留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电活性PLA/ZnO@PDA纳纤膜制备及高效超细颗粒物过滤性能

贾玉良 李佳琪 江亮 王存民 李湘 邵将 张明明 郭震 邓明哲 徐欢

贾玉良, 李佳琪, 江亮, 等. 电活性PLA/ZnO@PDA纳纤膜制备及高效超细颗粒物过滤性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 贾玉良, 李佳琪, 江亮, 等. 电活性PLA/ZnO@PDA纳纤膜制备及高效超细颗粒物过滤性能[J]. 复合材料学报, 2024, 42(0): 1-10.
JIA Yuliang, LI Jiaqi, JIANG Liang, et al. Electroactive PLA/ZnO@PDA nanofibrous membranes for high performance ultrafine particulate matter filtration[J]. Acta Materiae Compositae Sinica.
Citation: JIA Yuliang, LI Jiaqi, JIANG Liang, et al. Electroactive PLA/ZnO@PDA nanofibrous membranes for high performance ultrafine particulate matter filtration[J]. Acta Materiae Compositae Sinica.

电活性PLA/ZnO@PDA纳纤膜制备及高效超细颗粒物过滤性能

基金项目: 国家自然科学基金(52003292;52174222);国家重点研发计划(2023YFC3011704);江苏省自然科学基金(BK20200661);高分子材料工程国家重点实验室开放课题基金资助(sklpme2023-3-6)和中央高校基本科研业务费专项资金(2021QN1115)
详细信息
    通讯作者:

    徐欢,博士,副教授,硕士研究生导师,研究方向为可降解高分子材料 E-mail: hihuan@cumt.edu.cn

  • 中图分类号: TB332

Electroactive PLA/ZnO@PDA nanofibrous membranes for high performance ultrafine particulate matter filtration

Funds: National Natural Science Foundation of China (52003292, 52174222); National Key R&D Program (2023YFC3011704); Natural Science Foundation of Jiangsu Province (BK20200661); Funded by Open Topic Fund of State Key Laboratory of Polymer Materials Engineering (sklpme2023-3-6) and Special Funds for Basic Research Operating Costs of Central Universities (2021QN1115)
  • 摘要: 静电纺聚乳酸(PLA)纤维滤膜面临PLA在电场下的极化能力弱、电荷储存稳定性低的瓶颈问题。为此,通过静电纺丝-静电喷雾技术将高表面活性的PDA包覆的ZnO (ZnO@PDA)纳米电介质锚定于PLA纳米纤维表面(PLA/ZP),以增强PLA纳米纤维膜(简称纳纤膜)的驻极性能和摩擦电效应,从而实现静电捕获和长效过滤。对PLA/ZnO@PDA (PLA/ZP)纳纤膜的表面形貌和分子结构进行表征,探讨ZnO@PDA与PLA的界面相互作用与PLA/ZP纳纤膜电活性、过滤性能、电荷再生机制、呼吸监测功能之间的关系。结果表明,PLA/ZP纳纤膜具有高电活性和优异的空气过滤性能,其表面电势和介电性能分别为纯PLA纳纤膜的2.9倍和1.65倍。在85 L/min的高空气流速下,PLA/ZP纳纤膜仍能保持98.82%的PM0.3过滤效率和301.3 Pa的压降。得益于电活性的提升和比表面积的增大,PLA/ZP纳纤膜的输出电压达到11.5 V(10 N,0.5 Hz),远高于纯PLA纳纤膜(1.56 V),将其融入呼吸防护面罩能够实现对呼吸的实时监测。所制备的PLA/ZP纳纤膜在颗粒物长效捕获和人体健康监测领域具有广阔应用前景。

     

  • 图  1  聚乳酸/ZnO@聚多巴胺(PLA/ZnO@PDA,PLA/ZP)纳纤维膜制备示意图

    Figure  1.  Schematic diagram of the preparation of Polylactic acid/ZnO@polydopamine (PLA/ZnO@PDA, PLA/ZP) nanofibrous membranes

    图  2  自主搭建过滤性能测试设备示意图

    Figure  2.  Schematic diagram of homemade filtration performance test equipment

    图  3  ZnO@PDA 纳米电介质的(a) SEM 图像和(b)包含Zn和 N元素的扫描分布图的STEM 图像

    Figure  3.  (a) SEM images and (b) STEM image including the scan distribution of Zn and N elements (B) of ZnO@PDA nanodielectrics

    图  4  Pure PLA、PLA/ZP-2、PLA/ZP-4、PLA/ZP-8 的(a) SEM 图像和相应的(b)纤维直径分布

    Figure  4.  SEM images (a) and corresponding fiber diameter distributions (b) of Pure PLA, PLA/ZP-2, PLA/ZP-4 and PLA/ZP-8

    图  5  Pure PLA、PLA/ZP-2、PLA/ZP-4、PLA/ZP-8 的(a)全范围FTIR光谱和在(b)1000~1150 cm−1、(c)1600~1900 cm−1、(d)3050~3800 cm−1处的相应比例放大光谱

    Figure  5.  (a) Full-range FTIR spectra of Pure PLA, PLA/ZP-2, PLA/ZP-4 and PLA/ZP-8 and corresponding scale-expanded spectra located at (b) 1000~1150 cm−1, (c) 1600~1900 cm−1 and (d) 3050~3800 cm−1

    图  6  PLA/ZP纳纤膜的(a)表面电势和(b)介电常数;(c) ZnO@PDA 对驻极效应的影响示意图

    Figure  6.  (a) Surface potential and (b) dielectric constant of PLA/ZP nanofibrous membranes and (c) schematic representation of the effect of ZnO@PDA on the electret effect

    图  7  PLA/ZP 纳纤膜在气流速率为(a) 10 L/min、(b) 32 L/min、(c) 65 L/min、(d) 85 L/min时的过滤效率和压降

    Figure  7.  Filtration efficiency and pressure drop of PLA/ZP nanofibrous membranes at airflow rates of (a) 10 L/min, (b) 32 L/min,(c) 65 L/min and (d) 85 L/min

    图  8  (a) 聚乳酸纳纤膜的摩擦电输出电压;(b) PLA/ZP基 TENG 在呼吸过程中的工作机制示意图;(c) 说话、(d) 咳嗽、(e) 呼吸产生的电流信号

    Figure  8.  (a) Triboelectric output voltage of PLA nanofibrous membranes, (b) schematic diagram of the working mechanism of PLA/ZP-based TENG during respiration, current signals under (c) speaking, (d) coughing and (e) breathing

  • [1] BRUNEKREEF B, HOLGATE S. Air pollution and health[J]. The Lancet, 2002, 360(9341): 1233-1242. doi: 10.1016/S0140-6736(02)11274-8
    [2] 郭亚丽, 贾俊松, 何珊. 温室气体与空气污染物协同减排健康效应研究热点及趋势分析[J]. 中国环境科学, 2024, 44(7): 4101-4116.

    GUO Y, JIA J, HE S, et al. Research hotspots and trends of the health effects of synergistic emission reduction of greenhouse gases and air pollutants[J]. China environmental science, 2024, 44(7); 4101-4116. ((in Chinese).
    [3] BADRAN G, VERDIN A, GRARE C, et al. Toxicological appraisal of the chemical fractions of ambient fine (PM2.5-0.3) and quasi-ultrafine (PM0. 3) particles in human bronchial epithelial BEAS-2B cells[J]. Environmental Pollution, 2020, 263: 114620.
    [4] SHANG H, XU K, LI T, et al. Bioelectret poly (lactic acid) membranes with simultaneously enhanced physical interception and electrostatic adsorption of airborne PM0. 3[J]. Journal of Hazardous Materials, 2023, 458: 132010.
    [5] YANG X, MAN Y B, WONG M H, et al. Environmental health impacts of microplastics exposure on structural organization levels in the human body[J]. Science of The Total Environment, 2022, 825: 154025. doi: 10.1016/j.scitotenv.2022.154025
    [6] 李峰, 江亮, 李晓鹏, 等. 高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能[J]. 复合材料学报, 2024, 41(6): 3202-3214.

    LI F, JIANG L, LI X, et al. Ecofriendly and antibacterial poly(lactic acid) nanofibrous membranes forhigh-efficiency and low-resistance filtration of airborne particulate matters[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3202-3214 (in Chinese).
    [7] YANG M, LI X, YAO N, et al. Two-dimensional piezoelectric nanofibrous webs by self-polarized assembly for high-performance PM0. 3 filtration[J]. ACS nano, 2024, 18(26), 16895-16904.
    [8] 刘延波, 王强, 郝铭, 等. 连续静电驻极纳米纤维基空气滤材开发[J]. 分子通报, 2024, 37(6): 792-801.

    LIU Y, WANG Q, HAO M, et al. Development of nnofibrous mmbrane with continuous electret treatment for air Filtration[J]. Polymer Bulletion, 2024, 37(6): 792-801 (in Chinese).
    [9] ZHU M, HAN J, WANG F, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering, 2017, 302(1): 1600353. doi: 10.1002/mame.201600353
    [10] 李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021, 38(3): 741-748.

    LI J, WU W, SUN J, et al. Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 741-748 (in Chinese).
    [11] ZHANG Q, LI Q, YOUNG T M, et al. A novel method for fabricating an electrospun poly (vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8706-8714.
    [12] SU J, YANG G, CHENG C, et al. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation[J]. Journal of Colloid and Interface Science, 2017, 507: 386-396. doi: 10.1016/j.jcis.2017.07.104
    [13] 沈峥, 徐超, 张一帆, 等. 高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J]. 复合材料学报, 2024, 42: 1-11.

    SHEN Z, XU C, ZHANG Y, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-11.
    [14] DING X, LI Y, SI Y, et al. Electrospun polyvinylidene fluoride/SiO2 nanofibrous membranes with enhanced electret property for efficient air filtration[J]. Composites Communications, 2019, 13: 57-62. doi: 10.1016/j.coco.2019.02.008
    [15] KE L, YANG T, LIANG C, et al. Electroactive, antibacterial, and biodegradable poly (lactic acid) nanofibrous air filters for healthcare[J]. Composites Communications, 2023, 15(27): 32463-32474.
    [16] KIM C G, LEE S, KIM M, et al. Synergistic enhancement of filtering efficiency and antibacterial performance of a nanofiber air filter decorated with electropolarized lithium-doped ZnO nanorods[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 20977-20986.
    [17] KUMAR B, KIM S-W. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures[J]. Nano Energy, 2012, 1(3): 342-355. doi: 10.1016/j.nanoen.2012.02.001
    [18] SUPRAJA P, KUMAR R, MISHRA S, et al. A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics[J]. Sensors and Actuators A: Physical, 2022, 335: 113368. doi: 10.1016/j.sna.2022.113368
    [19] WANG L, GAO Y, XIONG J, et al. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning[J]. Journal of Colloid and Interface Science, 2022, 606: 961-970. doi: 10.1016/j.jcis.2021.08.079
    [20] YANG X, YIN G, AMORóS O, et al. Polydopamine surface functionalized submicron ZnO for broadening the processing window of 3D printable PLA composites[J]. Journal of Polymer Research, 2023, 30(5): 165. doi: 10.1007/s10965-023-03540-w
    [21] KOU Y, ZHOU W, XU L, et al. Surface modification of GO by PDA for dielectric material with well-suppressed dielectric loss[J]. High Performance Polymers, 2019, 31(9-10): 1183-1194. doi: 10.1177/0954008319837744
    [22] 黄荣廷, 朱桂英, 李欣雨, 等. 电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能[J]. 高等学校化学学报, 2024, 45(1): 162-171.

    HUANG R, ZHU G, LI X, et al. Morphological manipulation of highly electroactive poly(lactic acid) nanofibrous membranes for efficient removal of airborne PM0.3[J]. Chemical Journal of Chinese Universities, 2024, 45(1): 162-171(in Chinese).
    [23] WANG Y, ZHANG X, JIN X, et al. An in situ self-charging triboelectric air filter with high removal efficiency, ultra-low pressure drop, superior filtration stability, and robust service life[J]. 2023, 105: 108021.
    [24] XU S, ZHANG D-A, HUANG Q, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Nano Energy, 2024, 343: 127164.
    [25] TANG M, JIANG L, WANG C, et al. Bioelectrets in electrospun bimodal poly (lactic acid) fibers: realization of multiple mechanisms for efficient and long-term filtration of fine PMs[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25919-25931.
    [26] 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(6): 133-141.

    LIU C, LIU J, DING Y, et al. Research progress in preparation of high-efficiency air filter materials by electrospinning[J]. Journal of Textile Reaserch, 2019, 40(6): 133-141 (in Chinese).
    [27] 宋欣译, 唐梦珂, 王存民, 等. 立构复合化聚乳酸纳纤膜的制备及高效滤除PM2.5性能[J]. 高等学校化学学报, 2024, 45(2): 9-16.

    SONG X, TANG M, WANG C, et al. Preparation of stereocomplexed PLA nanofibrous membranes with high PM2.5 filtration efficiency[J]. Chemical Journal of Chinese Universities, 2024, 45(2): 9-16 (in Chinese).
    [28] LIANG C, LI J, CHEN Y, et al. Self-charging, breathable, and antibacterial poly (lactic acid) nanofibrous air filters by surface engineering of ultrasmall electroactive nanohybrids[J]. ACS Applied Materials & Interfaces, 2023, 15(49): 57636-57648.
    [29] PARIA S, SI S , KARAN S , et al. A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification[J]. Journal of Materials Chemistry A, 2019, 7(8): 3979-3991.
    [30] GAO C, LIU T, LUO B, et al. Cellulosic triboelectric materials for stable energy harvesting from hot and humid conditions[J]. Nano Energy, 2023, 111: 108426. doi: 10.1016/j.nanoen.2023.108426
    [31] FAN C, LONG Z, ZHANG Y, et al. Robust integration of energy harvesting with daytime radiative cooling enables wearing thermal comfort self-powered electronic devices[J]. Nano Energy, 2023, 116: 108842. doi: 10.1016/j.nanoen.2023.108842
    [32] PENG Z, SHI J, XIAO X, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration[J]. Nature Communications, 2022, 13(1): 7835. doi: 10.1038/s41467-022-35521-w
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-09-05
  • 录用日期:  2024-09-07
  • 网络出版日期:  2024-09-23

目录

    /

    返回文章
    返回