留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多功能MXene-CCNT/聚酰亚胺电磁屏蔽薄膜的制备与性能

储娜 骆春佳 晁敏 杨雪雪 颜录科

储娜, 骆春佳, 晁敏, 等. 多功能MXene-CCNT/聚酰亚胺电磁屏蔽薄膜的制备与性能[J]. 复合材料学报, 2024, 41(8): 4145-4158. doi: 10.13801/j.cnki.fhclxb.20231214.002
引用本文: 储娜, 骆春佳, 晁敏, 等. 多功能MXene-CCNT/聚酰亚胺电磁屏蔽薄膜的制备与性能[J]. 复合材料学报, 2024, 41(8): 4145-4158. doi: 10.13801/j.cnki.fhclxb.20231214.002
CHU Na, LUO Chunjia, CHAO Min, et al. Preparation and properties of multifunctional MXene-CCNT/polyimide electromagnetic shielding films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4145-4158. doi: 10.13801/j.cnki.fhclxb.20231214.002
Citation: CHU Na, LUO Chunjia, CHAO Min, et al. Preparation and properties of multifunctional MXene-CCNT/polyimide electromagnetic shielding films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4145-4158. doi: 10.13801/j.cnki.fhclxb.20231214.002

多功能MXene-CCNT/聚酰亚胺电磁屏蔽薄膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20231214.002
基金项目: 国家自然科学基金 (22005039);陕西省重点研发计划(2022GY-403);陕西省创新能力支撑计划(2023-CX-TD-43);长安大学中央高校基本科研业务费专项资金(300102312403;300102313208)
详细信息
    通讯作者:

    晁敏,博士,副教授,研究方向为树脂基复合材料和先进纳米功能材料的设计与制备 E-mail: chaominchd@163.com

  • 中图分类号: TB34;TB332

Preparation and properties of multifunctional MXene-CCNT/polyimide electromagnetic shielding films

Funds: National Natural Science Foundation of China (22005039); Shaanxi Key Research & Development Project (2022GY-403); Innovation Capability Support Program of Shaanxi (2023-CX-TD-43); Fundamental Research Funds for the Central Universities, CHD (300102312403; 300102313208)
  • 摘要: 导电聚合物复合材料(CPC)因其耐腐蚀性好、比强度高、成本低和易加工等良好的综合性能,被广泛用于制备电磁屏蔽材料。本文采用简单的刮膜法和热酰亚胺化法制备了综合性能良好的MXene-羧基化碳纳米管/聚酰亚胺(MXene-CCNT/PI)复合薄膜。MXene和CCNT协同作用构筑了良好的导电网络,赋予薄膜高效的电磁屏蔽效能(EMI SE),当MXene和CCNT含量均为12.5wt%,膜厚度为80 μm时,电导率和EMI SE分别为5.88 S/cm和26.49 dB,电磁屏蔽效能与厚度的比值(EMI SE/t)为331.13 dB/mm。并且在极端恶劣环境下(酸-碱处理、高低温处理和重复弯曲)显示出持久而稳定的EMI SE。与此同时,MXene-CCNT/PI薄膜仍具有53.17 MPa的拉伸强度、优异的热稳定性(>500℃)和阻燃性能。实现了聚合物基电磁屏蔽复合材料的便捷、高效制备,同时兼顾其优异的力学性能和耐热性能。

     

  • 图  1  MXene (a) 和MXene-羧基化碳纳米管/聚酰亚胺(MXene-CCNT/PI) (b) 薄膜的制备过程示意图

    ODA—4, 4'-diaminodiphenyl ether; PMDA—Pyromellitic dianhydride

    Figure  1.  Schematic diagram of preparation process of MXene (a) and MXene-carboxylated carbon nanotube/polyimide (MXene-CCNT/PI) films (b)

    图  2  MAX相(a)和MXene (b)的SEM图像;(c) MAX相和MXene的XRD图谱

    Figure  2.  SEM images of MAX (a) and MXene (b); (c) XRD patterns of MAX and MXene

    图  3  MXene-CCNT/PI薄膜的FTIR图谱(a)和XRD图谱(b);25wt%MXene-CCNT/PI薄膜的TEM图像(c)和相应的EDS图像(d)

    Figure  3.  FTIR spectra (a) and XRD patterns (b) of MXene-CCNT/PI films; TEM image (c) and corresponding EDS image (d) of 25wt%MXene-CCNT/PI film

    图  4  MXene-CCNT/PI薄膜的力学性能:(a)拉伸强度和断裂伸长率;(b)薄膜弯折成任意形状的照片

    Figure  4.  Mechanical properties of MXene-CCNT/PI films: (a) Tensile strength and elongation at break; (b) Photographs of films bent into arbitrary shapes

    图  5  PI (a)、5wt%MXene-CCNT/PI (b)、10wt%MXene-CCNT/PI (c)、15wt%MXene-CCNT/PI (d)、20wt%MXene-CCNT/PI (e)、25wt%MXene-CCNT/PI (f)薄膜经拉断后的截面SEM图像

    Figure  5.  SEM images of cross-section of PI (a), 5wt%MXene-CCNT/PI (b), 10wt%MXene-CCNT/PI (c), 15wt%MXene-CCNT/PI (d), 20wt%MXene-CCNT/PI (e), 25wt%MXene-CCNT/PI (f) film after pull-off

    图  6  (a) MXene-CCNT/PI膜的电导率曲线图;5wt%MXene-CCNT/PI (b)、10wt%MXene-CCNT/PI (c)、15wt%MXene-CCNT/PI (d)、20wt%MXene-CCNT/PI (e)、25wt%MXene-CCNT/PI (f)薄膜连接在电路两端时灯泡亮度示意图

    Figure  6.  (a) Electrical conductivity of MXene-CCNT/PI films; Light bulb brightness schematic diagram of 5wt%MXene-CCNT/PI film (b), 10wt%MXene-CCNT/PI film (c), 15wt%MXene-CCNT/PI film (d), 20wt%MXene-CCNT/PI film (e), 25wt%MXene-CCNT/PI film (f) connected to the circuit at both ends

    图  7  MXene-CCNT/PI膜在X波段的EMI SET (a)、EMI SER (b)和EMI SEA (c);(d) MXene-CCNT/PI膜的平均SET、SEA和SER;(e) MXene-CCNT/PI膜的T/R/A系数;(f) SE/t与文献[7, 33-45]比较

    Figure  7.  EMI SET (a), EMI SER (b) and EMI SEA (c) of MXene-CCNT/PI films in X-band; (d) Average SET, SEA and SER of MXene-CCNT/PI films; (e) T/R/A coefficients of MXene-CCNT/PI films; (f) Comparison of SE/t with previous reports [7, 33-45]

    图  8  25wt%MXene-CCNT/PI薄膜在HCl中浸泡12 h (a)、在碱液中浸泡12 h (b)、重复弯曲100次(c)、在300℃下处理2 h (d)、在液氮中浸泡2 h (e)及在液氮(−196℃)中浸泡2 h后在300℃下处理2 h (f)前后的EMI SE

    Figure  8.  EMI SE of 25wt%MXene-CCNT/PI films before and after immersion in HCl for 12 h (a), immersion in lye for 12 h (b), repetitive bending for 100 times (c), treatment at 300℃ for 2 h (d), immersion in liquid nitrogen (−196℃) for 2 h (e) and treatment at 300℃ for 2 h after 2 h in liquid nitrogen (−196℃) (f)

    图  9  25wt%MXene-CCNT/PI薄膜在不同环境中处理前后的平均SET (a)和MXene-CCNT/PI膜中电磁微波耗散示意图(b)

    Figure  9.  Average SET of 25wt%MXene-CCNT/PI film before and after treatment in different environments (a) and schematic diagram of electromagnetic microwave dissipation in MXene-CCNT/PI films (b)

    图  10  MXene-CCNT/PI薄膜在氮气气氛中的TG曲线

    Figure  10.  TG curves of MXene-CCNT/PI films in nitrogen atmosphere

    图  11  MXene-CCNT/PI薄膜的阻燃性:PI薄膜(a)、5wt%MXene-CCNT/PI薄膜(b)和25wt%MXene-CCNT/PI薄膜(c)在火焰上燃烧

    Figure  11.  Flame retardancy of MXene-CCNT/PI films: PI film (a), 5wt%MXene-CCNT/PI film (b) and 25wt%MXene-CCNT/PI film (c) burning on flame

    表  1  MXene-CCNT/PI薄膜各组分的比例

    Table  1.   Proportions of components in MXene-CCNT/PI films

    Sample ODA/g PMDA/g MXene/g CCNT/g DMAc/g
    PI 2.27 2.53 0 0 43.20
    5wt%MXene-CCNT/PI 2.27 2.53 0.13(2.5wt%) 0.13(2.5wt%) 45.47
    10wt%MXene-CCNT/PI 2.27 2.53 0.27(5.0wt%) 0.27(5.0wt%) 48.00
    15wt%MXene-CCNT/PI 2.27 2.53 0.42(7.5wt%) 0.42(7.5wt%) 50.82
    20wt%MXene-CCNT/PI 2.27 2.53 0.60(10.0wt%) 0.60(10.0wt%) 54.00
    25wt%MXene-CCNT/PI 2.27 2.53 0.80(12.5wt%) 0.80(12.5wt%) 57.60
    Note: DMAc—N, N-dimethylacetamide.
    下载: 导出CSV

    表  2  MXene-CCNT/PI薄膜的拉伸强度和断裂伸长率

    Table  2.   Tensile strength and elongation at break of MXene-CCNT/PI films

    Sample Average tensile strength/MPa Average elongation
    at break/%
    PI 121.18 25.95
    5wt%MXene-CCNT/PI 119.27 14.75
    10wt%MXene-CCNT/PI 92.69 5.91
    15wt%MXene-CCNT/PI 65.87 3.31
    20wt%MXene-CCNT/PI 64.06 2.20
    25wt%MXene-CCNT/PI 53.17 2.03
    下载: 导出CSV

    表  3  MXene-CCNT/PI膜的EMI SE/t与以往文献对比

    Table  3.   EMI SE/t of MXene-CCNT/PI films compared with previously reported literature

    Polymer Conductive filler Filler content Thickness/mm EMI SE/dB SE/t/(dB·mm−1) Ref.
    PIF MXene 49.1wt% 0.26 49.90 87.40 [7]
    PI CB 40wt% 1.00 35.00 35.00 [33]
    PI MXene 25wt% 0.14 29.12 208.00 [34]
    ANF MWCNT 80wt% 0.30 41.70 139.00 [35]
    WPU Ti3C2Tx 7wt% 0.50 50.00 100.00 [36]
    ANF Ti3C2Tx 21wt% 1.90 56.80 29.89 [37]
    Epoxy Graphene 19.5vol% 1.00 65.00 65.00 [38]
    CNF MXene 17wt% 2.00 74.56 37.28 [39]
    PCL MWCNT 15wt% 0.50 61.50 123.00 [40]
    Epoxy GNP/CNT 1 : 1 0.25 35.00 140.00 [41]
    PVDF CNT : ZnONW 5.0 : 2.5wt% 1.10 41.00 37.27 [42]
    Vertical graphene/SiC 1.50 38.00 25.33 [43]
    Fe3O4/MWCNT/SiO2 0.60 40.00 66.67 [44]
    MXene/CNT 3.00 103.90 34.63 [45]
    PI MXene-CNT 12.5/12.5wt% 0.08 26.49 331.10 This work
    Notes: PIF—Polyimide fiber; ANF—Aramid nanofibers; WPU—Waterborne polyurethane; CNF—Cellulose nanofibrils; PCL—Poly(ε-caprolactone); PVDF—Polyvinylidene fluoride.
    下载: 导出CSV

    表  4  MXene-CCNT/PI膜的热性能

    Table  4.   Thermal properties of MXene-CCNT/PI films

    Sample T5%/℃ T10%/℃ RW/%
    PI 532 570 52
    5wt%MXene-CCNT/PI 540 564 61
    10wt%MXene-CCNT/PI 523 558 63
    15wt%MXene-CCNT/PI 540 566 61
    20wt%MXene-CCNT/PI 519 564 63
    25wt%MXene-CCNT/PI 531 571 68
    MXene 96
    CCNT 635 91
    Notes: T5%, T10%—Temperatures corresponding to the first 5wt% mass loss and the first 10wt% mass loss; RW—Final carbon residue.
    下载: 导出CSV

    表  5  MXene-CCNT/PI薄膜的极限氧指数(LOI)

    Table  5.   Limiting oxygen index (LOI) values of MXene-CCNT/PI films

    Sample LOI/%
    PI 42
    5wt%MXene-CCNT/PI 44
    25wt%MXene-CCNT/PI 47
    下载: 导出CSV
  • [1] WANG Y, LUO C J, WU Y F, et al. High temperature stable, amorphous SiBCN microwave absorption ceramics with tunable carbon structures derived from divinylbenzene crosslinked hyperbranched polyborosilazane[J]. Carbon, 2023, 213: 118189. doi: 10.1016/j.carbon.2023.118189
    [2] 曹雪鸿, 陈继伟. 纸基电磁屏蔽材料研究现状及发展趋势[J]. 造纸科学与技术, 2018, 37(5): 6.

    CAO Xuehong, CHEN Jiwei. Research status and development trend of paper-based electromagnetic shielding materials[J]. Paper Science and Technology, 2018, 37(5): 6(in Chinese).
    [3] 温变英, 王雪娇, 方晓霞, 等. 碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响[J]. 材料导报, 2018, 32(24): 4346-4350.

    WEN Bianying, WANG Xuejiao, FANG Xiaoxia, et al. Influence of carbon conductive filler properties on the structure and electromagnetic shielding effectiveness of PVB-based functional films[J]. Materials Reports, 2018, 32(24): 4346-4350(in Chinese).
    [4] LI Z W, LIN Z J, HAN M S, et al. Vertical graphene nanosheet/polyimide composite films for electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2021, 4(7): 7461-7470. doi: 10.1021/acsanm.1c01471
    [5] YU Z, DAI T, YUAN S, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J]. ACS Applied Materials and Interfaces, 2020, 12(27): 30990-31001. doi: 10.1021/acsami.0c07122
    [6] WANG G X, YU Q Z, HU Y M, et al. Influence of the filler dimensionality on the electrical, mechanical and electromagnetic shielding properties of isoprene rubber-based flexible conductive composites[J]. Composites Communications, 2020, 21: 100417. doi: 10.1016/j.coco.2020.100417
    [7] SUN K, WANG F, YANG W K, et al. Flexible conductive polyimide fiber/MXene composite film for electromagnetic interference shielding and joule heating with excellent harsh environment tolerance[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50368-50380.
    [8] 张文展, 刘定荣, 全才兵, 等. 聚酰亚胺基电磁屏蔽材料研究进展[J]. 化工新型材料, 2020, 48(10): 10-14.

    ZHANG Wenzhan, LIU Dingrong, QUAN Caibing, et al. Research progress of polyimide-based electromagnetic shielding materials[J]. New Chemical Materials, 2020, 48(10): 10-14(in Chinese).
    [9] 张如强, 龙柱, 张丹. 高性能聚酰亚胺电磁屏蔽材料的研究进展[J]. 精细化工, 2023, 40(1): 10-20, 43.

    ZHANG Ruqiang, LONG Zhu, ZHANG Dan. Research progress of high-performance polyimide electromagnetic shielding materials[J]. Fine Chemicals, 2023, 40(1): 10-20, 43(in Chinese).
    [10] 张浩睿. 热塑性聚氨酯基电磁屏蔽薄膜的制备、性能调控及其应用[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2022.

    ZHANG Haorui. Preparation, performance regulation and application of thermoplastic polyurethane based electromagnetic shielding film[D]. Shenzhen: Chinese Academy of Sciences University (Chinese Academy of Sciences Shenzhen Institute of Advanced Technology), 2022(in Chinese).
    [11] BIAN R J, HE G L, ZHI W Q, et al. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance[J]. Journal of Materials Chemistry C, 2019, 7(3): 474-478. doi: 10.1039/C8TC04795B
    [12] 秦文峰, 符佳伟, 李亚云, 等. 层状Ti3C2Tx/水性聚氨酯复合双层薄膜的制备及电磁屏蔽性能[J]. 宇航材料工艺, 2021, 51(3): 49-53. doi: 10.12044/j.issn.1007-2330.2021.03.008

    QIN Wenfeng, FU Jiawei, LI Yayun, et al. Preparation and electromagnetic shielding properties of laminated Ti3C2Tx/waterborne polyurethane composite bilayer films[J]. Aerospace Materials and Technology, 2021, 51(3): 49-53(in Chinese). doi: 10.12044/j.issn.1007-2330.2021.03.008
    [13] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene)[J]. Science, 2020, 369(6502): 446-450. doi: 10.1126/science.aba7977
    [14] HAN M K, SHUCK C E, RAKHMANOV R, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding[J]. ACS Nano, 2020, 14(4): 5008-5016. doi: 10.1021/acsnano.0c01312
    [15] XIONG R, HU K S, GRANT A M, et al. Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity[J]. Advanced Materials, 2016, 28(7): 1501-1509. doi: 10.1002/adma.201504438
    [16] 姜小丹, 卢少微, 刘兴民, 等. 超薄柔性MXene增强碳纳米管复合薄膜电磁屏蔽性能研究[J]. 炭素技术, 2023, 42(2) : 21-24, 36.

    JIANG Xiaodan, LU Shaowei, LIU Xingmin, et al. Research on the electromagnetic shielding performance of ultrathin flexible MXene reinforced carbon nanotube composite film [J]. Carbon Techniques, 2023, 42(2) : 21-24, 36(in Chinese).
    [17] JOSEPH J, MUNDA P R, JOHN D A, et al. Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness[J]. Materials Research Express, 2019, 6(8): 085617. doi: 10.1088/2053-1591/ab1e23
    [18] KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science, 2018, 362(6414): 547-553. doi: 10.1126/science.aat7439
    [19] WANG Y Y, ZHOU Z H, ZHOU C G, et al. Lightweight and robust carbon canotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8704-8712.
    [20] 李彦明. 多壁碳纳米管/聚酰亚胺复合薄膜的制备和性能研究[D]. 西安: 长安大学, 2021.

    LI Yanmin. Nanotubes/polyimide composite film preparation and properties of multi-walled carbon[D]. Xi'an: Chang'an University, 2021(in Chinese).
    [21] FENG Y Y, LUO C J, CHEN X S, et al. Shell inspired heterogeneous membrane with smaller bandgap toward sunlight-activated sustainable water purification[J]. Chemical Engineering Journal, 2022, 440: 135910. doi: 10.1016/j.cej.2022.135910
    [22] 中国国家标准化管理委员会. 塑料薄膜拉伸性能试验方法: GB/T 13022—1991[S]. 北京: 中国标准出版社, 1991.

    Standardization Administration of the People's Republic of China. Test method for tensile properties of plastic films: GB/T 13022—1991[S]. Beijing: China Standards Press, 1991(in Chinese).
    [23] ZHAO B, HAMIDINEJAD M, WANG S, et al. Advances in electromagnetic shielding properties of composite foams[J]. Journal of Materials Chemistry A, 2021, 9(14): 8896-8949. doi: 10.1039/D1TA00417D
    [24] LIU R T, MIAO M, LI Y H, et al. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44787-44795.
    [25] JIN X X, WANG J F, DAI L Z, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances[J]. Chemical Engineering Journal, 2020, 380: 122475. doi: 10.1016/j.cej.2019.122475
    [26] 中国国家标准化管理委员会. 塑料用氧指数测定燃烧行为 第1部分: GB/T 2406.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics-Determination of combustion behaviour by oxygen index-Part 1: GB/T 2406.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27] WANG L, QIU H, SONG P, et al. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 293-300. doi: 10.1016/j.compositesa.2019.05.030
    [28] 丁孟贤. 聚酰亚胺: 化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006: 1-929.

    DING Mengxian. Polyimides: Chemistry, structure-property relationships and materials [M]. Beijing: Science Press, 2006: 1-929(in Chinese).
    [29] ZHU Y, ZHAO X B, PENG Q Y, et al. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy[J]. Nanoscale Advances, 2021, 3(19): 5683-5693. doi: 10.1039/D1NA00415H
    [30] 崔晓萍, 朱光明, 刘文元. 纳米Al2O3/聚酰亚胺复合薄膜的介电与力学性能[J]. 复合材料学报, 2016, 33(11): 2419-2425.

    CUI Xiaoping, ZHU Guangming, LIU Wenyuan. Dielectric and mechanical properties of nano Al2O3/polyimide composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2419-2425(in Chinese).
    [31] KIM E Y, ZHANG H M, LEE J H, et al. MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106430. doi: 10.1016/j.compositesa.2021.106430
    [32] LI Y L, ZHOU B, SHEN Y, et al. Scalable manufacturing of flexible, durable Ti3C2Tx MXene/polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications[J]. Composites Part B: Engineering, 2021, 217: 108902. doi: 10.1016/j.compositesb.2021.108902
    [33] KIM J Y, KIM G H, KIM S, et al. Fabrication of highly flexible electromagnetic interference shielding polyimide carbon black composite using hot-pressing method[J]. Composites Part B: Engineering, 2021, 221: 109010. doi: 10.1016/j.compositesb.2021.109010
    [34] CHU N, LUO C, CHEN X, et al. Ti3C2Tx MXene/polyimide composites film with excellent mechanical properties and electromagnetic interference shielding properties[J]. Journal of Alloys and Compounds, 2023, 955: 170241. doi: 10.1016/j.jallcom.2023.170241
    [35] GUO H T, LI Y, JI Y, et al. Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding[J]. Composites Communications, 2021, 27: 100879. doi: 10.1016/j.coco.2021.100879
    [36] LU J Y, ZHANG Y, TAO Y J, et al. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance[J]. Journal of Colloid and Interface Science, 2021, 588: 164-174. doi: 10.1016/j.jcis.2020.12.076
    [37] LU Z Q, JIA F F, ZHOU L H, et al. Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance[J]. Composites Part B: Engineering, 2021, 217: 108853. doi: 10.1016/j.compositesb.2021.108853
    [38] BARANI Z, KARGAR F, MOHAMMADAZADEH A, et al. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures[J]. Advanced Electronic Materials, 2020, 6(11): 2000520. doi: 10.1002/aelm.202000520
    [39] ZENG Z H, WANG C X, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science, 2020, 7(15): 2000979. doi: 10.1002/advs.202000979
    [40] TANG X H, LI J, WANG Y, et al. Controlling distribution of multi-walled carbon nanotube on surface area of poly(ε-caprolactone) to form sandwiched structure for high-efficiency electromagnetic interference shielding[J]. Composites Part B: Engineering, 2020, 196: 108121. doi: 10.1016/j.compositesb.2020.108121
    [41] 邢一龙, 赵欣, 李梦. GNP/CNT/EP复合薄膜的电磁屏蔽性能研究[J]. 复合材料科学与工程, 2021(1): 52-57, 77. doi: 10.3969/j.issn.1003-0999.2021.01.008

    XING Yilong, ZHAO Xin, LI Meng. Research on electromagnetic shielding performance of GNP/CNT/EP composite films[J]. Composites Science and Engineering, 2021(1): 52-57, 77(in Chinese). doi: 10.3969/j.issn.1003-0999.2021.01.008
    [42] ZERAATI S A, SUNDARARAJ U. Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding[J]. The Canadian Journal of Chemical Engineering, 2020, 98(5): 1036-1046. doi: 10.1002/cjce.23717
    [43] YIN X M, LI H J, HAN L Y, et al. Lightweight and flexible 3D graphene microtubes membrane for high-efficiency electromagnetic-interference shielding[J]. Chemical Engineering Journal, 2020, 387: 124025. doi: 10.1016/j.cej.2020.124025
    [44] BHATTACHARJEE Y, CHATTERJEE D, BOSE S. Core-multishell heterostructure with excellent heat dissipation for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30762-30773.
    [45] SAMBYAL P, IQBAL A, HONG J, et al. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38046-38054.
    [46] YANG S, YAN D X, LI Y, et al. Flexible poly(vinylidene fluoride)-MXene/silver nanowire electromagnetic shielding films with joule heating performance[J]. Industrial & Engineering Chemistry Research, 2021, 60(27): 9824-9832.
    [47] YANG R L, GUI X C, YAO L, et al. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding[J]. Nano-Micro Letters, 2021, 13: 1-13. doi: 10.1007/s40820-020-00525-y
    [48] HAN M K, YIN X W, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 21011-21019.
    [49] ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4895-4905.
    [50] CHEN X S, PENG F C, WANG C, et al. Improving the flame retardancy and mechanical properties of epoxy composites significantly with a low-loading CNT-based hierarchical hybrid decorated with reactive hyperbranched polyphosphoramide[J]. Applied Surface Science, 2022, 576: 151765. doi: 10.1016/j.apsusc.2021.151765
    [51] 郭雨佳, 徐靖雯, 陈文礼, 等. 多层夹芯结构木塑复合材料阻燃与力学性能[J/OL]. 复合材料学报, 2023: 1-10[2024-06-05].

    GUO Yujia, XU Jingwen, CHEN Wenli, et al. Flame retardant and mechanical properties of wood-plastic composites with multi-layer sandwich structures[J/OL] . Acta Materiae Compositae Sinica, 2023: 1-10[2024-06-05](in Chinese).
    [52] ZHAO Y N, CHEN J Y, LAI X J, et al. Efficient flame-retardant and multifunctional polyimide/MXene composite aerogel for intelligent fire protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107210.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  257
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-11-20
  • 录用日期:  2023-12-07
  • 网络出版日期:  2023-12-14
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回