留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自极化立构复合化聚乳酸纳纤膜制备及其主动捕集细微颗粒物的研究

陈明浩 宋欣译 唐梦珂 王存民 李欣雨 刘今 樊全水 徐欢

陈明浩, 宋欣译, 唐梦珂, 等. 自极化立构复合化聚乳酸纳纤膜制备及其主动捕集细微颗粒物的研究[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 陈明浩, 宋欣译, 唐梦珂, 等. 自极化立构复合化聚乳酸纳纤膜制备及其主动捕集细微颗粒物的研究[J]. 复合材料学报, 2024, 42(0): 1-10.
CHEN Minghao, SONG Xinyi, TANG Mengke, et al. Preparation of Self-Polarized Stereocomplexed PLA Nanofiber Membrane and the Active Capturing of Particulate Matters[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Minghao, SONG Xinyi, TANG Mengke, et al. Preparation of Self-Polarized Stereocomplexed PLA Nanofiber Membrane and the Active Capturing of Particulate Matters[J]. Acta Materiae Compositae Sinica.

自极化立构复合化聚乳酸纳纤膜制备及其主动捕集细微颗粒物的研究

基金项目: 中国矿业大学研究生创新计划(2024WLJCRCZL195, 2024WLKXJ143 and 2024WLKXJ140);2024 江苏省研究生科研创新计划项(KYCX24_2917, KYCX24_2914 and KYCX24_2937);国家能源集团,井工煤矿粉尘与职业病防治研究(六)煤矿粉尘防护装备研发(E210100285)。
详细信息
    通讯作者:

    徐欢,博士,副教授,硕士研究生导师,研究方向为可降解高分子材料 E-mail: hihuan@cumt.edu.cn

  • 中图分类号: TB332

Preparation of Self-Polarized Stereocomplexed PLA Nanofiber Membrane and the Active Capturing of Particulate Matters

Funds: Graduate Student Innovation Program from CUMT (No. 2024WLJCRCZL195, 2024WLKXJ143 and 2024WLKXJ140), 2024 Jiangsu Provincial Graduate Student Research and Innovation Program Project (No. KYCX24_2917, KYCX24_2914 and KYCX24_2937); Key Science and Technology Program of CHN Energy Group (E210100285).
  • 摘要: 细微颗粒物(PM)会携带病毒、细菌和重金属等有害物质,危害人体健康。佩戴呼吸防护装备是保护人体免受PMs危害的最有效方法。传统的呼吸防护口罩通常使用电晕驻极处理的熔喷聚丙烯(PP)制造,但这种材料的不可降解,会对环境造成较大负担。本文采用生物相容性良好的聚乳酸(PLA),通过利用不同旋光性分子的立构复合来增强PLA的驻极效果,并加入自极化铁电材料纳米钛酸钡(BTO)和成核剂乙撑双硬脂酸酰胺(EBS),以提高PLA的电活性和介电性能。通过静电纺丝技术制备了自极化PLA纳米纤维膜,其具有不规则沟壑状结构和极细的纤维直径(268 nm)和增强的表面电位(1.74 kV)和介电性能(1.21)。同时,自极化PLA纳纤膜还表现出摩擦电特性,其开路电压达到39.6 V,短路电流达到431.4 nA,高电压低电流的工作模式使自极化PLA纳纤膜可以在井下等特殊环境使用而不造成负面影响。值得注意的是,自极化PLA纳纤膜表现出优异的PMs捕集效果和低阻力(>96%,192.7 Pa,85 L/min)。自极化PLA纳纤膜的制备为聚乳酸基过滤材料的发展提供了又一可能的方向。

     

  • 图  1  自极化聚乳酸(PLA)纳纤膜的制备流程示意图

    Figure  1.  Schematic of the preparation process of self-polarizing polylactic acid (PLA) NFMs

    图  2  BTO及EBS颗粒的微观形貌

    Figure  2.  Micromorphology of BTO and EBS particles

    图  3  (a) BTO及EBS的FTIR图谱(b) BTO的XRD衍射图谱

    Figure  3.  The (a) FTIR spectra of BTO and EBS and the (b) XRD diffraction pattern of BTO

    图  4  自极化PLA纳纤膜的微观形貌 (a) SC-PLA;(b) B-SC;(c) BE-SC;(d) E-SC

    Figure  4.  Microscopic morphology of self-polarizing PLA NFMs.(a) SC-PLA, (b) B-SC, (c) BE-SC, (d) E-SC

    图  5  自极化PLA纳纤膜纤维直径分布(a)SC-PLA;(b)B-SC;(c)BE-SC;(d)E-SC

    Figure  5.  The fiber diameter distribution of self-polarizing PLA NFMs. (a) SC-PLA, (b) B-SC, (c) BE-SC, (d) E-SC

    图  6  自极化PLA纳纤膜的FTIR图谱。(a)700‒4000 cm−1,(b)1650‒1850 cm−1和(c)800‒960 cm−1范围内的FTIR谱图。

    Figure  6.  The FTIR spectra of self-polarizing PLA NFMs. The range of (a) 700‒4000 cm−1, (b) 1650‒1850 cm−1 and (c) 800‒960 cm−1, respectively.

    图  7  自极化PLA纳纤膜的电活性测试(a)表面电势(插图是表面电位测试的数码照片);(b)介电常数及介电损耗

    Figure  7.  Electroactivity testing of self-polarizing PLA NFMs (a) Surface potential (The illustrations are digital photographs of surface potential), (b) Dielectric constant and dielectric loss.

    图  8  自极化PLA纳纤膜的电活性测试 (a)输出电压;(b)输出电流

    Figure  8.  Evaluation of electroactivity for self-polarizing PLA NFMs (a) Output voltage; (b) Output current.

    图  9  自极化PLA纳纤膜的过滤性能测试。气体流速为(a)10 L/min、(b)32 L/min、(c)65 L/min、(d)85 L/min时的过滤性能

    Figure  9.  Filtration performance test of self-polarizing PLA NFMs. Filtration performance at airflow rates of (a) 10 L/min; (b) 32 L/min; (c) 65 L/min; and (d) 85 L/min.

    图  10  自极化PLA纳纤膜过滤测试后的微观形貌 (a) SC-PLA;(b) B-SC;(c) BE-SC;(d) E-SC

    Figure  10.  SEM micrographs showing the morphology of self-polarizing PLA NFMs after air filtration tests. (a) SC-PLA; (b) B-SC; (c) BE-SC;(d) E-SC.

    图  11  自极化PLA纳纤膜的润湿性及电荷保持能力 (a)水接触角(b)表面电位

    Figure  11.  Wettability and charge retention of self-polarizing PLA NFMs after air filtration tests (a) WCA; (b) Surface potential.

    图  12  自极化PLA纳纤膜与其他工作的性能对比及长效过滤能力 (a)过滤工作对比(b)180内的长效过滤效率

    Figure  12.  Performance comparison of self-polarizing PLA NFMs with other works and long-lasting filtration capability (a) Comparison with other PLA filtration works; (b) Long-lasting filtration capability during 180 min.

  • [1] CONTESTABILE M. Air pollution regulation[J]. Nature Sustainability, 2019, 2(1): 10. doi: 10.1038/s41893-018-0214-x
    [2] SÁNCHEZ-PIÑERO J, NOVO-QUIZA N, PERNAS-CASTAÑO C, et al. Inhalation bioaccessibility of multi-class organic pollutants associated to atmospheric pm2.5: correlation with pm2.5 properties and health risk assessment[J]. Environmental Pollution, 2022, 307: 119577. doi: 10.1016/j.envpol.2022.119577
    [3] HUO X, CHEN W, GU H. Electrospun coarse modified polystyrene/carbon aerogel nanofibrous composite membrane for effective pm2.5 air filtration[J]. Separation and Purification Technology, 2025, 354: 128793. doi: 10.1016/j.seppur.2024.128793
    [4] WANG N, FENG Y, ZHENG Y, et al. New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances[J]. Advanced Functional Materials, 2021, 31(14): 2009172. doi: 10.1002/adfm.202009172
    [5] CHEN M, JIANG J, FENG S, et al. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal[J]. Journal of Membrane Science, 2021, 635: 119463. doi: 10.1016/j.memsci.2021.119463
    [6] WANG L, YU L E, CHUNG T. Effects of relative humidity, particle hygroscopicity, and filter hydrophilicity on filtration performance of hollow fiber air filters[J]. Journal of Membrane Science, 2020, 595: 117561. doi: 10.1016/j.memsci.2019.117561
    [7] TANG K H D, LI R, LI Z, et al. Health risk of human exposure to microplastics: a review[J]. Environmental Chemistry Letters, 2024, 22(3): 1155-1183. doi: 10.1007/s10311-024-01727-1
    [8] ZHAO B, REHATI P, YANG Z, et al. The potential toxicity of microplastics on human health[J]. Science of The Total Environment, 2024, 912: 168946. doi: 10.1016/j.scitotenv.2023.168946
    [9] 沈峥, 徐超, 张一帆, 等. 高抗湿mof化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J]. 复合材料学报, 2024, 42: 1-11.

    SHEN Z, XU C, ZHANG Y, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-11 (in Chinese).
    [10] 宋欣译, 唐梦珂, 王存民, 等. 立构复合化聚乳酸纳纤膜的制备及高效滤除PM2.5性能[J]. 高等学校化学学报, 2024, 45(2): 9-16.

    SONG X, TANG M, WANG C, et al. Preparation of stereocomplexed PLA nanofibrous membranes with high PM2.5 filtration efficiency[J]. Chemical Journal of Chinese Universities, 2024, 45(2): 9-16 (in Chinese).
    [11] SHANG H, XU K, LI T, et al. Bioelectret poly(lactic acid) membranes with simultaneously enhanced physical interception and electrostatic adsorption of airborne pm0.3[J]. Journal of Hazardous Materials, 2023, 458: 132010. doi: 10.1016/j.jhazmat.2023.132010
    [12] ZHU G, WANG C, YANG T, et al. Bio-inspired gradient poly(lactic acid) nanofibers for active capturing of pm0.3 and real-time respiratory monitoring[J]. Journal of Hazardous Materials, 2024, 474: 134781. doi: 10.1016/j.jhazmat.2024.134781
    [13] LI L, GAO Y, NIE G, et al. Biodegradable poly (l-lactic acid) fibrous membrane with ribbon-structured fibers and ultrafine nanofibers enhances air filtration performance[J]. Small. 2024.
    [14] SHAO W, LIU S, WANG K, et al. Using modified raw materials to fabricate electrospun, superhydrophobic poly(lactic acid) multiscale nanofibrous membranes for air-filtration applications[J]. Separation and Purification Technology, 2024, 333: 125872. doi: 10.1016/j.seppur.2023.125872
    [15] LI X, ZHU G, TANG M, et al. Biodegradable mofilters for effective air filtration and sterilization by coupling mof functionalization and mechanical polarization of fibrous poly(lactic acid)[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26812-26823.
    [16] SONG X, TANG M, WANG C, et al. Stereocomplexation-enhanced electroactivity of poly(lactic acid) nanofibrous membranes for long-term pm capturing and remote respiratory monitoring[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(9): 3554-3564.
    [17] ZHANG X, LV S, LU X, et al. Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation[J]. Nano Energy, 2020, 75: 104894. doi: 10.1016/j.nanoen.2020.104894
    [18] ATHIRA B S, GEORGE A, VAISHNA PRIYA K, et al. High-performance flexible piezoelectric nanogenerator based on electrospun pvdf-batio3 nanofibers for self-powered vibration sensing applications[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44239-44250.
    [19] KIM B, JANG Y, KIM J, et al. High-performance electrospun particulate matter (PM) filters embedded with self-polarizable tetragonal BaTiO3 nanoparticles[J]. Chemical Engineering Journal, 2022, 450: 138340. doi: 10.1016/j.cej.2022.138340
    [20] ZHANG X, LV S, LU X, et al. Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation[J]. Nano Energy, 2020, 75: 104894. doi: 10.1016/j.nanoen.2020.104894
    [21] LIU C, TAN Y, LIU Y, et al. Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor[J]. Journal of Energy Chemistry, 2016, 25(4): 587-593. doi: 10.1016/j.jechem.2016.03.017
    [22] ZHAN N, LI Y, ZHANG C, et al. A novel multinozzle electrospinning process for preparing superhydrophobic PS films with controllable bead-on-string/microfiber morphology[J]. Journal of Colloid and Interface Science, 2010, 345(2): 491-495. doi: 10.1016/j.jcis.2010.01.051
    [23] HAN W, RAO D, GAO H, et al. Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “kill two birds with one stone”[J]. Nano Energy, 2022, 97: 107237. doi: 10.1016/j.nanoen.2022.107237
    [24] SONG X, TANG M, WANG C, et al. Stereocomplexation-enhanced electroactivity of poly(lactic acid) nanofibrous membranes for long-term pm capturing and remote respiratory monitoring[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(9): 3554-3564.
    [25] TSUJI H. Poly(lactic acid) stereocomplexes: a decade of progress[J]. Advanced Drug Delivery Reviews, 2016, 107: 97-135. doi: 10.1016/j.addr.2016.04.017
    [26] TANG M, JIANG L, WANG C, et al. Bioelectrets in electrospun bimodal poly(lactic acid) fibers: realization of multiple mechanisms for efficient and long-term filtration of fine pms[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25919-25931.
    [27] 陈耶福. 立构复合聚乳酸纤维的制备与结构性能研究[D]. 东华大学, 2022(in Chinese).

    CHEN Y. Study on preparation, structure and properties of stereo composite polylactic acid fiber[D]. Donghua University, 2022.
    [28] TSUJI H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2005, 5(7): 569-597. doi: 10.1002/mabi.200500062
    [29] RAHAMAN H, HOSEN S, GAFUR A, et al. Small amounts of poly( -lactic acid) on the properties of poly( -lactic acid)/microcrystalline cellulose/ poly(-lactic acid) blends[J]. Results in Materials, 2020, 8: 100125. doi: 10.1016/j.rinma.2020.100125
    [30] QUAN Z, ZU Y, WANG Y, et al. Slip effect based bimodal nanofibrous membrane for high-efficiency and low-resistance air purification[J]. Separation and Purification Technology, 2021, 275: 119258. doi: 10.1016/j.seppur.2021.119258
    [31] HUANG J, LIN S, LIANG Y, et al. Preparation of PVA /PEI /CNC /ZnO composite membrane with good mechanical properties and water resistance by electrostatic spinning using for efficient filtration of PM2.5[J]. Journal of Polymer Science, 2023, 61(20): 2451-2461. doi: 10.1002/pol.20230346
    [32] SHANG H, XU K, LI T, et al. Bioelectret poly(lactic acid) membranes with simultaneously enhanced physical interception and electrostatic adsorption of airborne PM0.3[J]. Journal of Hazardous Materials, 2023, 458: 132010. doi: 10.1016/j.jhazmat.2023.132010
    [33] ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of applied polymer science. 2020, 137(4).
    [34] LI X, ZHU G, TANG M, et al. Biodegradable mofilters for effective air filtration and sterilization by coupling MOF functionalization and mechanical polarization of fibrous poly(lactic acid)[J]. ACS applied materials & interfaces, 2023, 15(22): 26812-26823.
    [35] LIU G, WANG X, YU J, et al. Earthworm-inspired mechanical toughened biodegradable polylactic acid microfiber for sustainable air filtration[J]. Separation and purification technology, 2024, 338: 126575. doi: 10.1016/j.seppur.2024.126575
    [36] ZHU Y, GU X, DONG Z, et al. Regulation of polylactic acid using irradiation and preparation of PLA–SiO2–ZnO melt-blown nonwovens for antibacterial and air filtration[J]. RSC advances, 2023, 13(12): 7857-7866. doi: 10.1039/D2RA08274H
    [37] ZHU G, LI X, LI X P, et al. Nanopatterned electroactive polylactic acid nanofibrous mofilters for efficient PM0.3 filtration and bacterial inhibition[J]. ACS Applied Materials & Interfaces Interfaces, 2023, 15(40): 47145-47157.
    [38] LIU C, DU G, GUO Q, et al. Synergistic antibacterial performance of rosemarinic acid - graphene oxide in electrospun polylactic acid membranes for air filtration[J]. Journal of Polymer Research. 2023, 30(12).
    [39] DENG Q, HUANG Z, ZHU M, et al. Improving the particulate matter filtration, antibacterial, and degradation properties of electrospinning poly(lactic acid) membranes with ZIF-8@chitosan[J]. Carbohydrate Polymers, 2024, 342: 122427. doi: 10.1016/j.carbpol.2024.122427
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-08
  • 修回日期:  2024-09-06
  • 录用日期:  2024-09-15
  • 网络出版日期:  2024-09-26

目录

    /

    返回文章
    返回