Activated chlorine-modified zirconium-based MOF composites for efficient bacterial inhibition
-
摘要:
金属-有机骨架(Metal-Organic Framework, MOF)是由金属离子或离子簇与有机配体配位形成的多孔纳米材料,因其较高的的比表面积和孔隙率以及结构可功能化的优势,在药物输送等领域引起了广泛的研究。活性氯作为有效的杀菌剂来源,如何高效负载制备新型抑菌材料,开发高性能的抑菌材料并研究其抑菌机理具有重要的应用价值。通过亚氯酸钠溶液改性锆基金属-有机骨架材料UiO-66-NH2,制备了一种新型纳米复合抑菌材料UiO-66-NHCl,采用XRD、FI-IR、SEM、TEM、EDS和XPS等手段对MOF复合材料结构进行表征,并对UiO-66-NHCl复合材料的抑菌性能及生物安全性进行研究。结果表明:通过浸渍键合的方法在UiO-66-NH2上引入了活性氯,探索不同负载工艺对氯负载量的影响,发现改变UiO-66-NH2在NaClO2溶液中的氯负载比例(mUiO-66-NH2:mNaClO2)和氯化时间可以提高氯负载量,当氯负载比例为1:5、氯化时间为4 h时,氯负载量最高;在高温、高湿和强光等条件下,仍能保持其原始氯负载量的80%,有较好的稳定性。抑菌活性表明,相比于原始UiO-66-NH2材料,UiO-66-NHCl复合材料对金黄色葡萄球菌和大肠杆菌均有抑制作用,氯含量较高的样品显示出较高的抑菌效果,且无刺激性。 UiO-66-NH2材料改性前后对金黄色葡萄球菌的抑菌结果影响 UiO-66-NH2材料改性前后对大肠杆菌的抑菌结果影响 Abstract: In recent years, serious industrial pollution has led to the growth of various types of bacteria, and pathogenic bacterial infections can be spread rapidly by various means, posing a great risk of infection. Therefore, it is important to develop high-performance antibacterial materials and study their antibacterial mechanisms for application. To address this issue, we designed a novel nanocomposite bacteriostatic material UiO-66-NHCl by modifying zirconium-based metal-organic backbone material UiO-66-NH2 via sodium chlorite solution, and characterized the structure and chemical composition of MOF composites by using XRD, FI-IR, SEM, TEM, EDS and XPS, and also explored the effect of different The effects of different loading processes on the chlorine loading were also explored, and the antibacterial properties and skin irritation experiments of UiO-66-NHCl composites were investigated. The results showed that the active chlorine was introduced on UiO-66-NH2 by impregnation bonding, and the chlorine loading could be increased by changing the chlorine loading ratio (mUiO-66-NH2∶mNaClO2) and chlorination time of UiO-66-NH2 in NaClO2 solution, and the highest chlorine loading was achieved when the chlorine loading ratio was 1∶5 and the chlorination time was 4 h. Under the conditions of high temperature, high humidity and Under the conditions of high temperature, high humidity and strong light, it could still maintain 80% of its original chlorine loading and had good stability. The inhibition activity showed that the UiO-66-NHCl composites inhibited both S. aureus and E. coli compared to the original UiO-66-NH2 material, and the samples with higher chlorine content showed higher inhibition effect and no irritation.-
Key words:
- Metal-Organic Framework /
- Sodium hypochlorite /
- Modified /
- Stability /
- Antibacterial
-
表 1 皮肤刺激性反应评分标准
Table 1. Skin irritation response scoring criteria
Erythema Score Edema Score No 0 No 0 Mildly (barely visible) 1 Mildly (barely visible) 1 Moderately (clearly visible) 2 Moderately (visible bulge) 2 Severely 3 Severely (Skin augmentation of 1 mm, Clear contours) 3 表 2 活性氯负载比例与氯化时间对氯负载量的影响
Table 2. Effect of active chlorine loading ratio and chlorination time on chlorine loading
No. Chlorine load proportion Chlorination time /h Chlorine load ratio/% 1 1∶3 4 6.65 2 1∶5 4 9.35 3 1∶7 4 7.12 4 1∶9 4 9.04 5 1∶5 0.5 4.85 6 1∶5 2 8.4 7 1∶5 4 9.11 8 1∶5 6 8.54 表 3 UiO-66-NHCl复合材料在高温、高湿和强光条件下的抑菌圈直径的影响(±SD mm)
Table 3. Effect of UiO-66-NHCl composites on the diameter of the inhibition circle under high temperature, high humidity and strong light conditions (±SD mm).
Strains Factors Days/day 0 5 10 15 20 25 30 Staphylococcus aureus High temperature 10.12±0.31 9.57±0.29 9.13±0.37 8.76±0.34 8.04±0.41 7.69±0.29 7.25±0.38 High humidity 10.33±0.28 9.88±0.34 9.32±0.14 8.94±0.25 8.25±0.18 7.91±0.43 7.63±0.36 Bright light 10.14±0.19 9.62±0.16 9.17±0.21 8.82±0.32 8.15±0.28 7.83±0.37 7.33±0.45 Escherichia coli High temperature 10.07±0.27 9.61±0.37 9.05±0.35 8.62±0.28 8.01±0.32 7.52±0.47 7.16±0.39 High humidity 10.21±0.24 9.82±0.29 9.14±0.36 8.77±0.35 8.19±0.27 7.74±0.42 7.33±0.32 Bright light 10.11±0.32 9.67±0.26 9.09±0.42 8.53±0.29 8.08±0.36 7.67±0.51 7.25±0.43 表 4 浓度对UiO-66-NHCl和UiO-66-NH2材料抑菌圈直径的影响对比(±SD mm)
Table 4. Comparison of the effect of concentration on the diameter of the inhibition circle of UiO-66-NHCl antimicrobial material and UiO-66-NH2 (±SD mm).
Strains Samples Concentrations(mg/L) 200 300 400 500 600 Staphylococcus aureus UiO-66-NHCl 7.88±0.48 8.55±0.55 8.96±0.32 9.58±0.32 10.03±0.41 UiO-66-NH2 0 0 0 0 0 Escherichia coli UiO-66-NHCl 7.94±0.51 8.27±0.43 8.73±0.23 9.21±0.18 9.98±0.34 UiO-66-NH2 0 0 0 0 0 表 5 UiO-66-NHCl多次给药皮肤刺激反应实验结果
Table 5. Experimental results of skin irritation response to multiple doses of UiO-66-NHCl.
Dosing time (d) Complete Skin Group (Score) Damaged skin group (Score) UiO-66-NHCl Water UiO-66-NHCl Water 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 -
[1] PETERSON G W, LEE D T, BARTON H F, et al. Fibre-based composites from the integration of metal-organic frameworks and polymers[J]. Nature Reviews Materials,2021,6:605-621. doi: 10.1038/s41578-021-00291-2 [2] 孙丹, 宿丽娟, 鞠晓红. 579株肠杆菌科细菌感染的临床特征及耐药性分析[J]. 吉林医药学院学报, 2022, 43(6):416-419. doi: 10.13845/j.cnki.issn1673-2995.2022.06.023SUN D, SU L J, JU X H. Clinical characteristics and drug resistance of 579 strains of Enterobacteriaceae[J]. Journal of Jilin Medical College,2022,43(6):416-419(in Chinese). doi: 10.13845/j.cnki.issn1673-2995.2022.06.023 [3] 陈康. 多重耐药革兰阴性杆菌下呼吸道感染的临床分析[J]. 中国处方药, 2021, 19(8):172-174. doi: 10.3969/j.issn.1671-945X.2021.08.080CHEN K. Clinical analysis of multidrug-resistant Gram-negative bacilli in lower respiratory tract infection[J]. Journal of China Prescription Drug,2021,19(8):172-174(in Chinese). doi: 10.3969/j.issn.1671-945X.2021.08.080 [4] DING X, YANG C, MOREIRA W, et al. A Macromolecule Reversing Antibiotic Resistance Phenotype and Repurposing Drugs as Potent Antibiotics[J]. Advanced Science,2021,7(17):2001374. [5] PAPKOU A, HEDGE J, KAPEL N. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates[J]. Nature Communications,2020,11:3970. doi: 10.1038/s41467-020-17735-y [6] YAN L, GOPAL A, KASHIF S, et al. Metal organic frameworks for antibacterial applications[J]. Chemical Engineering Journal,2022,435:134975. doi: 10.1016/j.cej.2022.134975 [7] PEJMAN M, FIROUZJAEI M D, AKTIJ S A, et al. Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks[J]. Journal of Membrane Science,2020,611:118352. doi: 10.1016/j.memsci.2020.118352 [8] YYAGARI S, AL-HAIK M, REN Y, et al. Metal organic frameworks modification of carbon fiber composite interface[J]. Composites Part B:Engineering,2021,224:109197. doi: 10.1016/j.compositesb.2021.109197 [9] SUN H, DAN J, LIANG Y M. Dimensionality reduction boosts the peroxidaselike activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication[J]. Royal Society of Chemistry,2022,14(32):11693. [10] RAZA H, YILDIZ I, YASMEEN F, et al. Synthesis of a 2 D copper (II)-carboxylate framework having ultrafast adsorption of organic dyes[J]. Journal of Colloid and Interface Science,2021,602:43-54. doi: 10.1016/j.jcis.2021.05.169 [11] HATAMIE S, AHADIAN M M, ZOMOROD M S, et al. Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework[J]. Materials Science and Engineering:C,2019,104:109862. doi: 10.1016/j.msec.2019.109862 [12] ZHENG S S, ZHOU H J, XUE H G, et al. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage[J]. Colloid Interface Sci. 614 (2022) 130-137. [13] ZHOU D B, CHEN Y X, BU W H, et al. Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma[J]. Journal of Colloid and Interface Science,2021,601:650-660. doi: 10.1016/j.jcis.2021.05.126 [14] LI T, JIN Z. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science,2022,605:385-397. doi: 10.1016/j.jcis.2021.07.098 [15] LIANG L F, LIU C P, JIANG F L, et al. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework[J]. Nature Communications,2017,8:1-10. doi: 10.1038/s41467-016-0009-6 [16] 郝凌婉. 新型金属有机骨架复合膜的制备及其抗菌性能的研究[D]. 吉林大学, 2021.HAO L W. Preparation and Antibacterial Application of Novel Metal-Organic Frameworks Somposite Films[D]. Jilin University, 2021(in Chinese). [17] 余方锦, 巫晨静, 吴贻强, 等. 金属有机骨架抗菌性能的研究进展[J]. 中国卫生检验杂志, 2022, 32(14):1782-1785.YU F J, Wu C J, Wu Y Q, et al. Advances in antibacterial properties of metal organic skeletons[J]. Chinese Journal of Health Laboratory Technology,2022,32(14):1782-1785(in Chinese). [18] 刘瑶瑶. 卟啉金属有机骨架的光动力杀菌性能及其复合抗菌膜应用研究[D]. 江南大学, 2021.LIU Y Y. Photodynamic sterilization performance of porphyrinic metal-organic frameworks and the application of composite antibacterial film[D]. Jiangnan University, 2021(in Chinese). [19] 裴震, 郭建栋, 张倩, 等. 金属-有机骨架抗菌复合材料与纤维的研究进展及应用[J]. 复合材料学报, 2021, 38(8):2396-2403. doi: 10.13801/j.cnki.fhclxb.20210507.001PEI Z, GUO J D, ZHANG Q, et al. Research progress and application of metal-organic frameworks antibacterial composite materials and fibers[J]. Acta Materiae Compositae Sinica,2021,38(8):2396-2403(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210507.001 [20] 黄文光, 张淑娟. UIO-66-NH2金属有机骨架材料的键合改性[C]//. 2018第二届全国光催化材料创新与应用学术研讨会摘要集. 2018, 27.HUANG W G, ZHANG S J. Bonding modification of UIO-66-NH2 metal-organic backbone materials[C]. 2018 2 nd National Symposium on Innovation and Application of Photocatalytic Materials Abstracts Collection, 2018, 27(in Chinese). [21] ZHANG X, HAO X X, QIU S H, et al. Efficient capture and release of carboxylated benzisothiazolinone from UiO-66-NH2 for antibacterial and antifouling applications[J]. Journal of Colloid and Interface Science,2022,623:710-722. doi: 10.1016/j.jcis.2022.05.065 [22] SAMARI M, ZINADINI S, ZINATIZADEH A A, et al. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF)[J]. Separation and Purification Technology,2020,251:117010. doi: 10.1016/j.seppur.2020.117010 [23] BUNGE M A, DAVIS A B, WEST K N, et al. Synthesis and Characterization of UiO-66-NH2 Metal-Organic Framework Cotton Composite Textiles[J]. Industrial & Engineering Chemistry Research,2018,57(28):9151-9161. [24] SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals[J]. Chemistry-A European Journal,2011,17:6643-6651. doi: 10.1002/chem.201003211 [25] ZHU J J, WU L B, BU Z Y, et al. Polyethyleneimine-modified UiO-66-NH2 (Zr) metal-organic frameworks: preparation and enhanced CO2 selective adsorption[J]. ACS Omega,2019,4(2):3188-3197. doi: 10.1021/acsomega.8b02319 [26] 卫生部卫生法制与监督司. 消毒技术规范第一分册[S]. 北京: 中华人民共和国卫生部, 2002.Department of Health Legislation and Supervision, Ministry of Health. The first volume of disinfection technical specifications [S]. Beijing: Ministry of Health of the People's Republic of China, 2002(in Chinese). [27] 金瑞, 张娜, 陈娜, 等. 吡啶-2-甲醛共价接枝UiO-66-NH2负载铁系催化剂的合成及催化乙烯齐聚性能[J]. 化学通报, 2022, 85(09): 1127-1132.JIN R, ZHANG N, CHEN N, et al. Synthesis and Catalytic Performance in Ethylene Oligomerization of Pyridine-2-formaldehyde Covalently Grafted to UIO-66-NH2 Supported Iron Catalyst[J]. 2022, 85(09): 1127-1132(in Chinese). [28] HAN Y T, LIU M, LI K Y, et al. Facile synthesis of morphology-and size-controlled zirconium metal-organic framework UiO-66: the role of hydrofluoric acid in crystallization[J]. CrystEngComm,2015,17(33):6434-6440. doi: 10.1039/C5CE00729A [29] RABIEE N, GHADIRI A M, ALINEZHAD V, et al. Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications[J]. Chemosphere,2022,299:134359. doi: 10.1016/j.chemosphere.2022.134359 [30] 曾胚羡. 基于UiO-66-NH2和聚丙烯酸钠自组装体构建双重响应载药体系的研究与应用[D]. 福州大学, 2017.ZENG P X. Application and research of double responsive drug delivery systems based on UiO-66-NH2 and sodium polyacrylate self-assemblies[D]. Fuzhou University, 2017(in Chinese). [31] MULIK N, BOKADE V. Immobilization of HPW on UiO-66-NH2 MOF as efficient catalyst for synthesis of furfuryl ether and alkyl levulinate as biofuel[J]. Molecular Catalysis,2022,531:112689. doi: 10.1016/j.mcat.2022.112689 [32] XU J, HE S, ZHANG H L, et al. Layered metal-organic framework/graphene nanoarchitectures for organic photosynthesis under visible light[J]. Journal of Materials Chemistry A,2015,3(48):24261-24271. doi: 10.1039/C5TA06838J [33] LIN Y M, QIU Z Z, LI D Z, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries[J]. Energy Storage Materials,2018,11:67-74. doi: 10.1016/j.ensm.2017.06.001 [34] CHEUNG Y H, MA K K, LEEUWEN H C V, et al. Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats[J]. Journal of the American Chemical Society,2021,143(40):16777-16785. doi: 10.1021/jacs.1c08576 -

计量
- 文章访问数: 160
- HTML全文浏览量: 135
- 被引次数: 0