留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管的引入对碳纤维增强杂萘联苯聚芳醚砜酮热塑性复合材料的导热性和力学性能的影响

王兵 王宁 李楠 冯敬尧 蹇锡高

王兵, 王宁, 李楠, 等. 碳纳米管的引入对碳纤维增强杂萘联苯聚芳醚砜酮热塑性复合材料的导热性和力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 王兵, 王宁, 李楠, 等. 碳纳米管的引入对碳纤维增强杂萘联苯聚芳醚砜酮热塑性复合材料的导热性和力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
WANG Bing, WANG Ning, LI Nan, et al. Effect of the introduction of carbon nanotubes on the thermal conductivity and mechanical properties of carbon fiber reinforced poly(phthalazinone ether sulfone ketone) composites.[J]. Acta Materiae Compositae Sinica.
Citation: WANG Bing, WANG Ning, LI Nan, et al. Effect of the introduction of carbon nanotubes on the thermal conductivity and mechanical properties of carbon fiber reinforced poly(phthalazinone ether sulfone ketone) composites.[J]. Acta Materiae Compositae Sinica.

碳纳米管的引入对碳纤维增强杂萘联苯聚芳醚砜酮热塑性复合材料的导热性和力学性能的影响

基金项目: 国家重点研发计划(2020YFB0311600)、国家自然科学基金(52203081)、中央高校基本科研业务费(DUT20TD114)
详细信息
    通讯作者:

    李楠,研究生,高级工程师,研究方向为耐高温树脂的合成与加工。 E-mail:polymerlinan@dlut.edu.cn

    蹇锡高,研究生,中国工程院院士,研究方向为高性能树脂基复合材料。 E-mail:jian4616@dlut.edu.cn

  • 中图分类号: TQ322.3;TB332

Effect of the introduction of carbon nanotubes on the thermal conductivity and mechanical properties of carbon fiber reinforced poly(phthalazinone ether sulfone ketone) composites.

Funds: The authors gratefully acknowledge the supports from the National Key Research and Development Program of China (2020YFB0311600)、the National Science Foundation of China (52203081)、the Fundamental Research Funds for the Central Universities (DUT20TD114)
  • 摘要: 碳纤维增强高性能热塑性树脂基复合材料的低导热性限制了其在散热领域的应用。本文采用溶液浸渍与热压相结合的方法制备了碳纳米管(CNTs)@碳纤维(CF)/聚芳醚砜酮(PPBESK)复合材料。通过热导率测定仪及万能试验机对其导热系数和力学性能进行了测定,采用光学显微镜、扫描电镜对复合材料断口形貌进行了表征,通过动态力学分析测定了复合材料的Tg和储能模量。结果表明:CNTs引入后,在复合材料中形成了导热网路,复合材料的导热系数提高到1.016 W/(m·K),比纯CF/PPBESK复合材料提高了72%。同时复合材料的力学性能也明显改善,与纯CF/PPBESK复合材料相比,CNTs@CF/PPBESK复合材料的弯曲强度(1695 MPa)、压缩强度(1001 MPa)、剪切强度(70 MPa)、拉伸强度(1696 MPa)分别提高了28%、37%、14%、17%。经测定,改性后的复合材料其Tg和储能模量也均有提高。

     

  • 图  1  复合材料制备的工艺流程

    Figure  1.  Process flow for composite preparation

    图  2  碳纳米管(CNTs)含量对导热性能的影响

    Figure  2.  Effect of carbon nanotubes (CNTs) content on thermal conductivity

    图  3  PPBESK及其复合材料的对导热性能

    Figure  3.  Effect of CNTs, CF on thermal conductivity

    图  4  纯碳纤维(CF)/聚芳醚砜酮(PPBESK)复合材料和CNTs@CF/PPBESK(4 wt%)复合材料在升温和降温过程中的红外热成像图

    Figure  4.  Infrared thermography of pure carbon fibers (CF)/poly(phthalazinone ether sulfone ketone) (PPBESK) composites and CNTs@CF/PPBESK (4 wt%) composites during ramp-up and ramp-down temperatures

    图  5  CNTs@CF/PPBESK复合材料表面形貌图及纯CF/PPBESK复合材料与CNTs@CF/PPBSK复合材料热传导模拟图

    Figure  5.  Surface topography of CNTs@CF/PPBESK composites and heat conduction simulation of pure CF/PPBESK composites and CNTs@CF/PPBSK composites

    图  6  CNTs含量对复合材料弯曲性能的影响

    Figure  6.  Effect of CNTs content on flexural properties of composites

    图  7  弯曲端口的表面形貌(a) CF/PPBESK复合材料(b) CNTs@CF/PPBESK复合材料(c)图b红色圈标注图像放大图

    Figure  7.  Surface morphology of bending ports (a) CF/PPBESK composites (b) CNTs@CF/PPBESK composites (c) Fig. b Enlarged image labeled with red circle

    图  8  CNTs含量对压缩性能的影响

    Figure  8.  Effect of CNTs content on compression performance

    图  9  失效压缩复合材料试样的光学显微照片。图(a)和(b)是CF/PPBESK复合材料;图(c)和(d)是CNTs@ CF/PPBESK(4 wt%)复合材料

    Figure  9.  Optical micrographs of failed compression composite specimens. (a) and (b) are CF/PPBESK composites; Figures (c) and (d) are CNTs@ CF/PPBESK (4 wt%) composites

    图  10  CNTs含量对层间剪切强度的影响

    Figure  10.  Effect of CNTs content on interlayer shear strength

    图  11  SEM图:(a),(b)为纯CF/PPBESK复合材料,(c),(d)为CNTs@CF/PPBESK(4 wt%)复合材料

    Figure  11.  SEM images (a),(b) for pure CF/PPBESK composites, (c),(d) for CNTs@CF/PPBESK (4 wt%) composites

    图  12  CNTs含量对压缩性能的影响

    Figure  12.  Effect of CNTs content on tensile performance

    图  13  SEM图:(a)为纯CF/PPBESK复合材料,(b)为CNTs@CF/PPBESK(4 wt%)复合材料

    Figure  13.  SEM images: (a) for pure CF/PPBESK composites, (b) for CNTs@CF/PPBESK (4 wt%) composites

    图  14  CF/PPPBESK及CNTs@CF/PPBESK的储能模量和Tan δ曲线

    Figure  14.  Energy storage modulus and Tan δ curves for CF/PPPBESK and CNTs@CF/PPBESK

  • [1] QIAN Y, ZHONG J, OU J P. Superdurable fiber-reinforced composite enabled by synergistic bridging effects of MXene and carbon nanotubes[J]. Carbon, 2022, 190: 104-114. doi: 10.1016/j.carbon.2022.01.009
    [2] 王在跃, 姜宁, 王明道. 碳纤维表面改性对其增强热塑性复合材料性能影响的研究进展[J]. 复合材料学报, 1-14.

    WANG Zaiyue, JIANG Ning, WANG Mingdao. Research progress on the effect of carbon fiber surface modification on its reinforced thermoplastic composite properties[J]. Journal of Composite Materials, 1-14. (in chinese
    [3] 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(03): 1229-1247.

    CAO Jianfan, BAI Shulin, QIN Wenzhen, et al. Advances in the preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Journal of Composite Materials, 2023, 40(03): 1229-1247. (in chinese
    [4] 杨雪勤, 任宏亮, 骆佳美, 等. 水性SPEKK上浆剂改善CF/PEKK复合材料的力学性能[J]. 复合材料学报, 2023, 40(11): 6061-6072.

    YANG Xueqin, REN Hongliang, LUO Jiamei, et al. Improvement of mechanical properties of CF/PEKK composites by water-based SPEKK sizing agent[J]. Journal of Composite Materials, 2023, 40(11): 6061-6072. (in chinese
    [5] 周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报, 2020, 37(08): 1785-1795.

    ZHOU Dianrui, GAO Liang, HUO Hongyu, et al. Progress of carbon fiber sizing agents for thermoplastic resin matrix composites[J]. Journal of Composite Materials, 2020, 37(08): 1785-1795. (in chinese
    [6] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(09): 4274-4285.

    ZHAO yan, SUN Minchen, ZHANG Siyi, et al. Research progress of continuous carbon fiber reinforced high performance thermoplastic composites[J]. Journal of Composite Materials, 2022, 39(09): 4274-4285. (in chinese
    [7] HAO H Y, CHENG S, REN Z F, et al. Rapidly and accurately determining the resin and volatile content of CF/PPBESK thermoplastic prepreg by NIR spectroscopy[J]. Composites Part a-Applied Science and Manufacturing, 2023, 169.: 107517 doi: 10.1016/j.compositesa.2023.107517
    [8] 吴加雪, 张天栋, 张昌海, 等. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.

    WU Jaxue, ZHANG Tiandong, ZHANG Changhai, et al. Research progress of high thermal conductivity epoxy resin[J]. Materials Guide, 2021, 35(13): 13198-13204. (in chinese
    [9] GUO Y Q, YANG X T, RUAN K P, et al. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites[J]. Acs Applied Materials & Interfaces, 2019, 11(28): 25465-25473.
    [10] SHI X T, ZHANG R H, RUAN K P, et al. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers[J]. Journal of Materials Science & Technology, 2021, 82: 239-249.
    [11] GU J W, ZHANG Q Y, DANG J, et al. Thermal Conductivity and Mechanical Properties of Aluminum Nitride Filled Linear Low-Density Polyethylene Composites[J]. Polymer Engineering and Science, 2009, 49(5): 1030-1034. doi: 10.1002/pen.21336
    [12] LUO F B, YAN P P, LI H Z, et al. Ultrahigh thermally conductive graphene filled liquid crystalline epoxy composites: Preparation assisted by polyethylene glycol[J]. Composites Science and Technology, 2020, 200: 108473. doi: 10.1016/j.compscitech.2020.108473
    [13] CHANG-JIAN C W, CHO E C, LEE K C, et al. Thermally conductive polymeric composites incorporating 3D MWCNT/PEDOT: PSS scaffolds[J]. Composites Part B-Engineering, 2018, 136: 46-54. doi: 10.1016/j.compositesb.2017.10.004
    [14] 徐任信, 单云刚, 鲁学林, 等. 短切碳纤维/AlN/环氧树脂绝缘导热复合材料性能研究[J]. 绝缘材料, 2008, (03): 33-36.

    XU Renxin, SHAN Yungang, LU Xuelin, et al. Properties of short-cut carbon fiber/AlN/epoxy resin insulating and thermally conductive composites[J]. Insulating Materials, 2008, (03): 33-36. (in chinese
    [15] 钱欣 濮阳楠, 金扬福. 酚醛树脂/石墨导热塑料性能研究[J]. 工程塑料应用, 1997, (03): 10-12.

    QIAN Xin Puyang Nan, JIN Yangfu. Study on the properties of phenolic resin/graphite thermally conductive plastics[J]. Engineering Plastics Applications. 1997, (03): 10-12. (in chinese
    [16] 顾军渭, 张秋禹, 王小强. 碳化硅/环氧树脂导热复合材料的制备与性能 [J]. 中国胶粘剂, 2010, 19(12): 18-22.

    GU Junwei, ZHANG Qiuyu, WANG Xiaoqiang. Preparation and Properties of Silicon Carbide/Epoxy Resin Thermally Conductive Composites[J]. China Adhesives, 2010, 19(12): 18-22. (in chinese
    [17] CHU K, LI W S, JIA C C, et al. Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets[J]. Applied Physics Letters, 2012, 101(21): 211903. doi: 10.1063/1.4767899
    [18] GOH P S, ISMAIL A F, NG B C. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances[J]. Composites Part a-Applied Science and Manufacturing, 2014, 56: 103-126. doi: 10.1016/j.compositesa.2013.10.001
    [19] KIM H S, JANG J U, YU J, et al. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes[J]. Composites Part B-Engineering, 2015, 79: 505-512. doi: 10.1016/j.compositesb.2015.05.012
    [20] SAMANI M K, KHOSRAVIAN N, CHEN G C K, et al. Thermal conductivity of individual multiwalled carbon nanotubes; proceedings of the International Symposium on Thermal and Materials Nanoscience and Nanotechnology (TMNN), Antalya, TURKEY, F May 29-Jun 03, 2011 [C]. 2011.
    [21] JIA H, LIU C, ZHANG Y, et al. Morphology-controlled ZnO nanoarrays in situ grown on the basalt fiber surface for improving the interfacial properties of the high-performance thermoplastic composites[J]. Composites Science and Technology, 2024, 252: 110618. doi: 10.1016/j.compscitech.2024.110618
    [22] FENG J Y, LI N, WANG B, et al. Thermal insulation and mechanical properties of carbon fiber-reinforced thermoplastic polyphthalazine ether sulfone ketone composites reinforced by hollow glass beads[J]. Polymer Composites, 2023, 44(11): 7941-7952. doi: 10.1002/pc.27677
    [23] ZHANG Y, AN X L, ZHAO G, et al. Multi-scale "core-sheath" structure of electrospun veils to enhance the interlaminar fracture toughness and in-plane properties of CF/poly (phthalazinone ether ketone) laminates[J]. Composites Science and Technology, 2024, 252: 110612. doi: 10.1016/j.compscitech.2024.110612
    [24] 孔国强, 安振河, 赵寰, 等. 碳纳米管对酚醛树脂基复合材料性能的影响 [J]. 兵工学报, 1-8.

    KONG Guoqiang, AN Zhenhe, ZHAO Huan, et al. Influence of carbon nanotubes on the properties of phenolic resin matrix composites[J]. Journal of Military Engineering, 1-8. (in chinese
    [25] RANKIN S M, MOODY M K, NASKAR A K, et al. Enhancing functionalities in carbon fiber composites by titanium dioxide nanoparticles[J]. Composites Science and Technology, 2021, 201: 108491. doi: 10.1016/j.compscitech.2020.108491
    [26] SCRUGGS A M, KIRMSE S, HSIAO K T. Enhancement of Through-Thickness Thermal Transport in Unidirectional Carbon Fiber Reinforced Plastic Laminates due to the Synergetic Role of Carbon Nanofiber Z-Threads[J]. Journal of Nanomaterials, 2018, 2018: 8928917.
    [27] LUBINEAU G, RAHAMAN A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements[J]. Carbon, 2012, 50(7): 2377-2395. doi: 10.1016/j.carbon.2012.01.059
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-08-07
  • 录用日期:  2024-08-08
  • 网络出版日期:  2024-08-24

目录

    /

    返回文章
    返回