J, MA Y, et al. The adsorption mechanism of heavy metals from coal combustion by modified kaolin: Experimental and theoretical studies[J]. Journal of Hazardous Materials,2021,418:126256. doi: 10.1016/j.jhazmat.2021.126256
    [23] HUANG R, WANG B, YANG B. Equilibrium, kinetic and thermodynamic studies of adsorption of Cd(II) from aqueous solution onto HACC-bentonite[J]. Desalination:The International Journal on the Science and Technology of Desalting and Water Purification,2011,280(1/3):297-304.
    [24] 何豪, 朱宗强, 刘杰, 等. 镁-钙羟基磷灰石吸附剂对水中Pb~(2+)的去除[J]. 环境科学, 2019, 40(9):4081-4090. doi: 10.13227/j.hjkx.201901082

    HE Hao, ZHU Zongqiang, LIU Jie, et al. Removal of Pb2 + from Aqueous Solution by Magnesium-Calcium Hydroxyapatite Adsorbent[J]. Environmental Science,2019,40(9):4081-4090(in Chinese). doi: 10.13227/j.hjkx.201901082
    [25] XIONG T, JIA L, LI Q, et al. Efficient removal of uranium by hydroxyapatite modified kaolin aerogel[J]. Separation and Purification Technology,2022,299:121776. doi: 10.1016/j.seppur.2022.121776
    [26] TAN W-T, ZHOU H, TANG S-F, et al. Enhancing Cd (II) adsorption on rice straw biochar by modification of iron and manganese oxides[J]. Environmental Pollution,2022,300:118899. doi: 10.1016/j.envpol.2022.118899
    [27] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American C hemical society, 1918, 40(9): 136 1-1403.
    [28] WU L, YANG X, CHEN T, et al. Three-dimensional C3 N5/RGO aerogels with enhanced visible-light response and electron-hole separation efficiencyfor photocatalytic uranium reduction[J]. Chemical Engineering Journal,2022,427:131773. doi: 10.1016/j.cej.2021.131773
    [29] CHEN X, LI W, ZHANG G, et al. Highly stable and activated Cerium-based MOFs superstructures for ultrahighselective uranium (VI) capture from simulated seawater[J]. Materials Today Chemistry,2022,23:100705. doi: 10.1016/j.mtchem.2021.100705
    [30] NKOH J N, HONG Z, LU H, et al. Alonite and gibbsite: Adsorption isotherms and spectroscopic analysis[J]. Applied Clay Science,2022,219:106437. doi: 10.1016/j.clay.2022.106437
    [31] YIN Y, XU G, XU Y, et al. Adsorption of inorganic and organic phosphorus onto polypyrrole modified red mud: Evidence from batch and column experiments[J]. Chemosphere,2022,286:131862. doi: 10.1016/j.chemosphere.2021.131862
    [32] LIAO J, DING L, ZHANG Y, et al. Efficient removal of uranium from wastewater using pig manure biochar: understanding adsorption and binding mechanisms[J]. Journal of Hazardous Materials,2022,423:127190. doi: 10.1016/j.jhazmat.2021.127190
    [33] WU Y, CHEN D, KONG L, et al. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres[J]. Journal of hazardous materials,2019,371:397-405. doi: 10.1016/j.jhazmat.2019.02.110
    [34] CHEN L, WANG Y, CAO X, et al. Effect of doping cation on the adsorption properties of hydroxyapatite to uranium[J]. Journal of Solid State Chemistry,2023,317:123687. doi: 10.1016/j.jssc.2022.123687
    [35] 王玉罡, 张卫民, 陈家鸿, 等. 钙铁基磷酸盐复合材料(CFP(CC))对U(Ⅵ)的吸附性能[J]. 材料导报, 2022, 36(14): 116-123.

    WANG Yugang, ZHANG Weimin, CHEN Jiahong, et al. Adsorption Performance of Ca/Fe-phosphate Composites (CFP(CC)) on U(Ⅵ) [J] Materials Reports, 2022, 36 (14): 116-123(in Chinese).
    [36] 王光辉, 胡苏杭, 韩晨. 半胱氨酸盐酸盐改性膨润土对铀的吸附研究[J]. 日用化学工业, 2014, 44(03): 126-130.

    WANG Guanghui, HU Suhang, HAN Chen. Study on adsorption of uranium onto bentonite modified by cysteine hydrochloride [J] China Surfactant Detergent & Cosmetics, 2014, 44 (03): 126-130(in Chinese).
    [37] 尹英杰, 楚龙港, 朱司航, 等. 表面活性剂改性纳米羟基磷灰石对Cd~(2+)吸附研究[J]. 农业环境科学学报, 2019, 38(08): 1901-1908.

    YIN Yingjie, CHU Longgang, ZHU Sihang, et al. Adsorption capacity of surfactant-modified nano-hydroxyapatite for Cd2+ [J] Journal of Agro-Environment Science, 2019, 38 (08): 1901-1908(in Chinese).
  • 加载中
计量
  • 文章访问数:  109
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-01
  • 修回日期:  2023-02-26
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-18

目录

    /

    返回文章
    返回