留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中空纳米纤维内部生长MOFs的柔性复合膜的制备与表征

郑凯 周全 杨帆 任瑞鹏 吕永康

郑凯, 周全, 杨帆, 等. 中空纳米纤维内部生长MOFs的柔性复合膜的制备与表征[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 郑凯, 周全, 杨帆, 等. 中空纳米纤维内部生长MOFs的柔性复合膜的制备与表征[J]. 复合材料学报, 2024, 42(0): 1-11.
ZHENG Kai, ZHOU Quan, YAN Fan, et al. Preparation and characterization of flexible composite membranes with MOFs grown inside hollow nanofiber[J]. Acta Materiae Compositae Sinica.
Citation: ZHENG Kai, ZHOU Quan, YAN Fan, et al. Preparation and characterization of flexible composite membranes with MOFs grown inside hollow nanofiber[J]. Acta Materiae Compositae Sinica.

中空纳米纤维内部生长MOFs的柔性复合膜的制备与表征

基金项目: 国家自然科学基金 (No. 21707098)
详细信息
    通讯作者:

    周 全,博士,讲师,硕士生导师,研究方向为环境功能材料和纳米复合材料 E-mail: zhouquan@tyut.edu.cn

  • 中图分类号: TQ340.64; TQ342; TB332

Preparation and characterization of flexible composite membranes with MOFs grown inside hollow nanofiber

Funds: National Natural Science Foundation of China (No. 21707098)
  • 摘要: 基于金属有机框架 (Metal organic frameworks, MOFs) 的柔性复合膜材料在气体分离、污染物吸附、药物可控释放等领域具有重要的作用。利用同轴静电纺丝技术,在聚偏氟乙烯 (Polyvinylidene fluoride, PVDF) 的高分子溶液中添加有机配体2-甲基咪唑 (2-Methylimidazole, 2-mI) 作为外壳纺丝液,在甘油中添加锌离子作为内芯纺丝液,制备得到的核壳结构纳米纤维进行水热反应。在内芯甘油溶解形成中空结构的同时,锌离子向外扩散接触到外壳高分子层内表面的有机配体,在中空纳米纤维 (Hollow nanofibers, HNFs) 内部原位生成了MOF晶体ZIF-8,得到了ZIF-8@HNFs柔性复合膜材料。同时研究了金属盐与有机配体的不同比例、水热生长时间和温度对中空纳米纤维内部生长ZIF-8的影响。最佳金属盐与有机配体的物质的量比为1∶40,65℃水热生长4 h。采用XRD、SEM、FT-IR和氮气吸附-脱附实验等对ZIF-8@HNFs柔性复合膜的结构和性能进行了表征。结果表明,ZIF-8原位生长在中空纳米纤维内部,负载量为3.351%,ZIF-8@HNFs复合材料的比表面积为38.189 m2/g、孔体积为0.204 cm3/g、孔径分布在4.678 nm 和7.573 nm,并且可以耐受200℃高温、多次弯折和纯水、碱液的浸泡4 h依旧保持结构的稳定性。而ZIF-8本身在酸性条件下会发生解离的特性,使得ZIF-8@HNFs柔性复合膜材料在污染物吸附-解吸、药物可控释放等领域具有潜在的应用价值。

     

  • 图  1  ZIF-8@中空纳米纤维(HNFs)复合膜的制备流程图

    Figure  1.  Flow chart of preparation of ZIF-8@Hollow nanofibers(HNFs) composite membranes

    图  2  ZIF-8粉末、HNFs和ZIF-8@HNFs复合膜的XRD图谱

    Figure  2.  XRD patterns of ZIF-8 powder, HNFs and ZIF-8@HNFs composite membranes

    图  3  锌离子与2-甲基咪唑的摩尔比分别为1∶10、1∶20和1∶40时制备的ZIF-8@HNFs复合膜的XRD图谱

    Figure  3.  XRD patterns of ZIF-8@HNFs composite membranes synthesized by adding different molar ratios of zinc ions and 2-methylimidazole: 1∶10, 1∶20 and 1∶40

    图  4  水热反应温度分别为45℃、65℃和85℃时生长4 h制备的ZIF-8@HNFs复合膜的XRD图谱

    Figure  4.  XRD patterns of ZIF-8@HNFs composite membranes synthesized by different hydrothermal growth temperature at 45℃, 65℃ and85℃ for 4 h

    图  5  水热反应时间分别为2 h、4 h、8 h和12 h时在65℃制备的ZIF-8@HNFs复合膜的XRD图谱

    Figure  5.  XRD patterns of ZIF-8@HNFs composite membranes synthesized by different hydrothermal growth time for 2 h, 4 h, 8 h and 12 h at 65℃

    图  6  不同制备条件下ZIF-8@HNFs复合膜的SEM图

    Figure  6.  SEM images of ZIF-8@HNFs composite nanofiber membranes under different preparation conditions

    图  7  ZIF-8@HNFs复合膜的EDS能谱图 (氟、碳、锌和氮):(a) 大范围的纳米纤维膜;(b) 放大的单根纳米纤维

    Figure  7.  EDS maps of ZIF-8@HNFs composite membranes (F, C, Zn and N): (a) wide scale elemental mapping of nanofiber membranes; (b) enlarged elemental mapping of single nanofiber

    图  8  锌离子与2-甲基咪唑的摩尔比为1∶10、1∶20和1∶40时制备的ZIF-8@HNFs复合膜的FT-IR图

    Figure  8.  FT-IR spectra of ZIF-8@HNFs composite membranes synthesized by adding different molar ratios of zinc ions and 2-methylimidazole: 1∶10, 1∶20 and 1∶40

    图  9  ZIF-8粉末(a)和ZIF-8@HNFs复合膜(b)的水接触角照片

    Figure  9.  Water contact angle photos of ZIF-8 powder (a) and ZIF-8@HNFs composite membranes (b)

    图  10  ZIF-8粉末、HNFs和ZIF-8@HNFs复合膜的TGA 曲线

    Figure  10.  Thermogravimetry curves of ZIF-8 powder, HNFs and ZIF-8@HNFs composite membrane

    图  11  不同温度处理后ZIF-8@HNFs复合膜的XRD图谱

    Figure  11.  XRD patterns of ZIF-8@HNFs composite membranes treated by different temperature

    图  12  ZIF-8粉末、HNFs和ZIF-8@HNFs复合膜的N2吸附-脱附曲线(a)和孔径分布(b)

    Figure  12.  N2 adsorption-desorption curves (a) and pore size distribution (b) of ZIF-8 powder, HNFs and ZIF-8@HNFs composite membranes

    图  13  ZIF-8@HNFs复合膜:(a)尺寸和(b)质量;柔性测试:(c)对折、(d)弯曲和(e)缠绕

    Figure  13.  ZIF-8@HNFs composite membranes: (a) Size and (b) Mass; Flexibility testing: (c) Folding, (d) Bending and (e) Wrapping

    图  14  ZIF-8@HNFs复合膜经过水、酸性环境和碱性环境洗涤4 h后的XRD图谱

    Figure  14.  XRD patterns of ZIF-8@HNFs composite membranes after washing 4 h in water, acidic and alkaline conditions

    表  1  ZIF-8粉末、HNFs和ZIF-8@HNFs复合膜的吸附性能数据

    Table  1.   Adsorption performance of ZIF-8 powder, HNFs and ZIF-8@HNFs composite membranes

    Sample SBET/(m2·g−1) Pore Volume/(cm3·g−1) Pore size/nm
    ZIF-8@HNFs 38.189 0.204 4.678, 7.573
    HNFs 32.708 0.169 4.678, 7.838
    ZIF-8 484.327 0.273 0.926
    Notes: SBET is the specific surface area calculated by the Brunner-Emmet-Teller (BET) method.
    下载: 导出CSV
  • [1] ANNAMALAI J, MURUGAN P, GANAPATHY D, et al. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications - A review[J]. Chemosphere, 2022, 298: 134184. doi: 10.1016/j.chemosphere.2022.134184
    [2] KOO J, HWANG I C, YU X, et al. Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching[J]. Chemical Science, 2017, 8(10): 6799-6803. doi: 10.1039/C7SC02886E
    [3] BISERČIĆ M S, MARJANOVIĆ B, ZASOŃSKA B A, et al. Novel microporous composites of MOF-5 and polyaniline with high specific surface area[J]. Synthetic Metals, 2020, 262: 116348. doi: 10.1016/j.synthmet.2020.116348
    [4] HANG X, XUE Y, CHENG Y, et al. From Co-MOF to CoNi-MOF to Ni-MOF: A facile synthesis of 1D micro-/nanomaterials[J]. Inorganic Chemistry, 2021, 60(17): 13168-13176. doi: 10.1021/acs.inorgchem.1c01561
    [5] ZULUAGA S, FUENTES-FERNANDEZ E M A, TAN K, et al. Understanding and controlling water stability of MOF-74[J]. Journal of Materials Chemistry A, 2016, 4(14): 5176-5183. doi: 10.1039/C5TA10416E
    [6] LIU M, CAI N, CHAN V, et al. Development and applications of MOFs derivative one-dimensional nanofibers via electrospinning: A mini-review[J]. Nanomaterials, 2019, 9(9): 1306. doi: 10.3390/nano9091306
    [7] MIRJALILI M, ZOHOORI S. Review for application of electrospinning and electrospun nanofibers technology in textile industry[J]. Journal of Nanostructure in Chemistry, 2016, 6(3): 207-213. doi: 10.1007/s40097-016-0189-y
    [8] VYSLOUZILOVA L, BUZGO M, POKORNY P, et al. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers[J]. International Journal of Pharmaceutics, 2017, 516(1-2): 293-300. doi: 10.1016/j.ijpharm.2016.11.034
    [9] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15): 2223-2253. doi: 10.1016/S0266-3538(03)00178-7
    [10] LIU Y, LV H, LIU Y, et al. Progresses on electrospun metal-organic frameworks nanofibers and their wastewater treatment applications[J]. Materials Today Chemistry, 2022, 25: 100974. doi: 10.1016/j.mtchem.2022.100974
    [11] PARK K H, JANG K, SON S U, et al. Self-supported organometallic rhodium quinonoid nanocatalysts for stereoselective polymerization of phenylacetylene[J]. Journal of the American Chemical Society, 2006, 128(27): 8740-8741. doi: 10.1021/ja062907o
    [12] PENG R, ZHANG S, YAO Y, et al. MOFs meet electrospinning: New opportunities for water treatment[J]. Chemical Engineering Journal, 2023, 453: 139669. doi: 10.1016/j.cej.2022.139669
    [13] EFOME J E, RANA D, MATSUURA T, et al. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18619-18629.
    [14] LEE D T, ZHAO J, OLDHAM C J, et al. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO and Al2O3 atomic layer deposition-treated polymer fibers: Role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44847-44855.
    [15] LU A X, PLOSKONKA A M, TOVAR T M, et al. Direct surface growth of Uio-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14502-14506.
    [16] JI X Y, WANG P, SU Z G, et al. Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells[J]. Journal of Materials Chemistry B, 2014, 2(2): 181-190. doi: 10.1039/C3TB21232G
    [17] 刘瑞红, 周全, 杨帆, 等. PVDF中空纳米纤维的制备及其固定化酶的性能研究[J]. 太原理工大学学报, 2022, 53(1): 36-43.

    LIU Ruihong, ZHOU Quan, Yang Fan, et al. Study on the preparation of PVDF hollow nanofibers and the performance of immobilized enzymes[J]. Journal of Taiyuan University of Technology, 2022, 53(1): 36-43 (in Chinese).
    [18] ZHENG G, CHEN Z, SENTOSUN K, et al. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures[J]. Nanoscale, 2017, 9(43): 16645-16651. doi: 10.1039/C7NR03739B
    [19] REN Y, LI T, ZHANG W, et al. MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue[J]. Journal of Hazardous Materials, 2019, 365: 312-321. doi: 10.1016/j.jhazmat.2018.11.013
    [20] FU H, WANG Z, WANG, X, et al. Formation mechanism of rod-like ZIF-L and fast phase transformation from ZIF-L to ZIF-8 with morphology changes controlled by polyvinylpyrrolidone and ethanol[J]. CrystEngComm, 2018, 20(11): 1473-1477. doi: 10.1039/C7CE02073B
    [21] SHIEH F K, WANG S C, LEO S Y, et al. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size[J]. Chemistry - A European Journal, 2013, 19(34): 11139-11142. doi: 10.1002/chem.201301560
    [22] YAO J, HE M, WANG H. Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks[J]. CrystEngComm, 2015, 17(27): 4970-4976. doi: 10.1039/C5CE00663E
    [23] NORDIN N A H M, ISMAIL A F, MUSTAFA A, et al. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine[J]. RSC Advances, 2014, 4(63): 33292-33300. doi: 10.1039/C4RA03593C
    [24] XING T, LOU Y, BAO Q, et al. Surfactant-assisted synthesis of ZIF-8 nanocrystals in aqueous solution via microwave irradiation[J]. CrystEngComm, 2014, 16(38): 8994-9000. doi: 10.1039/C4CE00947A
    [25] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications, 2011, 47(7): 2071-2073. doi: 10.1039/c0cc05002d
    [26] CHENG D, ZHAO L, LI N, et al. Aluminum fumarate MOF/PVDF hollow fiber membrane for enhancement of water flux and thermal efficiency in direct contact membrane distillation[J]. Journal of Membrane Science, 2019, 588: 117204. doi: 10.1016/j.memsci.2019.117204
    [27] ZHAO R, SHI X, MA T, et al. Constructing mesoporous adsorption channels and MOF-polymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 755-764.
    [28] ZOU D, XIA L, LUO P, et al. Fabrication of hydrophobic bi-layer fiber-aligned PVDF/PVDF-PSF membranes using green solvent for membrane distillation[J]. Desalination, 2023, 565: 116810. doi: 10.1016/j.desal.2023.116810
    [29] LI H, SHI W, DU Q, et al. Removal of high concentration Congo red by hydrophobic PVDF hollow fiber composite membrane coated with a loose and porous ZIF-71PVDF layer through vacuum membrane distillation[J]. Journal of Industrial Textiles, 2020, 51(5S): 7641S-7673S.
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-04-24
  • 录用日期:  2024-04-27
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回