留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生活垃圾焚烧尾渣-次轻混凝土冻融劣化特性及微观机制

尚明刚 张云升 何忠茂 乔宏霞 冯琼 薛翠真 张宇

尚明刚, 张云升, 何忠茂, 等. 生活垃圾焚烧尾渣-次轻混凝土冻融劣化特性及微观机制[J]. 复合材料学报, 2022, 41(0): 1-17
引用本文: 尚明刚, 张云升, 何忠茂, 等. 生活垃圾焚烧尾渣-次轻混凝土冻融劣化特性及微观机制[J]. 复合材料学报, 2022, 41(0): 1-17
Minggang SHANG, Yunsheng ZHANG, Zhongmao HE, Hongxia QIAO, Qiong FENG, Cuizhen XUE, Yu ZHANG. Freeze-thaw deterioration characteristics and micro-mechanism of solid waste incineration tailings and specified density concrete[J]. Acta Materiae Compositae Sinica.
Citation: Minggang SHANG, Yunsheng ZHANG, Zhongmao HE, Hongxia QIAO, Qiong FENG, Cuizhen XUE, Yu ZHANG. Freeze-thaw deterioration characteristics and micro-mechanism of solid waste incineration tailings and specified density concrete[J]. Acta Materiae Compositae Sinica.

生活垃圾焚烧尾渣-次轻混凝土冻融劣化特性及微观机制

基金项目: 国家自然科学基金(U21 A20150, 52208249, 51878153, 52008196, 52178216);甘肃省青年科技基金(22 JR5 RA288);甘肃省绿色智慧公路关键技术研究与示范(21 ZD3 GA002);甘肃省高校自然科学创新基金(2022 CYZC-25);重庆市科技局重点项目(cstc2021 jscx-jbgs0029)
详细信息
    通讯作者:

    张云升,博士,教授,博士生导师,研究方向为土木工程材料 E-mail:zhangyunsheng2011@163.com

  • 中图分类号: TU528

Freeze-thaw deterioration characteristics and micro-mechanism of solid waste incineration tailings and specified density concrete

Funds: National Natural Science Foundation of China (U21 A20150, 52208249, 51878153, 52008196, 52178216); Youth Science and Technology Foundation of Gansu Province (22 JR5 RA288); Research and Demonstration of Key Technologies of Green and Smart Highways in Gansu Province (21 ZD3 GA002); Natural Science Innovation Foundation of Gansu Higher Education Institutions (2022 CYZC-25); Key projects of Chongqing Science and Technology Bureau (cstc2021 jscx-jbgs0029).
  • 摘要: 针对混凝土在冻融环境中耐久性差以及传统改善方法引起的成本问题,提出利用城市生活垃圾焚烧尾渣作为轻骨料,制备能够提高抗冻性降低成本的次轻混凝土。以水胶比0.3,尾渣轻骨料掺量为25wt%、50wt%和75wt%的次轻混凝土为研究对象,模拟严寒地区冻融环境。利用剥落量、质量损失、强度损失、动弹性模量损失等宏观指标探究次轻混凝土冻融劣化规律,从次轻混凝土吸水饱和度、孔结构特征、骨-浆界面等方面揭示了冻融劣化机理,最后建立基于损伤力学理论的次轻混凝土损伤劣化模型。结果表明:冻融循环侵蚀对普通混凝土造成的耐久性损伤程度比次轻混凝土更严重,普通混凝土表面产生了更多的砂浆剥落。尾渣轻骨料的掺入能够显著改善混凝土的抗冻性能。在冻融循环侵蚀条件下掺入25wt%、50wt%和75wt%尾渣轻骨料的次轻混凝土耐久性能分别比普通混凝土至少提高了15.2%、30.3%和33.3%。次轻混凝土的内养护作用加强、有益孔的数量增加和骨-浆界面强度增大等改善了孔隙结构和界面特征,提高了冻融侵蚀耐久性能。基于损伤力学建立的次轻混凝土劣化模型的拟合度为0.97以上,能够较好地研究次轻混凝土冻融变化规律和损伤程度。

     

  • 图  1  骨料形貌

    Figure  1.  Morphologies of aggregates

    (a) Tail lightwight coarse aggregate (TLCA) (b) Coarse aggregate (CA) (c) Tail lightwight fine aggregate (TLFA) (d) Fine aggregate (FA)

    图  2  焚烧尾渣的化学元素

    Figure  2.  Chemical elements of incineration tailings

    图  3  次轻混凝土冻融循环试验

    Figure  3.  Freezing thawing cycle test of specified density concrete

    图  4  次轻混凝土冻融循环过程

    Figure  4.  Freeze-thaw cycle of specified density concrete

    图  5  Airvoid 210硬化混凝土气孔结构测试

    Figure  5.  Pore Structure Test of Airfoil 210 Hardened Concrete

    图  6  次轻混凝土表面积剥蚀量与冻融循环次数的关系

    Figure  6.  Relationship between the surface area erosion amount of specified density concrete and freeze-thaw cycles

    图  7  次轻混凝土质量损失与冻融循环次数的关系

    Figure  7.  Relationship between mass loss of specified density concrete and freeze-thaw cycles

    图  8  次轻混凝土劣化参数与冻融循环次数的关系

    Figure  8.  Relationship between deterioration parameters of specified density concrete and freeze-thaw cycles

    图  9  次轻混凝土含水饱和度和冻融循环次数的关系

    Figure  9.  Relationship between water saturation and freeze-thaw cycles of specified density concrete

    图  10  冻融过程中水分迁移过程[22]

    Figure  10.  Water transfer process during freezing and thawing[22]

    图  13  次轻混凝土微界面形貌

    Figure  13.  Micro interface morphology of specified density concrete

    图  14  次轻混凝土骨料与砂浆界面纳米硬度

    Figure  14.  Nanohardness of interface between aggregate and mortar of specified density concrete

    图  15  次轻混凝土损伤变量$ {D_{f(n)}} $与冻融次数n的关系

    Figure  15.  Relationship between damage variable of specified density concrete and freezing thawing times n

    图  16  次轻混凝土损伤变量$ {D_{E(n)}} $与冻融次数n的关系

    Figure  16.  Relationship between damage variable of specified density concrete and freezing thawing times n

    表  1  骨料物理性能

    Table  1.   Physical Properties of tailings light aggregate

    TypeMaximum particle size/mmApparent density
    /(kg·m−3)
    Bulk density
    /(kg·m−3)
    Cylinder compression strength
    /MPa
    Water saturationWater absorption/%
    1.0 h24.0 h72 h
    FA2.5269716321.021.211.25
    CA10263615978.20.050.891.071.10
    TLFA2.518339609.3714.2514.37
    TLCA10188410624.30.277.769.8310.12
    下载: 导出CSV

    表  2  次轻混凝土配合比(kg/m3)

    Table  2.   Mix proportion of specified density concrete (kg/m3)

    GroupCFATLFACATLCATPRESWApparent dry density/

    (kg·m-3)
    OC467711116083Appropriate amount1652366
    LAC71111601963
    SDC-25533.25177.758702902203
    SDC-50355.5355.55805802109
    SDC-75177.75533.252908702056
    Notes: Adjust the dosage of water reducer to keep the slump as (120±20) mm; Mixing water does not include pre-absorbed water. C—Cement; TP—Tail powder; RES—Water reducer; W—Water; OC—Ordinary concrete; LAC—Lightweight aggregate concrete; SDC-25—specified density concrete mixed with 25 wt% incineration tailings; SDC-50—specified density concrete mixed with 25 wt% incineration tailings; SDC-75—specified density concrete mixed with 25 wt% incineration tailings.
    下载: 导出CSV

    表  3  次轻混凝土冻融过程气孔参数变化

    Table  3.   Variation of porosity parameters of specified density concrete during freezing and thawing

    GroupStomatal parameter0 times100 times200 times300 times
    OCG/%1.421.822.37-
    $ \overline L $/μm218249420-
    B1.941.561.37-
    SDC-25G/%1.681.862.142.49
    $ \overline L $/μm174192257-
    B2.241.951.721.54
    SDC-50G/%1.772.042.312.64
    $ \overline L $/μm152160191294
    B2.572.251.931.76
    SDC-75G/%1.942.172.632.95
    $ \overline L $/μm124129137172
    B2.752.572.241.72
    LACG/%2.372.472.713.34
    $ \overline L $/μm9598104122
    B3.252.822.341.95
    Notes: G is the air content; $ \overline L $ is the stomatal spacing coefficient; B is the fractal dimension of the pore.
    下载: 导出CSV

    表  4  次轻混凝土抗压强度损失衰减系数和相关系数

    Table  4.   Attenuation coefficient and correlation coefficient of compressive strength loss of specified density concrete

    NumberabλCorrelation coefficient
    OC−3.9310.019−2.812 E-50.97
    SDC-25−4.1340.019−3.301 E-60.98
    SDC-50−3.3310.008−2.518 E-60.97
    SDC-75−3.5920.009−5.434 E-60.99
    LAC−3.9890.011−7.731 E-50.99
    下载: 导出CSV

    表  5  次轻混凝土动弹性模量损失衰减系数和相关系数

    Table  5.   Attenuation coefficient and correlation coefficient of dynamic elastic modulus loss of specified density concrete

    NumberaλCorrelation coefficient
    OC−0.629−0.0030.99
    SDC-25−0.145−0.0060.98
    SDC-50−0.186−0.0050.98
    SDC-75−0.106−0.0060.99
    LAC−0.085−0.0060.99
    下载: 导出CSV
  • [1] 吴庆令, 余红发, 梁丽敏, 等. 海工混凝土的氯离子扩散性与寿命评估[J]. 建筑材料学报, 2009, 12(6):712. doi: 10.3969/j.issn.1007-9629.2009.06.017

    WU Qingling, YU Hongfa, LIANG Limin, et al. Chloride ion diffusivity and life assessment of marine concrete[J]. Journal of Building Materials,2009,12(6):712(in Chinese). doi: 10.3969/j.issn.1007-9629.2009.06.017
    [2] 陈妤, 刘荣桂, 付凯. 冻融循环下海工预应力混凝土结构的耐久性[J]. 建筑材料学报, 2009, 12(1):17-21. doi: 10.3969/j.issn.1007-9629.2009.01.004

    CHEN Yu, LIU Ronggui, FU Kai. Durability of marine prestressed concrete structures under freeze-thaw cycles[J]. Journal of Building Materials,2009,12(1):17-21(in Chinese). doi: 10.3969/j.issn.1007-9629.2009.01.004
    [3] 许馨尹, 于军琪, 李红莲, 等. 气候变化对中国寒冷和夏热冬暖城市建筑能耗的影响[J]. 土木建筑与环境工程, 2016, 38(4):39-45.

    XU Xinyin, YU Junqi, LI Honglian, et al. The impact of climate change on building energy consumption in cold, hot summer and warm winter cities in China[J]. Civil Architecture and Environmental Engineering,2016,38(4):39-45(in Chinese).
    [4] 王志航, 白二雷, 严平, 等. 磁铁矿骨料混凝土的微波除冰特性及耐久性[J/OL]. 复合材料学报: 1-14.

    WANG Zhihang, BAI Erlei, YAN Ping, et al. Microwave deicing characteristics and durability of magnetite aggregate concrete [J/OL]. Journal of Composite Materials: 1-14 (in Chinese).
    [5] 王振, 李化建, 黄法礼, 等. 石灰岩机制砂混凝土抗冻性能研l究[J/OL]. 建筑材料学报: 1-13. https://kns.cnki.net/kcms/detail/31.1764.TU.20220802.0926.002.html

    WANG Zhen, LI Huajian, HUANG Fali, et al. Research on frost resistance of limestone machine-made sand concrete [J/OL]. Journal of Building Materials: 1-13 (in Chinese).
    [6] 王俊辉, 黄悦, 杨国涛, 等. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(S1): 278-286.

    WANG Junhui, HUANG Yue, YANG Guotao, et al. Research progress on compressive properties of recycled concrete [J] Material Guide, 2022, 36 (S1): 278-286 (in Chinese).
    [7] 朱红光, 霍青杰, 倪亚东, 等. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.

    ZHU Hongguang, HUO Qingjie, NI Yadong, et al. Study on compressive strength and frost resistance of coal gangue fine aggregate slag concrete [J] Material Guide, 2021, 35 (22): 22085-22091 (in Chinese).
    [8] 石东升, 张鹏, 姜文超, 等. 生活垃圾焚烧渣细骨料混凝土冻融及自愈试验[J/OL]. 材料导报, 2023(19): 1-11.

    SHI Dongsheng, ZHANG Peng, JIANG Wenchao, et al. Freezing thawing and self-healing test of fine aggregate concrete with household waste incineration slag [J/OL] Material Guide, 2023 (19): 1-11 (in Chinese).
    [9] 钱帅, 林健, 唐保山. 用熔融法固化生活垃圾焚烧灰渣并制备泡沫玻璃[J]. 硅酸盐学报, 2014, 42(1):108-112. doi: 10.7521/j.issn.0454-5648.2014.01.19

    QIAN Shuai, LIN Jian, TANG Baoshan. Solidification of municipal solid waste incineration ash and preparation of foam glass by melting method[J]. Acta silicate Sinica,2014,42(1):108-112(in Chinese). doi: 10.7521/j.issn.0454-5648.2014.01.19
    [10] VAITKUS A, GRAZULYTE J, SERNAS O, et al. An algorithm for the use of MSW bottom ash as a building material in road pavement structural layers[J]. Construction and Building Materials,2019,212:456-466. doi: 10.1016/j.conbuildmat.2019.04.014
    [11] 赵由才, 宋立杰. 垃圾焚烧厂焚烧底灰的处理研究[J]. 环境污染与防治, 2003(2):95-97. doi: 10.3969/j.issn.1001-3865.2003.02.011

    ZHAO Youcai, SONG Lijie. Research on the treatment of bottom ash from waste incineration plant[J]. Environmental Pollution and Prevention,2003(2):95-97(in Chinese). doi: 10.3969/j.issn.1001-3865.2003.02.011
    [12] 章骅, 何品晶. 城市生活垃圾焚烧灰渣的资源化利用. 环境卫生工程, 2002, 10( 1) : 6-10.

    ZHANG Hua, HE Pinjing. Recycling of municipal solid waste incineration ash environmental health engineering, 2002, 10 (1): 6-10 (in Chinese).
    [13] JGJ 51-2002, 轻骨料混凝土技术规程[S]. 北京, 中国建筑工业出版社, 2002.

    JGJ 51-2002, Technical specification for lightweight aggregate concrete [S]. Beijing, China Architecture Press, 2002. (in Chinese).
    [14] ÌIKER Bekir Topcu. Semi lightweight concretes produced by volcanic slags[J]. Cement and Concrete Research,1997,27(1):15-21. doi: 10.1016/S0008-8846(96)00190-1
    [15] 尚明刚. 盐渍土环境钢筋混凝土恒电流加速腐蚀试验研究及寿命评定[D]. 兰州: 兰州理工大学, 2020.

    SHANG Minggang. Constant current accelerated corrosion test and life assessment of reinforced concrete in saline soil environment [D]. Lanzhou: Lanzhou University of Technology, 2020 (in Chinese).
    [16] 姜文超. 生活垃圾焚烧灰渣细骨料混凝土冻融及自愈试验[D]. 呼和浩特: 内蒙古工业大学, 2021.

    JIANG Wenchao. Freezing thawing and self-healing test of fine aggregate concrete from municipal solid waste incineration ash [D]. Hohhot: Inner Mongolia University of Technology, 2021 (in Chinese).
    [17] 聂欣, 黄伟宏. 对轻骨料混凝土收缩性能的分析[J]. 建材技术与应用, 2006(4):6-8. doi: 10.3969/j.issn.1009-9441.2006.04.003

    NIE Xin, HUANG Weihong. Analysis of shrinkage performance of lightweight aggregate concrete[J]. Building Materials Technology and Application,2006(4):6-8(in Chinese). doi: 10.3969/j.issn.1009-9441.2006.04.003
    [18] 孔丽娟, 高礼雄, 葛勇. 轻骨料预湿程度对混合骨料混凝土抗冻性能影响[J]. 硅酸盐学报, 2011, 39(1):35-40. doi: 10.14062/j.issn.0454-5648.2011.01.025

    KONG Lijuan, GAO Lixiong, GE Yong. Effect of pre wetting degree of light aggregate on frost resistance of mixed aggregate concrete[J]. Journal of Silicate,2011,39(1):35-40(in Chinese). doi: 10.14062/j.issn.0454-5648.2011.01.025
    [19] CAO Feng, QIAO Hongxia, SHU Xiuyuan, et al. Potential application of highland barley straw ash as a new active admixture in magnesium oxychloride cement[J]. Journal of Building Engineering,2022:59.
    [20] SETZER M J. Micro-ice-lens formation in porous solid[J]. Journal of Colloid and Interface Science,2001,243:193-201. doi: 10.1006/jcis.2001.7828
    [21] 鲍玖文, 于子浩, 张鹏, 等. 再生粗骨料混凝土及其构件抗冻性能研究进展[J]. 建筑结构学报, 2022, 43(4):142-157. doi: 10.14006/j.jzjgxb.2020.0347

    BAO Jiuwen, YU Zihao, ZHANG Peng, et al. Research progress on frost resistance of recycled coarse aggregate concrete and its components[J]. Journal of Building Structure,2022,43(4):142-157(in Chinese). doi: 10.14006/j.jzjgxb.2020.0347
    [22] WHITESIDE T M, SWEET H S. Effect of mortar saturation in concrete freezing and thawing tests[J]. Proceedings of Highway Research Board,1951,30:204-216.
    [23] CAO Feng, QIAO Hongxia, LI Yuanke, et al. Effect of highland barley straw ash admixture on properties and microstructure of concrete[J]. Construction and Building Materials,2022:315.
    [24] YU Z P, TANG R, CAO P, et al. Multi-axial test and failure criterion analysis on self-compacting lightweight aggregate concrete[J]. Construction and Building Materials,2019,215:786-798. doi: 10.1016/j.conbuildmat.2019.04.236
    [25] LIU L, WANG X C, ZHOU J, et al. Investigation of pore structure and mechanical property ofcement paste subjected to the coupled action of freezing/thawing and calcium leaching[J]. Cement and concrete research,2018,109:133-146. doi: 10.1016/j.cemconres.2018.04.015
    [26] DE Bruyn K, BESCHER E, RAMSEYER C, et al. Pore structure of calcium sulfoaluminate paste anddurability of concrete in freeze-thaw environment[J]. International Journal of Concrete Structures and Materials,2017,11(1):59-68. doi: 10.1007/s40069-016-0174-3
    [27] 吴中伟, 廉慧珍. 高性能混凝土[M]. 中国铁道出版社, 1999.

    WU Zhongwei, LIAN Huizhen. High performance concrete [M] China Railway Press, 1999 (in Chinese).
    [28] 李亚峰, 郭勇, 陈健, 等. 氯化钙与硫酸盐复配处理高泥质煤泥水的试验研究[J]. 沈阳建筑大学学报(自然科学版), 2005, 21(3): 238-241.

    LI Yafeng, GUO Yong, CHEN Jian, et al Experimental study on treatment of high argillaceous coal slurry water with calcium chloride and sulfate [J] Journal of Shenyang Jianzhu University (Natural Science Edition), 2005, 21 (3): 238-241 (in Chinese).
    [29] YU H, MA H, YAN K. An equation for determining freeze-thaw fatigue damage in concrete and a model for predicting the service life[J]. Construction & Building Materials,2017,137:104-116.
    [30] 高桂波. 粉煤灰与粒化高炉矿渣微粉在混凝土中的综合利用[D]. 济南: 山东大学, 2004.

    GAO Guibo. Comprehensive utilization of fly ash and granulated blast furnace slag powder in concrete [D] Jinan: Shandong University, 2004 (in Chinese).
    [31] 蔡四维, 蔡敏. 混凝土的损伤断裂[M]. 北京: 人民交通出版社, 1999.

    CAI Siwei, CAI Min. Damage and fracture of concrete [M]. Beijing: People's Communications Press, 1999 (in Chinese).
    [32] 余红发, 孙伟, 金祖权, 等. 土木工程结构混凝土寿命预测的损伤演化方程[J]. 东南大学学报(自然科学版), 2006, 36(SⅡ): 216-220.

    YU Hongfa, SUN Wei, JIN Zuquan, et al. Damage evolution equation for life prediction of concrete in civil engineering structures [J] Journal of Southeast University (Natural Science Edition), 2006, 36 (S Ⅱ): 216-220 (in Chinese).
    [33] 刘崇熙, 汪在芹. 坝工混凝土耐久寿命的衰变规律[J]. 长江科学院院报, 2000, 17(2):18-21. doi: 10.3969/j.issn.1001-5485.2000.02.005

    LIU Chongxi, WANG Zaiqin. Decay law of durable life of dam concrete[J]. Journal of the Yangtze River Academy of Sciences,2000,17(2):18-21(in Chinese). doi: 10.3969/j.issn.1001-5485.2000.02.005
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2022-11-17
  • 录用日期:  2022-12-01
  • 网络出版日期:  2022-12-30

目录

    /

    返回文章
    返回