Freeze-thaw resistance of basalt fiber reinforced foam concrete
-
摘要: 在0、25、50和75次冻融循环条件下,对不同密度(600 kg/m3和
1000 kg/m3)和纤维掺量(0、0.15%、0.30%和0.45%)的玄武岩纤维泡沫混凝土试样(Basalt fiber reinforced foam concrete, BFRFC)进行了单轴压缩-声发射联合试验,并基于声发射RA-AF值分布规律、b值变化曲线以及三个宏观抗冻性能指标(吸水率、质量损失率、相对动弹性模量),探究了BFRFC冻融劣化损伤特征与抗冻性能变化规律。结果表明:BFRFC单轴压缩过程中的应力-应变关系曲线具有明显阶段性;冻融循环会导致试样整体强度下降,开裂加快,内部剪切破坏占比提高,而增加玄武岩纤维掺量和材料密度均能够提高试样的峰值承载力(0、25、50和75次冻融循环下最高分别达到11.14 MPa、10.20 MPa、8.741 MPa、7.498 MPa),抑制峰值强度的损失(最多可降低17.9%),提高张拉破坏占比(最多可提高32.4%),延缓试件破坏;另外,随冻融循环次数的增加,BFRFC的吸水率和质量损失率增大,相对动弹性模量下降,相比之下,高密度和高纤维掺量BFRFC的吸水率和质量损失率更小、相对动弹性模量更大,75次冻融循环下质量损失率和相对动弹性模量仍能分别保持在3%以下和70%以上,抗冻性能更佳。-
关键词:
- 玄武岩纤维泡沫混凝土 /
- 声发射 /
- 冻融劣化 /
- 损伤特征 /
- 抗冻性能
Abstract: Uniaxial compression-acoustic emission combined tests were conducted on basalt fiber reinforced foam concrete specimens (BFRFC) with different densities (600 kg/m3 and1000 kg/m3) and fiber admixtures (0, 0.15%, 0.30%, and 0.45%) under the conditions of 0, 25, 50, and 75 freeze-thaw cycles. And based on the distribution law of acoustic emission RA-AF values, the b-value change curve as well as three macroscopic freezing performance indexes (water absorption, mass loss rate, and relative dynamic elastic modulus), the damage characteristics and freezing performance change rule of each grade of BFRFC under freeze-thaw environment were investigated. The results show that the stress-strain relationship curves during uniaxial compression of BFRFC have obvious stages. Freezing and thawing cycles lead to a decrease in the overall strength of the specimen, accelerated cracking, and an increase in the percentage of internal shear damage, whereas increasing both the basalt fiber doping and the material density can increase the peak load carrying capacity of the specimen (up to 11.14 MPa, 10.20 MPa, 8.741 MPa, and 7.498 MPa under 0, 25, 50, and 75 freezing and thawing cycles, respectively), inhibit the loss of the peak strength (up to 17.9%), increasing the percentage of tension damage (up to 32.4%) and delaying specimen damage. In addition, with the increase of the number of freeze-thaw cycles, the water absorption and mass loss rate of BFRFC increase, and the relative dynamic elastic modulus decreases. In contrast, the water absorption and mass loss rate of high-density and high-fiber doped BFRFC are smaller, the relative dynamic elastic modulus is larger, and the mass loss rate and relative dynamic elastic modulus can be kept below 3% and above 70% respectively under 75 freeze-thaw cycles, which has better frost resistance. -
表 1 玄武岩纤维增强泡沫混凝土的配合比
Table 1. Mix ratio of basalt fiber reinforced foam concrete
Density level Cement/(kg·m−3) Water/(kg·m−3) Foam/(kg·m−3) Basalt fiber volume fraction/vol% Mass of basalt fiber/(kg·m−3) C06/P06 416.67 208.33 35.49 0/0.15/0.3/0.45 0/4.2/8.4/12.6 C10/P10 743.05 371.53 21.83 0/0.15/0.3/0.45 0/4.2/8.4/12.6 Notes: C06 and C10 represent cubic specimens with a density of 600 kg/m3 and 1000 kg/m3, respectively, while P06 and P10 represent prismatic specimens. -
[1] 吴中如, 陈波. 大坝变形监控模型发展回眸[J]. 现代测绘, 2016, 39(5): 1-3+8. doi: 10.3969/j.issn.1672-4097.2016.05.001WU Zhongru, CHEN Bo. A retrospective look at the development of dam deformation monitoring model[J]. Modern Surveying and Mapping, 2016, 39(5): 1-3+8(in Chinese). doi: 10.3969/j.issn.1672-4097.2016.05.001 [2] 郑茂盛. 寒区水利水电工程设计与施工技术[J]. 中国水利, 2010, (20): 72-74. doi: 10.3969/j.issn.1000-1123.2010.20.020ZHENG Maosheng. Design and construction tech-nology of water conservancy and hydropower projects in cold regions[J]. China Water Re-sources, 2010, (20): 72-74(in Chinese). doi: 10.3969/j.issn.1000-1123.2010.20.020 [3] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能[J]. 建筑材料学报, 2023, 26(7): 723-730.GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). [4] LIN Jiankang, CHEN Zhongfan, DING Xiaomeng, et al. BIM-based construction technologies for precast foamed lightweight concrete wallboards[J]. Journal of Southeast University (English Edition), 2022, 38(3): 270-277. [5] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1): 93-98. doi: 10.3969/j.issn.1007-9629.2017.01.017PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials, 2017, 20(1): 93-98(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.01.017 [6] 叶林杰, 夏新华, 吴迪高, 等. 基于冻融循环和疲劳荷载共同作用下泡沫混凝土的微观力学性能研究[J]. 混凝土, 2022, (9): 56-61.YE Linjie, XIA Xinhua, WU Di Gao, et al. Study on the micromechanical properties of foam concrete based on the combined effect of freeze-thaw cycle and fatigue loading[J]. Concrete, 2022, (9): 56-61(in Chinese). [7] 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241. doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304011ZHOU Chengtao, CHEN Bo, GAO Zhihan. Uniaxial compression characteristics of foamed concrete under freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1233-1241(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304011 [8] 霍冀川, 雷永林, 王海滨, 等. 玄武岩纤维的制备及其复合材料的研究进展[J]. 材料导报, 2006, (S1): 382-385. doi: 10.3321/j.issn:1005-023X.2006.z1.122HUO Jichuan, LEI Yonglin, WANG Haibin, et al. Progress of study on the preparation of basalt fibet and composite material of basalt fiber[J]. Materials Review, 2006, (S1): 382-385(in Chinese). doi: 10.3321/j.issn:1005-023X.2006.z1.122 [9] ZHAO Wenhui, LIU Zexing, WANG Ruiqi. Effect of Fibers on the Mechanical Properties and Mechanism of Cast-In-Situ Foamed Concrete[J]. Advances in Materials Science and Engineering, 2022, (3): 2238187. [10] 李为民, 许金余, 沈刘军, 等. 玄武岩纤维混凝土的动态力学性能[J]. 复合材料学报, 2008, (2): 135-142.LI Weimin, XU Jinyu, SHEN Liujun, et al. Dy-namic mechanical properties of basalt fiber concrete[J]. Acta Materiae Compositae Sinica, 2008, (2): 135-142(in Chinese). [11] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Uniaxial tensile and quasi-static compressive properties of basalt fiber reinforced foam concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585(in Chinese). [12] GENCEL O, NODEHI M, BAYRAKTAR O Y, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials, 2022, 326. [13] 郭凌云, 陈波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J/OL]. 复合材料学报, doi: 10.13801/j.cnki.fhclxb.20240703.002.GUO Lingyun, CHEN Bo, GAO Zhihan, et al. Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation[J/OL]. Acta Materiae Compositae Sinica, doi:10.13801/j.cnki.fhclxb.20240703.002. (in Chinese) [14] 牛瀚仪, 陈波, 高志涵, 等. 冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征[J/OL]. 复合材料学报, doi: 10.13801/j.cnki.fhclxb.20240617.005.NIU Hanyi, CHEN Bo, GAO Zhihan, et al. Damage-acoustic emission characterization of basalt fiber foam concrete under freeze-thaw environment[J/OL]. Acta Materiae Compositae Sinica, doi: 10.13801/j.cnki.fhclxb.20240617.005. (in Chinese) [15] 朱利平, 杜晓丽, 邹天民. 铁尾砂泡沫混凝土抗冻融性能及可靠性分析[J]. 硅酸盐通报, 2023, 42(11): 3988-3995.ZHU Liping, DU Xiaoli, ZOU Tianming. Freeze-thaw resistance and reliability analysis of iron tailings sand foam concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3988-3995(in Chinese). [16] 张卫东, 董云, 彭宁波, 等. 冻融循环下透水再生混凝土力学性能损伤分析[J]. 建筑材料学报, 2020, 23(2): 292-296.ZHANG Weidong, DONG Yun, PENG Ningbo, et al. Damage analysis of mechanical properties of pervious recycled concrete under freeze-thaw cycle[J]. Journal of Building Materials, 2020, 23(2): 292-296(in Chinese). [17] JG/T 266-2011, 泡沫混凝土 [S]. 北京: 中国建筑工业出版社, 2011.JG/T 266-2011, Foam Concrete [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese) [18] JGJ/T 341-2014, 泡沫混凝土技术应用规程 [S]. 北京: 中国建筑工业出版社, 2014.JGJ/T 341-2014, Technical Specification for Application of Foam Concrete [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese) [19] 中华人民共和国水利部. 水工混凝土试验规程 SL/T 352-2020[S]. 北京: 中国标准出版社, 2020.Ministry of Water Resources, People's Republic of China. Test procedure for hydraulic concrete SL/T 352-2020 [S]. Beijing: China Standard Press, 2020. (in Chinese) [20] 周宏元, 王业斌, 王小娟, 等. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082+18095.ZHOU Hongyuan, WANG Yebin, WANG Xiaojuan, et al. Study on the size effect of compression properties of foam concrete[J]. Materials Herald, 2021, 35(18): 18076-18082+18095(in Chinese). [21] 郭凌云, 陈波, 高志涵, 等. 冻融循环下玄武岩纤维泡沫混凝土孔结构及导热性能[J/OL]. 复合材料学报, doi: 10.13801/j.cnki.fhclxb.20240904.001.GUO Lingyun, CHEN Bo, GAO Zhihan, et al. Pore structure and thermal conductivity of basalt fiber reinforced foam concrete under freeze-thaw cycles[J/OL]. Acta Materiae Compositae Sinica, doi: 10.13801/j.cnki.fhclxb.20240904.001. (in Chinese) [22] Federation of Construction Materials Industries. JCMS-IIIB5706. Monitoring method for active cracks in concrete by acoustic emission[S]. Japan: Federation of Construction Materials Industries, 2003. [23] 陈波, 陈家林, 强晟, 等. 冻融环境下蒸养混凝土声发射试验研究[J]. 华中科技大学学报(自然科学版), 2023, 51(8): 41-46.CHEN Bo, CHEN Jialin, QIANG Sheng, et al. Experimental study on the acoustic emission of steam cured concrete in freeze-thaw environment[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2023, 51(8): 41-46(in Chinese). [24] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.GAN Yixiong, WU Shunchuan, REN Yi, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters[J]. Rock and Soil Mechanics, 2020, 41(7): 2324-2332(in Chinese). [25] ZHANG Z H, DENG J H. A new method for determining the crack classification criterion in acoustic emission parameter analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104323. doi: 10.1016/j.ijrmms.2020.104323 [26] 葛振龙, 孙强, 王苗苗, 等. 基于RA/AF的高温后砂岩破裂特征识别研究[J]. 煤田地质与勘探, 2021, 49(2): 176-183. doi: 10.3969/j.issn.1001-1986.2021.02.022GE Zhenlong, SUN Qiang, WANG Miaomiao, et al. Fracture fea ture recognition of sandstone after high temperature based on RA/AF[J]. Coal Geology & Exploration, 2021, 49(2): 176-183(in Chinese). doi: 10.3969/j.issn.1001-1986.2021.02.022 [27] LIU F, GUO R, LIN X, et al. Monitoring the damage evolution of reinforced concrete during tunnel boring machine hoisting by acoustic emission[J]. Construction and Building Materials, 2022, 327. [28] LI S, HOU J, GUO P, et al. Analysis of acoustic emission parameters of steel plate reinforcement effect on shearing zone of ECC-NC composite beams[J]. Engineering Structures, 2022, 266. [29] YUMA K, TOMOYO W, TOMOE K, MASAYASU O. Corrosion mechanisms in reinforced concrete by acoustic emission[J]. Construction and Building Materials. Volume 48, 2013, Pages 1240-1247, ISSN 0950-0618. [30] 牛瀚仪, 陈波, 袁志颖. 冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征研究[J/OL]. 复合材料学报, doi: 10.13801/j.cnki.fhclxb.20240718.004.NIU Hanyi, CHEN Bo, YUAN Zhiying. Freeze-thaw damage characteristics and evolution law of foam concrete based on acoustic emission digital image correlation technique. Acta Materiae Compositae Sinica, doi:10.13801/j.cnki.fhclxb.20240718.004. (in Chinese) [31] 宋勇军, 程柯岩, 孟凡栋. 冻融作用下裂隙岩石损伤破坏声发射特性研究[J]. 采矿与安全工程学报, 2023, 40(2): 408-419.SONG Yongjun, CHENG Keyan, MENG Fandong. Research on acoustic emission characteristics of fractured rock damage under freeze-thaw action[J]. Chinese Journal of Mining and Safety Engineering, 2023, 40(2): 408-419(in Chinese).
点击查看大图
计量
- 文章访问数: 29
- HTML全文浏览量: 15
- 被引次数: 0