留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚多巴胺改性纳米二氧化硅增强反式-1,4-聚异戊二烯形状记忆聚合物的制备与研究

张闯 张静 王娜 李龙

张闯, 张静, 王娜, 等. 聚多巴胺改性纳米二氧化硅增强反式-1,4-聚异戊二烯形状记忆聚合物的制备与研究[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 张闯, 张静, 王娜, 等. 聚多巴胺改性纳米二氧化硅增强反式-1,4-聚异戊二烯形状记忆聚合物的制备与研究[J]. 复合材料学报, 2022, 40(0): 1-10
Chuang ZHANG, Jing ZHANG, Na WANG, Long LI. Preparation and properties of polydopamine modified nano-silica reinforced trans-1,4 -polyisoprene shape memory polymers[J]. Acta Materiae Compositae Sinica.
Citation: Chuang ZHANG, Jing ZHANG, Na WANG, Long LI. Preparation and properties of polydopamine modified nano-silica reinforced trans-1,4 -polyisoprene shape memory polymers[J]. Acta Materiae Compositae Sinica.

聚多巴胺改性纳米二氧化硅增强反式-1,4-聚异戊二烯形状记忆聚合物的制备与研究

基金项目: 国家重点研发计划“科技冬奥”(2019 YFF0302004);辽宁省“兴辽英才计划”项目资助(XLYC2005002);2021年辽宁省“揭榜挂帅”科技攻关项目(2021 JH1/10400091);沈阳市科学技术计划-重大关键核心技术攻关专项(20-202-1-15);辽宁省教育厅科学研究经费项目(LJKZ0436);
详细信息
    通讯作者:

    王 娜,博士,教授,硕士生/博士生导师,研究方向为功能高分子复合材料 E-mail: iamwangna@syuct.edu.cn

    李龙,博士,讲师,硕士导师,研究方向为功能高分子材料 E-mail: lilong@syuct.edu.cn

  • 中图分类号: TB332

Preparation and properties of polydopamine modified nano-silica reinforced trans-1,4 -polyisoprene shape memory polymers

Funds: National Key RESEARCH and Development Program "Science and Technology Winter Olympics" (2019 YFF0302004); Liaoning Xingliao Talents Program, No.XLYC2005002; 2021 Science and Technology Research Project of liaoning Province, No.2021 JH1/10400091; Shenyang Science and Technology Plan-Major Key And Core Technology Research Project, No.20-202-1-15; Scientific Research Fund of Education Department of Liaoning Province, No.LJKZ0436
  • 摘要: 由于形状记忆聚合物(SMP)较低的力学强度,不足以满足现今大多数商用复合材料的使用标准,严重限制了其在许多高级应用中的使用。因此,为制备高性能SMP复合材料,利用聚多巴胺(PDA)对纳米SiO2进行表面改性,制备了一种新型纳米填料SiO2@PDA,并通过SEM、XPS和FTIR对其结构和性能进行了表征。将SiO2和SiO2@PDA作为纳米填料填充到反式-1,4-聚异戊二烯(TPI)中,制备了TPI形状记忆复合材料,系统的研究了TPI/SiO2和TPI/SiO2@PDA复合材料的热稳定性、力学性能和形状记忆性能。结果表明,PDA修饰增强了SiO2在TPI基体中的分散性和界面相互作用,从而使TPI/SiO2@PDA复合材料的热稳定性、力学性能得到提升的同时仍能够保持良好的形状记忆性能。当SiO2@PDA含量为1.5 phr时,TPI复合材料的冲击强度和拉伸强度达到最大值,分别比纯TPI提高了43.5%和25%。此外,复合材料RfRr均超过97%。

     

  • 图  2  SiO2@PDA制备工艺示意图

    Figure  2.  The schematic of preparation process of SiO2@PDA

    图  3  SiO2、PDA和SiO2@PDA的红外光谱图

    Figure  3.  FTIR spectra of SiO2,PDA and SiO2@PDA

    图  4  (a) SiO2和SiO2@PDA的XPS全谱;(b) ~ (d)分别为SiO2@PDA的N1 s,O1 s 和 Si2 p XPS光谱

    Figure  4.  XPS survey specrta of (a) SiO2 and SiO2@PDA;(b) ~(d) N1 s,O1 s and Si2 p XPS spectra of SiO2@PDA, respectively

    图  5  SiO2(a)和SiO2@PDA (b)的SEM照片

    Figure  5.  SEM images of SiO2 (a) and SiO2@PDA (b)

    图  6  反式-1,4-聚异戊二烯(TPI)形状记忆复合材料的DSC曲线:(a) 结晶过程; (b) 熔融过程

    Figure  6.  DSC curves of trans-1,4-polyisoprene (TPI) shape memory composites: (a) cooling curves and (b) heating curves

    图  7  TPI形状记忆复合材料的XRD图谱

    Figure  7.  XRD profiles of TPI shape memory composites

    图  8  TPI形状记忆复合材料的TG分析曲线:(a)TGA;(b)DTGA

    Figure  8.  TGA (a) and DTGA (b) analysis of TPI shape memory composites.

    图  9  (a)TPI形状记忆复合材料的应力-应变曲线;(b)平均应力和断裂伸长率

    Figure  9.  Stress-strain curves (a) and average stress and elongation at break (b) of TPI shape memory composites

    图  10  形状记忆复合材料的冲击强度测试

    Figure  10.  Impact strength test of shape memory composites

    图  11  TPI形状记忆复合材料的DMA曲线:(a)储能模量;(b)损耗因子

    Figure  11.  DMA curves of storage modulus (a) and loss factor (b) of TPI shape memory composites

    图  12  TPI形状记忆复合材料的形状记忆特性曲线

    Figure  12.  Shape memory characteristic curve of the TPI shape memory composites

    表  1  TPI复合材料的DSC测试数据

    Table  1.   DSC test data of TPI composites

    SampleXc/%Tm/Tc/℃∆Hm/(J·g-1)
    Neat TPI14.0340.087.6226.21
    TPI/SiO2-0.5 phr13.7740.331.0625.72
    TPI/SiO2@PDA-0.5 phr14.7641.185.2727.58
    TPI/SiO2@PDA-1.0 phr15.2841.687.3228.55
    TPI/SiO2@PDA-1.5 phr15.8042.368.8929.53
    TPI/SiO2@PDA-2.0 phr15.2041.465.5328.40
    Notes: Xc, Tm, Tc and ∆Hm are the crystallinity, crystallization temperature, melting temperature and melting enthalpy of TPI shape memory composites, respectively.
    下载: 导出CSV

    表  2  TPI形状记忆复合材料的TG测试数据

    Table  2.   TG test data for TPI shape memory composites

    SampleT5% /℃Tmax /℃W600 /wt%
    Neat TPI277.13371.212.39
    TPI/SiO2-0.5 phr310.36372.534.62
    TPI/SiO2@PDA-0.5 phr318.93373.685.52
    TPI/SiO2@PDA-1.0 phr323.88375.385.75
    TPI/SiO2@PDA-1.5 phr326.46379.069.12
    TPI/SiO2@PDA-2.0 phr320.95376.456.39
    Notes: T5% and Tmax are the initial degradation temperature and maximum degradation temperature of TPI shape memory composites; W600 is the mass fraction of residual carbon at 600℃.
    下载: 导出CSV

    表  3  TPI形状记忆复合材料的形状记忆测试数据

    Table  3.   Shape memory test data for TPI shape memory composites

    SampleRf/%Rr/%
    Neat TPI98.798.8
    TPI/SiO2-0.5 phr98.398.1
    TPI/SiO2@PDA-0.5 phr98.698.5
    TPI/SiO2@PDA-2.0 phr98.597.9
    Notes: Rf and Rr are the shape fixation rate and shape recovery rate of TPI shape memory composites, respectively.
    下载: 导出CSV
  • [1] CHAN B Q, LOW Z W, HENG S J, et al. Recent advances in shape memory soft materials for biomedical applications[J]. ACS Appl Mater Interfaces 2016, 8 (16): 10070-10087.
    [2] XIA Y, HE Y, ZHANG F, et al. A review of shape memory polymers and composites: mechanisms, materials, and applications[J]. Advanced Materials,2021,33(6):2000713. doi: 10.1002/adma.202000713
    [3] 赵先锋, 汤朋飞, 史红艳. 4 D打印复合软材料力学性能预测研究进展[J]. 复合材料学报, 2021, 38(6):1651-1668.

    ZHAO Xianfeng, TANG Pengfei, SHI Hongyan. Research progress on prediction of mechanical properties of 4 D printing soft composite[J]. Acta Materiae Compositae Sinica,2021,38(6):1651-1668(in Chinese).
    [4] 李文兵, 魏婉婷, 李金嵘, 等. 形状记忆聚合物纤维及增强复合材料的研究进展[J]. 复合材料学报, 2022, 39(1):77-96. doi: 10.13801/j.cnki.fhclxb.20210729.005

    LI Wenbing, WEI Wanting, LI Jinrong, et al. Research progress of shape memory polymer fibers and reinforced composites[J]. Acta Materiae Compositae Sinica,2022,39(1):77-96(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210729.005
    [5] TIAN M, GAO W, HU J, et al. Multidirectional triple-shape-memory polymer by tunable cross-linking and crystallization[J]. ACS Appl Mater Interfaces 2020, 12 (5): 6426-6435.
    [6] JIA X, SHEN B, ZHANG L, et al. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation[J]. Chemical Engineering Journal 2021, 405: 126927.
    [7] WANG E, DONG Y, ISLAM Z, et al. Technology, Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites[J]. Composites Science and Technology,2019,169(5):209-216.
    [8] LIU Y, Guo Y, ZHAO J, et al. Technology, Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances[J]. Composites Science and Technology,2019,177(16):49-56.
    [9] JIAN W, WANG X, LU H, et al. Molecular dynamics simulations of thermodynamics and shape memory effect in CNT-Epoxy nanocomposites[J]. Composites Science and Technology,2021,211(4):108849.
    [10] XU L, FU Y, DU M. Investigation on Structures and properties of shape memory polyurethane/silica nanocomposites[J]. Chinese Journal of Chemistry,2011,29(4):703-710. doi: 10.1002/cjoc.201190144
    [11] SHARMA A, SINGHOLI A. Effect of nanosilica on shape memory and mechanical characterization of polylactic acid wood composite[J]. Polymer Composites,2021,42(5):2502-2510. doi: 10.1002/pc.25995
    [12] FU Y W, ZHANG Y Q, SUN W F, et al. Functionalization of silica nanoparticles to improve crosslinking degree, insulation performance and space charge characteristics of UV-initiated XLPE[J]. Molecules,2020,25(17):3794. doi: 10.3390/molecules25173794
    [13] LI X, WANG H, ZHANG Z, et al. Preparation and mechanical properties of poly (γ-benzyl l-glutamate) modified nano-silica reinforced polyurea composites[J]. Polymers for Advanced Technologies,2021,33(1):270-279.
    [14] ZHANG C, LI L, XIN Y, et al. Development of Trans-1, 4-Polyisoprene shape-memory polymer composites reinforced with carbon nanotubes modified by polydopamine[J]. Polymers,2022,14(1):110.
    [15] TENG J, WANG Z, LIU J, et al. Thermodynamic and shape memory properties of TPI/HDPE hybrid shape memory polymer[J]. Polymer Testing,2019,81:106257.
    [16] 中国国家标准化管理委员会(标准制定单位). 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528−2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Determination of tensile stress-strain properties of vulcanized or thermoplastic rubber: GB/T 528−2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17] 中国国家标准化管理委员会(标准制定单位). 塑料悬臂梁冲击强度的测定: GB/T 1843-2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics-determination of izod impact strength: GB/T 1843-2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18] QC A, BY A, MD A, et al. Enhanced physical, mechanical and protein adsorption properties of PVDF composite films prepared via thermally-induced phase separation (TIPS): Effect of SiO2@PDA nanoparticles[J]. European Polymer Journal,2020,140:110039. doi: 10.1016/j.eurpolymj.2020.110039
    [19] QIU Z, WANG J, YANG K, et al. Simultaneous enhancements of mechanical properties and hydrophilic properties of polypropylene via nano: silicon dioxide modified by polydopamine[J]. Journal of Applied Polymer Science,2017,134(26):45004.
    [20] YANG, HAO, PIHUI, et al. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid[J]. Applied Surface Science,2016,388:268-273. doi: 10.1016/j.apsusc.2016.01.099
    [21] YQ A, JF A, DF A, et al. A sandwich-type photoelectrochemical immunosensor for NT-pro BNP detection based on F-Bi2WO6/Ag2S and GO/PDA for signal amplification[J]. Biosensors and Bioelectronics,2019,131:299-306. doi: 10.1016/j.bios.2019.02.029
    [22] ZHU L, LU Y, WANG Y, et al. Preparation and characterization of dopamine-decorated hydrophilic carbon black[J]. Applied Surface Science,2012,258(14):5387-5393. doi: 10.1016/j.apsusc.2012.02.016
    [23] YILIN, JIAN, LIN, et al. Bioinspired synthesis of SiO2/PDA-based nanocomposite-imprinted membranes with sol-gel imprinted layers for selective adsorption and separation applications[J]. Physical chemistry chemical physics:PCCP,2018,20(23):15775-15783. doi: 10.1039/C8CP02068J
    [24] WANG Z, REN R, SONG H, et al. Improved tribological properties of the synthesized copper/carbon nanotube nanocomposites for rapeseed oil-based additives[J]. Applied Surface Science,2018,428(15):630-639.
    [25] ZHANG J, XUE Z. A comparative study on the properties of Eucommia ulmoides gum and synthetic trans-1, 4-polyisoprene[J]. Polymer Testing,2011,30(7):753-759. doi: 10.1016/j.polymertesting.2011.06.010
    [26] KRÓL A, POMASTOWSKI P, RAFIŃSKA K, et al. Science, I., Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism[J]. Advances in Colloid and Interface Science,2017,249:37-55. doi: 10.1016/j.cis.2017.07.033
  • 加载中
计量
  • 文章访问数:  48
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 录用日期:  2022-06-03
  • 修回日期:  2022-05-31
  • 网络出版日期:  2022-06-18

目录

    /

    返回文章
    返回