留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两参数Weibull分布的镁水泥再生细骨料钢筋混凝土抗盐可靠度评估

杨天霞 乔宏霞 李金鹏 王鹏辉 路承功 文静

杨天霞, 乔宏霞, 李金鹏, 等. 基于两参数Weibull分布的镁水泥再生细骨料钢筋混凝土抗盐可靠度评估[J]. 复合材料学报, 2023, 40(9): 5397-5410. doi: 10.13801/j.cnki.fhclxb.20221128.003
引用本文: 杨天霞, 乔宏霞, 李金鹏, 等. 基于两参数Weibull分布的镁水泥再生细骨料钢筋混凝土抗盐可靠度评估[J]. 复合材料学报, 2023, 40(9): 5397-5410. doi: 10.13801/j.cnki.fhclxb.20221128.003
YANG Tianxia, QIAO Hongxia, LI Jinpeng, et al. Salt resistance reliability evaluation of magnesium cement recycled fine aggregate reinforced concrete based on two-parameter weibull distribution[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5397-5410. doi: 10.13801/j.cnki.fhclxb.20221128.003
Citation: YANG Tianxia, QIAO Hongxia, LI Jinpeng, et al. Salt resistance reliability evaluation of magnesium cement recycled fine aggregate reinforced concrete based on two-parameter weibull distribution[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5397-5410. doi: 10.13801/j.cnki.fhclxb.20221128.003

基于两参数Weibull分布的镁水泥再生细骨料钢筋混凝土抗盐可靠度评估

doi: 10.13801/j.cnki.fhclxb.20221128.003
基金项目: 国家自然科学基金(51868044);青海省基础研究计划项目资助(2022-ZJ-921)
详细信息
    通讯作者:

    乔宏霞,博士,教授,博士生导师,研究方向为土木工程材料 E-mail: Hongxia_Qiao@163.com

  • 中图分类号: TU525;TB333

Salt resistance reliability evaluation of magnesium cement recycled fine aggregate reinforced concrete based on two-parameter weibull distribution

Funds: National Natural Science Foundation of China (51868044); Supported by the Basic Research Program of Qinghai Province (2022-ZJ-921)
  • 摘要: 针对盐湖地区建筑结构受到恶劣气候环境和腐蚀性离子双重侵害现象,采用镁水泥再生细骨料钢筋混凝土来缓减构筑物寿命退化速度。通过掺加不同量的再生细骨料并将其埋置在盐渍土中进行恒电流通电加速试验,借助电化学工作站、超声波无损检测技术及SEM、XRD分析微结构演变机制,最后引入两参数Weibull分布函数退化过程对评价指标腐蚀电流密度icorr、相对动弹性模量建模进行可靠度评价。结果表明:掺入质量比为15%、30%和45%的细骨料时,Cl、CO3 2−和SO4 2−侵蚀性离子随着再生细骨料掺量的增多侵入试件几率增大,内部结构损伤程度更加显著;大片、块状的锈蚀产物逐渐疏松内部结构导致劣化程度加深,15%、30%掺量试件低腐蚀程度,45%掺量试件则处于严重腐蚀;以动弹模量作为退化参数得到15%、30%、45%再生细骨料掺量试件的服役寿命分别为10000天、7500天、6000天;以腐蚀电流密度icorr得到45%掺量试件的工作寿命为4000天,钢筋腐蚀电流密度耐久性退化相对动弹模量更加敏感,对于镁水泥再生细骨料钢筋混凝土构件的日常维护与检测具有可观的指导意义。

     

  • 图  1  通电加速体系

    Figure  1.  Power-on acceleration system

    DC—Direct current

    图  2  不同掺量镁水泥再生细骨料钢筋混凝土极化曲线

    Figure  2.  Polarization curves of magnesium cement recycled fine aggregate reinforced concrete with different contents of recycled fine aggregate

    E—Electric potential; i—Current density

    图  3  镁水泥再生细骨料钢筋混凝土相对动弹性模量控制图

    Figure  3.  Control chart of relative dynamic elastic modulus of magnesium cement recycled fine aggregate reinforced concrete

    CL—Center line; UCL—Upper center line; LCL—Lower center line

    图  4  通电加速环境下不同掺量的镁水泥再生细骨料钢筋SEM图像

    Figure  4.  SEM images of magnesium cement recycled fine aggregate steel bars with different contents under energized acceleration environment

    图  5  通电加速环境下镁水泥再生细骨料钢筋XRD图谱

    Figure  5.  XRD patterns of magnesium cement recycled fine aggregate rebar under accelerated environment

    图  6  通电加速环境下不同掺量的镁水泥再生细骨料钢筋混凝土SEM图像

    Figure  6.  SEM images of magnesium cement recycled fine aggregate reinforced concrete with different content in energized environment

    图  7  通电加速环境下镁水泥再生细骨料混凝土XRD图谱

    Figure  7.  XRD patterns of magnesium cement recycled fine aggregate concrete under accelerated environment

    图  8  不同掺量的镁水泥再生细骨料混凝土动弹性模量分布概率图

    Figure  8.  Distribution probability diagram of dynamic elastic modulus of magnesium cement recycled fine aggregate concrete with different contents

    m—Shape parameter; η—Scale parameter

    图  9  掺量为45%的镁水泥再生细骨料钢筋混凝土腐蚀电流密度分布概率图

    Figure  9.  Corrosion current density distribution probability diagram of magnesium cement recycled fine aggregate reinforced concrete with 45% content

    图  10  二参数Weibull分布回归

    Figure  10.  Two-parameter Weibull distribution regression

    R2—Fit coefficient

    图  11  镁水泥再生细骨料钢筋腐蚀电流密度可靠度曲线

    Figure  11.  Corrosion current density reliability curves of magnesium cement recycled fine aggregate rebar

    Z—Reliability obtained by the median rank method; J—Reliability obtained by maximum likelihood method

    图  12  镁水泥再生细骨料钢筋混凝土动弹模量可靠度曲线

    Figure  12.  Magnesium cement recycled fine aggregate reinforced concrete dynamic elastic modulus reliability curves

    图  13  镁水泥再生细骨料钢筋腐蚀电流密度概率密度曲线

    Figure  13.  Probability density curves of corrosion current density of magnesium cement recycled fine aggregate rebar

    图  14  镁水泥再生细骨料钢筋混凝土动弹模量概率密度曲线

    Figure  14.  Probability density curves of dynamic elastic modulus of magnesium cement recycled fine aggregate reinforced concrete

    图  15  镁水泥再生细骨料钢筋腐蚀电流密度失效率曲线

    Figure  15.  Corrosion current density failure rate curves of magnesium cement recycled fine aggregate rebar

    图  16  镁水泥再生细骨料钢筋混凝土动弹模量失效率曲线

    Figure  16.  Dynamic elastic modulus failure rate curves of magnesium cement recycled fine aggregate reinforced concrete

    表  1  再生细骨料物理性能指标

    Table  1.   Physical properties of recycled fine aggregates

    PerformanceWater
    absorption/%
    Ignition
    loss/%
    Activity
    index/%
    Apparent
    density
    /(kg·m−3)
    Bulk
    density
    /(kg·m−3)
    Particle size
    range/mm
    Index3.9460248212600.16-0.5
    下载: 导出CSV

    表  2  镁水泥再生细骨料混凝土配合比

    Table  2.   Mix proportion of reinforced concrete with magnesium oxychloride cement (kg/m3)

    MgOWater reducerWater resistant agentFly ashStoneMgCl2WaterSaneRegenerated fine
    aggregate content/%
    388.9616.024.5868.641162147.81135.59531.2515
    388.9616.024.5868.641162147.81135.59437.530
    388.9616.024.5868.641162147.81135.59343.7545
    下载: 导出CSV

    表  3  镁水泥再生细骨料钢筋混凝土锈蚀状态与腐蚀电流密度icorr 的关系[19]

    Table  3.   Relationship between corrosion state and corrosion current density icorr of magnesium cement recycled fine aggregate reinforced concrete[19] (μA·cm−2)

    Corrosion current densityicorr<0.10.1≤icorr<0.50.5≤icorr<1.0icorr≥1
    Rust stateNot corrodedLow corrosionModerate corrosionSeverely corroded
    下载: 导出CSV

    表  4  不同掺量再生细骨料钢筋混凝土的腐蚀电流密度值icorr

    Table  4.   Corrosion current density values of reinforced concrete with different contents of recycled fine aggregate icorr (µA·cm−2)

    t/dRecycled fine aggregate content (mass ratio)
    15%30%45%
    00.02490.03670.0793
    900.01830.02210.1367
    1800.03110.12150.6946
    2700.09430.19511.5337
    3600.07440.25101.3725
    4500.07560.36082.3702
    5400.13360.39533.4219
    6300.29200.43592.7995
    7200.34310.49013.1545
    Note: t—Power-on time.
    下载: 导出CSV

    表  5  镁水泥再生细骨料钢筋混凝土相对动弹模量评价参数

    Table  5.   Evaluation parameters of relative dynamic elastic modulus of magnesium cement recycled fine aggregate reinforced concrete

    t/dRecycled fine aggregate content (mass ratio)
    15%30%45%
    0111
    1-901.19510.78210.8473
    2-1801.08940.69980.6728
    3-2701.18910.79610.7466
    4-3601.10390.73600.6660
    5-4501.13880.72210.6962
    6-5401.12950.75820.7198
    7-6301.05880.67030.5754
    8-7200.81690.44740.3270
    下载: 导出CSV

    表  6  中位秩法参数估计值

    Table  6.   Estimated values of median rank method parameters

    Evaluation parametersDosageEstimated parameter$ M({t_i}) = \dfrac{{n({t_i})}}{{n + 0.4}} $$ M({t_i}) = \dfrac{{n({t_i}) - 0.3}}{{n + 0.4}} $$ M({t_i}) = \dfrac{{n({t_i}) - 0.5}}{n} $$ M({t_i}) = \dfrac{{n({t_i}) - 0.375}}{{n + 0.25}} $
    Dynamic modulus
    15% m −57.7578 −46.7735 −58.9149 −57.5832
    η 857.3885 855.2996 945.9229 886.8786
    30% m −41.8435 −32.5912 −42.4287 −41.2342
    η 683.3401 683.5395 781.1129 716.2332
    45% m −18.4942 −19.9327 −14.0796 −20.9632
    η 547.1807 593.3212 644.7079 590.8916
    icorr 45% m −21.8989 −22.4775 −23.8497 −23.8537
    η 409.5679 393.7802 441.9369 392.1016
    Notes: n(ti)—Time corresponding to specimen loss; n—Sample size; M(ti)—Median rank.
    下载: 导出CSV

    表  7  极大似然法参数估计值

    Table  7.   Maximum likelihood method parameter estimates

    Evaluation parameterDosageEstimated parameterValue
    Dynamic modulus 15% m −57.3905
    η 813.3148
    30% m −40.7319
    η 639.5112
    45% m −18.5544
    η 535.4391
    icorr 45% m −20.8969
    η 366.3250
    下载: 导出CSV
  • [1] 胡坪伸, 张文, 赵媛, 等. 青海强盐渍粉砂土MICP的有效性探索[J]. 土木工程学报, 2022, 55(3):65-73. doi: 10.15951/j.tmgcxb.2022.03.002

    HU Pingshen, ZHANG Wen, ZHAO Yuan, et al. Study on the effectiveness of MICP for highly saline silty soil in Qinghai[J]. China Civil Engineering Journal,2022,55(3):65-73(in Chinese). doi: 10.15951/j.tmgcxb.2022.03.002
    [2] 姚旭阳, 张明军, 张宇, 等. 中国西北地区气候转型的新认识[J]. 干旱区地理, 2022, 45(3):671-683.

    YAO Xuyang, ZHANG Mingjun, ZHANG Yu, et al. New insights into climate transition in northwest China[J]. Arid Land Geography,2022,45(3):671-683(in Chinese).
    [3] 蔡祥鹏. 杂散电流对水泥基材料溶蚀影响的试验研究[D]. 大连: 大连理工大学, 2020.

    CAI Xiangpeng. Experimental study on the effect of stray current on the dissolution of cement-based materials[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [4] 朱瑶宏, 邹玉生, 耿健, 等. 杂散电流对氯离子在混凝土内部迁移过程的影响[J]. 武汉理工大学学报, 2012, 34(7):32-36. doi: 10.3963/j.issn.1671-4431.2012.07.007

    ZHU Yaohong, ZOU Yusheng, GENG Jian, et al. Influence of stray current on chloride ion migrates in concrete[J]. Journal of Wuhan University of Technology,2012,34(7):32-36(in Chinese). doi: 10.3963/j.issn.1671-4431.2012.07.007
    [5] 梁永宸, 石宵爽, 张聪, 等. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2):82-87.

    LIANG Yongchen, SHI Xiaoshuang, ZHANG Cong, et al. Comprehensive evaluation of the performance and environmental impact of fly ash geopolymer concrete[J]. Materials Reports,2023,37(2):82-87(in Chinese).
    [6] 郭寅川, 张冲, 申爱琴, 等. 湿热环境下水性环氧树脂改性桥梁混凝土耐久性及机理[J]. 长安大学学报(自然科学版), 2022, 42(2):32-42. doi: 10.19721/j.cnki.1671-8879.2022.02.004

    GUO Yinchuan, ZHANG Chong, SHEN Aiqin, et al. Durability and mechanism of waterborne epoxy resin modified bridge concrete in humid and hot environment[J]. Journal of Chang'an University (Natural Science Edition),2022,42(2):32-42(in Chinese). doi: 10.19721/j.cnki.1671-8879.2022.02.004
    [7] 刘盼, 肖学英, 常成功, 等. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(S2):1308-1314.

    LIU Pan, XIAO Xueying, CHANG Chenggong, et al. Study on the technology of preparing magnesium oxychloride cement material by calcination extraction of lithium by-product based on orthogonal experiment and response surface method[J]. Materials Review,2020,34(S2):1308-1314(in Chinese).
    [8] 付勇, 薛翠真, 何江红, 等. 混凝土再生微粉颗粒特征及其砂浆性能研究[J]. 材料导报, 2022, 36(10):98-103. doi: 10.11896/cldb.20110258

    FU Yong, XUE Cuizhen, HE Jianghong, et al. Study on the particle characteristics of recycled concrete powder and the performance of mortar[J]. Materials Review,2022,36(10):98-103(in Chinese). doi: 10.11896/cldb.20110258
    [9] 张佶, 屈文俊, 朱鹏. 迁移型阻锈剂对混凝土中钢筋的长期影响[J]. 建筑科学与工程学报, 2020, 37(6):117-126. doi: 10.19815/j.jace.2019.06025

    ZHANG Ji, QU Wenjun, ZHU Peng. Long-term effects of migrating corrosion inhibitors on steel bars in concrete[J]. Journal of Architecture and Civil Engineering,2020,37(6):117-126(in Chinese). doi: 10.19815/j.jace.2019.06025
    [10] 乔宏霞, 巩位, 关利娟, 等. 盐湖地区氯氧镁水泥混凝土中钢筋涂层防护试验[J]. 中南大学学报(自然科学版), 2018, 49(6):1533-1540.

    QIAO Hongxia, GONG Wei, GUAN Lijuan, et al. Experimental study on coating protection of steel bar in magnesium oxychloride cement concrete in salt lake[J]. Journal of Central South University (Science and Technology),2018,49(6):1533-1540(in Chinese).
    [11] 陈伟, 徐亦冬, 耿健. 碳化和应力作用对混凝土抗氯离子渗透性能的影响[J]. 硅酸盐通报, 2015, 34(5):1199-1204. doi: 10.16552/j.cnki.issn1001-1625.2015.05.003

    CHEN Wei, XU Yidong, GENG Jian. Effect of carbonization and stress on performance of concrete resistance to chloride ion penetration[J]. Bulletin of the Chinese Ceramic Society,2015,34(5):1199-1204(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2015.05.003
    [12] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1):69-77. doi: 10.11896/cldb.20100075

    ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete: A review[J]. Materials Reports,2022,36(1):69-77(in Chinese). doi: 10.11896/cldb.20100075
    [13] 徐志昆, 刘赪, 唐家银, 等. 基于混合相关竞争失效的多性能退化数据可靠性模型[J]. 重庆理工大学学报(自然科学), 2020, 34(1):253-262.

    XU Zhikun, LIU Zhen, TANG Jiayin, et al. Reliability modeling for multi-performance degraded data based on mixed correlated competition failure[J]. Journal of Chongqing University of Technology(Natural Science),2020,34(1):253-262(in Chinese).
    [14] 路承功, 魏智强, 乔宏霞, 等. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16):16042-16049. doi: 10.11896/cldb.20040142

    LU Chenggong, WEI Zhiqiang, QIAO Hongxia, et al. Research on damage deterioration and size effect of reinforced concrete in saline soil powered-on environment[J]. Materials Reports,2021,35(16):16042-16049(in Chinese). doi: 10.11896/cldb.20040142
    [15] 陈奇, 公伟, 苗吉军. 氯盐侵蚀下铜矿渣混凝土高温后内部钢筋锈蚀规律[J]. 复合材料学报, 2022, 39(6):2875-2884. doi: 10.13801/j.cnki.fhclxb.20210622.006

    CHEN Qi, GONG Wei, MIAO Jijun. Corrosion extents of steel bar in copper slag concrete after exposure to high temperature under chloride attack[J]. Acta Materiae Compositae Sinica,2022,39(6):2875-2884(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210622.006
    [16] 王春晖, 肖建庄. 再生细骨料混凝土材料性能与结构行为研究评述[J]. 土木工程学报, 2022, 55(5):37-53. doi: 10.15951/j.tmgcxb.2022.05.008

    WANG Chunhui, XIAO Jianzhuang. Material properties and structural behaviors of recycled fine aggregate concrete: An overview[J]. China Civil Engineering Journal,2022,55(5):37-53(in Chinese). doi: 10.15951/j.tmgcxb.2022.05.008
    [17] 段珍华, 侯少丹, 潘智生, 等. 再生细骨料混凝土流变性及其对强度和耐久性的影响[J]. 建筑结构学报, 2020, 41(S2):420-426. doi: 10.14006/j.jzjgxb.2020.S2.0047

    DUAN Zhenhua, HOU Shaodan, PAN Zhisheng, et al. Rheology of recycled fine aggregate concrete and its effect on strength and durability[J]. Journal of Building Structures,2020,41(S2):420-426(in Chinese). doi: 10.14006/j.jzjgxb.2020.S2.0047
    [18] 中华人民共和国商务部. 循环再生建筑材料流通技术规范: SB/T 10904—2012[S]. 北京: 中国标准出版社, 2013.

    Ministry of Commerce of the People's Republic of China. Technical specifications for circulation of recyclable building materials: SB/T10904—2012[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [19] 王鹏辉, 乔宏霞, 冯琼, 等. 考虑个体差异的氯氧镁水泥混凝土涂层钢筋寿命预测[J]. 浙江大学学报(工学版), 2019, 53(12):2309-2316. doi: 10.3785/j.issn.1008-973X.2019.12.007

    WANG Penghui, QIAO Hongxia, FENG Qiong, et al. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete[J]. Journal of Zhejiang University (Engineering Science),2019,53(12):2309-2316(in Chinese). doi: 10.3785/j.issn.1008-973X.2019.12.007
    [20] 周云, 胡翔, 陈太平, 等. 混凝土框架子结构角柱快速移除数值分析[J]. 湖南大学学报(自然科学版), 2019, 46(7):19-26. doi: 10.16339/j.cnki.hdxbzkb.2019.07.003

    ZHOU Yun, HU Xiang, CHEN Taiping, et al. Numerical analysis on corner column sudden removal of RC frame substructure[J]. Journal of Hunan University (Natural Sciencs),2019,46(7):19-26(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2019.07.003
    [21] QIN Y, GUAN K, KOU J, et al. Durability evaluation and life prediction of fiber concrete with fly ash based on entropy weight method and grey theory[J]. Construction and Building Materials,2022,327:126918.
    [22] 徐小倩. 基于分子动力学理论钢筋钝化膜力学性能及界面特性研究[D]. 青岛: 青岛理工大学, 2019.

    XU Xiaoqian. Research on mechanical properties and interface properties of steel passive film based on molecular dynamics theory[D]. Qingdao: Qingdao University of Technology, 2019(in Chinese).
    [23] JIANG J, JI H N, CHEN P Y, et al. The influence of electrolyte concentration and solvent on operational voltage of Li/CFx primary batteries elucidated by Nernst Equation[J]. Journal of Power Sources,2022,527:231193.
    [24] 陈克凡, 乔宏霞, 王鹏辉, 等. 氯氧镁水泥钢筋混凝土通电锈蚀的断裂性能分析[J]. 建筑材料学报, 2020, 23(3):557-562.

    CHEN Kefan, QIAO Hongxia, WANG Penghui, et al. Fracture behavior analysis of magnesium oxychloride cement reinforced concrete under electric corrosion[J]. Journal of Building Materials,2020,23(3):557-562(in Chinese).
    [25] 王鹏辉, 乔宏霞, 冯琼, 等. 氯氧镁水泥混凝土中涂层钢筋的耐久性退化研究[J]. 建筑材料学报, 2020, 23(3):563-571.

    WANG Penghui, QIAO Hongxia, FENG Qiong, et al. Study on durability degradation of coated steel bar in magnesium oxychloride cement concrete[J]. Journal of Building Materials,2020,23(3):563-571(in Chinese).
    [26] 董玉文, 余鑫, 秦瑶, 等. 冻融与锈蚀作用对钢筋混凝土黏结性能的影响[J]. 重庆交通大学学报(自然科学版), 2021, 40(5):81-86.

    DONG Yuwen, YU Xin, QIN Yao, et al. Effect of freeze-thaw cycles and corrosion on bond behavior of reinforced concrete[J]. Journal of Chongqing Jiaotong University (Natural Science),2021,40(5):81-86(in Chinese).
    [27] GONG W, YU H F, MA H Y, et al. Brine-freeze-thaw durability and crack density model of concrete in salt lake region[J]. Journal of Wuhan University of Technology (Materials Science),2020,35(3):561-570. doi: 10.1007/s11595-020-2293-6
    [28] CAO F, QIAO H X, LI Y K, et al. Effect of highland barley straw ash admixture on properties and microstructure of concrete[J]. Construction and Building Materials,2022,315:125802. doi: 10.1016/j.conbuildmat.2021.125802
    [29] ZHANG H, HUANG Y J, YANG Z J, et al. 3D meso-scale investigation of ultra high performance fibre reinforced concrete (UHPFRC) using cohesive crack model and Weibull random field[J]. Construction and Building Materials,2022,327:127013. doi: 10.1016/j.conbuildmat.2022.127013
    [30] JIN J S, MA Y F, WEN H N, et al. Mechanical properties and Weibull reliability analysis of tungsten-particle reinforced Zr-based bulk metallic glass composites[J]. Materials Letters,2022,39(6):2257-2278.
    [31] COVENEY A. Romance linguistics: Theoretical perspectives by Armin Schwegler, Bernard Tranel, Myriam Uribe-Etxebarria[J]. Modern Language Review,2022,96(4):1174-1175.
    [32] HWANG H J, JANG J W, JO H, et al. Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach[J]. Journal of Computational Physics,2020,419:109665. doi: 10.1016/j.jcp.2020.109665
    [33] PAUTROT J L. The night and the silence of images: Thinking the image with PASCAL quignard by Bernard Vouilloux (review)[J]. The French Review,2021,86(2):398-399.
    [34] 曹锋, 乔宏霞, 李双营, 等. 青稞秸秆灰–氯氧镁水泥复合材料盐冻耦合损伤强度特性及孔隙特征[J]. 复合材料学报, 2023, 40(5): 2972-2987.

    CAO Feng, QIAO Hongxia, LI Shuangying, et al. Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2972-2987(in Chinese).
    [35] 才琪, 冯若强. 基于改进双向渐进结构优化法的桁架结构拓扑优化[J]. 建筑结构学报, 2022, 43(4):68-76.

    CAI Qi, FENG Ruoqiang. Topology optimization of truss structure based on improved bi-directional evolutionary structural optimization method[J]. Journal of Building Structures,2022,43(4):68-76(in Chinese).
    [36] 朱帅润, 吴礼舟. 加速型改进迭代法在非饱和土渗流中的应用研究[J]. 岩土力学, 2022, 43(3):697-707. doi: 10.16285/j.rsm.2021.0760

    ZHU Shuairun, WU Lizhou. Application research on accelerated modified iteration method in unsaturated flow[J]. Rock and Soil Mechanics,2022,43(3):697-707(in Chinese). doi: 10.16285/j.rsm.2021.0760
    [37] 杨家树, 陈建兵. 动力可靠度约束下基于概率测度变换-全局收敛移动渐近线法的结构优化设计[J]. 振动工程学报, 2022, 35(1):72-81. doi: 10.16385/j.cnki.issn.1004-4523.2022.01.008

    YANG Jiashu, CHEN Jianbing. Structural optimization under dynamic reliability constraints by synthesizing change of probability measure and globally convergent method of moving asymptotes[J]. Journal of Vibration Engineering,2022,35(1):72-81(in Chinese). doi: 10.16385/j.cnki.issn.1004-4523.2022.01.008
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  568
  • HTML全文浏览量:  281
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2022-11-09
  • 录用日期:  2022-11-19
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回