留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴、氮共掺杂生物炭活化过一硫酸盐降解双酚 A

鄢经缘 杨阳 王俊辉 叶凡 潘翠 覃岳隆 刘坤 张寒冰

鄢经缘, 杨阳, 王俊辉, 等. 钴、氮共掺杂生物炭活化过一硫酸盐降解双酚 A[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 鄢经缘, 杨阳, 王俊辉, 等. 钴、氮共掺杂生物炭活化过一硫酸盐降解双酚 A[J]. 复合材料学报, 2024, 42(0): 1-12.
YAN Jingyuan, YANG Yang, WANG Junhui, et al. Cobalt and nitrogen co-doped biochar enhanced peroxymonosulfate activation for Bisphenol A degradation[J]. Acta Materiae Compositae Sinica.
Citation: YAN Jingyuan, YANG Yang, WANG Junhui, et al. Cobalt and nitrogen co-doped biochar enhanced peroxymonosulfate activation for Bisphenol A degradation[J]. Acta Materiae Compositae Sinica.

钴、氮共掺杂生物炭活化过一硫酸盐降解双酚 A

基金项目: 国家自然科学基金 (No. 52263029); 广西重点研发计划项目 (No. 2023AB24041) 广西自然科学基金 (No. 2020GXNSFAA297036); 广西石化资源加工及过程强化技术重点实验室主任基金 (No. 2022Z005); 广西大学大学生创新创业训练项目
详细信息
    通讯作者:

    张寒冰,博士,副教授,硕士生导师,研究方向为: 环保材料制备及水污染修复 E-mail: 24346260@qq.com

  • 中图分类号: X703; TB333

Cobalt and nitrogen co-doped biochar enhanced peroxymonosulfate activation for Bisphenol A degradation

Funds: National Natural Science Foundation of China (No. 52263029); Guangxi Key Technologies R&D Program (No. 2023AB24041); National Natural Science Foundation of Guangxi (No. 2020GXNSFAA297036); Petrochemical Resources Processing and Process Reinforcement Technology Key Laboratory Project of Guangxi (No. 2022Z005); Guangxi University Student Innovation and Entrepreneurship Training Program
  • 摘要: 内分泌干扰物双酚A(Bisphenol A, BPA)在环境中对生态安全构成了潜在的威胁,因此需要寻找一种合适的处理方法。基于Co、N共掺杂材料具有反应活性高、化学稳定性高、去除污染物效率高等优势,本研究以杉木屑生物炭为原料进行Co、N共掺杂制备了具有高效PMS活化能力的钴、氮共掺杂生物炭(CoNC)复合材料,用以活化过一硫酸盐(Peroxymonosulphate, PMS)去除水体中BPA。相比于C、NC以及CoC,CoNC的表面粗糙程度增加,缺陷点位增多,电荷转移阻力减小,且结构比表面积与孔隙结构得到改善,比表面积达到70.31 m2 /g;对不同Co、N掺杂比、溶液初始pH、共存阴离子对BPA去除效率的影响进行了研究。结果表明,相比于原始材料,PMS/CoNC体系表现出优异的BPA去除能力。在溶液初始pH为7,CoNC投加量为0.2 g/L,PMS浓度为0.3 mmol/L,模拟水体中BPA浓度为20 mg/L的条件下,BPA去除率在30分钟达到95%。捕获实验、电化学表征表明,在PMS/CoNC体系中,BPA主要通过直接电荷转移的非自由基途径得到降解。本研究为生物炭催化性能的优化以及BPA在高级氧化技术中的降解研究提供借鉴。

     

  • 图  1  C(a)、NC(b)、CoC(c)和CoNC(d,e)的SEM图谱,以及CoNC的EDS能谱和元素分布图(f)

    Figure  1.  SEM images of C(a)、NC(b)、CoC(c) and CoNC(d,e), EDS and element distribution diagram of CoNC(f)

    图  2  C、NC和CoNC的吸附脱附曲线(a)孔径分布图(b)

    Figure  2.  N2 adsorption-desorption isotherms(a) Pore size distribution(b) of C, NC and CoNC

    图  3  C、NC、CoNC和使用后的CoNC的XRD谱图

    Figure  3.  XRD patterns of C、NC、CoNC and used CoNC

    图  4  C、NC、CoC、CoNC和使用后CoNC的拉曼光谱

    Figure  4.  Raman spectra of C、NC、CoC、CoNC and used CoNC

    图  5  C、NC和CoNC的XPS全谱(a)材料的XPS高分辨窄谱(b)C1 s、(c)N1和(d)Co2 p窄谱

    Figure  5.  XPS survey scan spectra of C、NC and CoNC(a); XPS high-resolution spectra of C1 s(b), N1 s(c) and (d)Co2 p(d)

    图  6  不同材料吸附(a)和活化PMS(b)降解BPA的性能

    Figure  6.  Adsorption(a) and degradation(b) via PMS activation by different materials for BPA removal

    图  7  不同体系中Co离子浸出量

    Figure  7.  Leaching of cobolt ions in different systems

    图  8  不同Co掺杂量(a)与不同N配比(b)的CoNC活化PMS对BPA降解的影响

    Figure  8.  Effect of different Co doping (a) and different N doping ratios (b) on BPA degradation by PMS/CoNC system

    图  9  不同溶液初始pH对CoNC降解BPA的影响

    Figure  9.  Effect of initial solution pH on degradation of BPA

    图  10  不同类型阴离子对CoNC降解BPA的影响

    Figure  10.  Effect of different types of anions on degradation of BPA

    图  11  活性物种捕获实验(a)、PMS/CoNC(b)以及加入BPA后的EPR波谱(c)

    Figure  11.  Active species capturing experiments(a), EPR spectra(b) in PMS/CoNC system and EPR spectrum after adding BPA(c)

    图  12  不同材料的EIS曲线图(a)、不同体系的LSV曲线图(b)i-t曲线(c)以及OCV曲线(d)

    Figure  12.  The EIS plots of different materials(a); LSV curves (b); i-t curves (c) and OCV curves of different systems(d)

    表  1  使用试剂名称以及试剂来源

    Table  1.   Name of used reagent and source of reagent

    SamplePurityProducer
    Bisphenol AARShanghai, China
    Co(NO3)2•5H2OARGuangdong, China
    Zn(NO3)2•6H2OARGuangdong, China
    DicyandiamideARGuangdong, China
    PeroxymonosulphateARGuangdong, China
    MethanolARShanghai, China
    Shanghai, China
    Tert-ButanolAR
    1,4-BenzoquinoneARShanghai, China
    Furfuryl alcoholARShanghai, China
    下载: 导出CSV

    表  2  C、NC和CoNC的BET分析结果

    Table  2.   BET analysis of C、NC and CoNC

    Sample Surface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Average pore
    diameter /nm
    C 29.25 0.02 6.61
    NC 42.67 0.19 13.11
    CoNC 73.01 0.23 9.49
    下载: 导出CSV
  • [1] CZARNY-KRZYMINSKA K, KRAWCZYK B, SZCZUKOCKI D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment[J]. Chemosphere, 2023, 315: 137763. doi: 10.1016/j.chemosphere.2023.137763
    [2] WANG Y, GAI T, ZHANG L, et al. Neurotoxicity of bisphenol A exposure on Caenorhabditis elegans induced by disturbance of neurotransmitter and oxidative damage[J]. Ecotoxicology and Environmental Safety, 2023, 252: 114617. doi: 10.1016/j.ecoenv.2023.114617
    [3] 郭彦秀, 李旭光, 侯太磊, 等. 生物炭基材料活化过一硫酸盐降解有机污染物的研究进展[J]. 环境科学研究, 2021, 34(4): 936-944.

    GUO Yanxiu, LI Xuguang, HOU Tailei, et al. Review of biochar-based materials for catalyzing peroxymonosulfate degradation of organic pollutants[J]. Research of Environmental Sciences, 2021, 34(4): 936-944(in Chinese).
    [4] ZHAO Q, MAO Q, ZHOU Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-38. doi: 10.1016/j.chemosphere.2017.09.042
    [5] DONG J, XU W, LIU S, et al. Recent advances in applications of nonradical oxidation in water treatment: Mechanisms, catalysts and environmental effects[J]. Journal of Cleaner Production, 2021, 321: 128781. doi: 10.1016/j.jclepro.2021.128781
    [6] WANG J, ZHAO Y, LI C, et al. Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons[J]. Science of The Total Environment, 2022, 836: 155670. doi: 10.1016/j.scitotenv.2022.155670
    [7] YAN S W, LAN L, HAO D, et al. Activation of peroxymonosulfate by food waste digestate derived biochar for sulfamethoxazole degradation: Performance and mechanism[J]. Separation and Purification Technology, 2023, 327: 124935. doi: 10.1016/j.seppur.2023.124935
    [8] LAI L, ZHOU P, ZHOU H, et al. Heterogeneous Fe(III)/Fe(II) circulation in FeVO4 by coupling with dithionite towards long-lasting peroxymonosulfate activation: Pivotal role of vanadium as electron shuttles[J]. Applied Catalysis B: Environmental, 2021, 297: 120470. doi: 10.1016/j.apcatb.2021.120470
    [9] LU J, LU Q, DI L, et al. Iron-based biochar as efficient persulfate activation catalyst for emerging pollutants removal: A review[J]. Chinese Chemical Letters, 2023, 34: 108357. doi: 10.1016/j.cclet.2023.108357
    [10] LUO J, BO S, QIN Y, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 395: 125063. doi: 10.1016/j.cej.2020.125063
    [11] QIN Y, LI X, WANG L, et al. Valuable cobalt/biochar with enriched surface oxygen containing groups prepared from bio-waste shrimp shell for efficient peroxymonosulfate activation[J]. Separation and Purification Technology, 2022, 281: 119901. doi: 10.1016/j.seppur.2021.119901
    [12] LIU Y, CHEN Y, LI Y, et al. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review[J]. Journal of Hazardous Materials, 2022, 431: 128584. doi: 10.1016/j.jhazmat.2022.128584
    [13] 娄亚敏, 王树莲, 裴晨浩, 等. 掺氮生物炭活化过硫酸盐降解双酚A的研究[J]. 环境科学与技术, 2023, 46(10): 78-90.

    LOU Yaming, WANG Shulian, PEI Chenhao, et al. The research of Bisphenol A degradation by persulfate activated with N-doped biochar[J]. Environmental Science & Technology, 2023, 46(10): 78-90.
    [14] GAO W, LIN Z, CHEN H, et al. A review on N-doped biochar for enhanced water treatment and emerging applications[J]. Fuel Processing Technology, 2022, 237: 107468. doi: 10.1016/j.fuproc.2022.107468
    [15] CHOONG Z-Y, LIN K-Y A, LISAK G, et al. Multi-heteroatom-doped carbocatalyst as peroxymonosulfate and peroxydisulfate activator for water purification: A critical review[J]. Journal of Hazardous Materials, 2022, 426: 128077. doi: 10.1016/j.jhazmat.2021.128077
    [16] 王俊辉, 陆彩妹, 李泽华, 等. 磁性氮掺杂杉木屑生物炭活化过一硫酸盐降解左氧氟沙星[J]. 复合材料学报, 2023, 40(11): 6383-6394.

    WANG Junhui, LU Caimei, LI Zehua, et al. Preparation of magnetic nitrogen-doped fir sawdust biochar to activate peroxymonosulfate for Levofloxacin degradation. 2023, 40(11): 6383-6394(in Chinese).
    [17] CAO T-T, XU T-F, DENG F-X, et al. Reactivity and mechanism between OH and phenolic pollutants: Efficiency and DFT calculation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407: 113025. doi: 10.1016/j.jphotochem.2020.113025
    [18] YUE Y, JIA Y, BAO G Z, et al. Efficient sulfamethoxazole degradation via boosting nonradical-based peroxymonosulfate activation by biochar supported Co-Ni bimetal oxide[J]. Journal of Environmental Chemical Engineering, 2023, 115: 110903.
    [19] Lu An, Jia Wang, Jun Wang, et al. Efficient peroxymonosulfate activation by iron-cobalt bimetallic biochar for rapid removal of antibiotic resistant bacteria, antibiotic resistance genes, and ampicillin: The coexisting of free-radical and non-radical pathways[J]. Separation and Purification Technology, 2024, 342: 127025. doi: 10.1016/j.seppur.2024.127025
    [20] Nguyen Trung Dung, Vu Dinh Thao, Nguyen Phuong Thao, et al. Turning peroxymonosulfate activation into singlet oxygen-dominated pathway for ofloxacin degradation by co-doping N and S into durian peel-derived biochar[J]. Chemical Engineering Journal, 2024, 483: 149099. doi: 10.1016/j.cej.2024.149099
    [21] Jiabao Sun, Dajie Zhang, Dongsheng Xia, et al. Orange peels biochar doping with Fe-Cu bimetal for PMS activation on the degradation of bisphenol A: A synergy of SO4, OH, 1O2 and electron transfer[J]. Chemical Engineering Journal, 2023, 471: 144832. doi: 10.1016/j.cej.2023.144832
    [22] Xiaoqian Peng, Yingyi Li, Kairuo Zhu, et al. CoSx produced in Porphyra biochar by exogenous Co and endogenous S doping to enhance peroxymonosulfate activation for carbamazepine degradation[J]. Journal of Environmental Chemical Engineering, 2023, 11: 110988. doi: 10.1016/j.jece.2023.110988
    [23] 张家晶, 郑永杰, 荆涛, 等. 3D花状MoS2/O-g-C3N4 Z型异质结增强光催化剂降解双酚A[J]. 复合材料学报, 2022, 39(12): 5778-5791.

    ZHANG Jiajing, ZHENG Yongjie, JING Tao, et al. 3D flower-shaped MoS2/O-g-C3N4 Z-type heterojunction enhances the photocatalyst degradation of bisphenol A[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5778-5791(in Chinese).
    [24] YU J, ZHU Z, ZHANG H, et al. Fe–nitrogen–doped carbon with dual active sites for efficient degradation of aromatic pollutants via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 427: 130898. doi: 10.1016/j.cej.2021.130898
    [25] MEI Y, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. doi: 10.1016/j.biortech.2021.124732
    [26] DING H, ZHANG Z, LI Y, et al. Fabrication of novel Fe/Mn/N co-doped biochar and its enhanced adsorption for bisphenol a based on pi-pi electron donor-acceptor interaction[J]. Bioresource Technology, 2022, 364: 128018. doi: 10.1016/j.biortech.2022.128018
    [27] QU J, ZHANG X, LIU S, et al. One-step preparation of Fe/N co-doped porous biochar for chromium(VI) and bisphenol a decontamination in water: Insights to co-activation and adsorption mechanisms[J]. Bioresource Technology, 2022, 361: 127718. doi: 10.1016/j.biortech.2022.127718
    [28] HO S H, CHEN Y D, LI R, et al. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation[J]. Water Research, 2019, 159: 77-86. doi: 10.1016/j.watres.2019.05.008
    [29] 姚淑华, 陈艺文, 董毅, 等. 生物炭负载纳米零价铁活化过硫酸盐去除废水中环丙沙星[J]. 化工环保, 2023, 43(6): 773-779.

    YAO Shuhua, CHEN Yiwen, DONG Yi, et al. Removal of cyprofloxacin from wastewater using persulfate activated by biochal supported nano zero-valent iron[J]. Environmental Protection of Chemical Industry, 2023, 43(6): 773-779(in Chinese).
    [30] WANG Linxing, LIU Kun, FU Tian, et al. Multiple effects of nano-carbon coating on mediating Schottky barrier height, inhibiting Ti3C2 oxidation and elevating photocatalytic activity in BiOBr/carbon-coated Ti3C2/exfoliated bentonite[J]. Chemical Engineering Journal, 2024, 480: 148252. doi: 10.1016/j.cej.2023.148252
    [31] YE S, ZENG G, TAN X, et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer[J]. Applied Catalysis B: Environmental, 2020, 269: 118850. doi: 10.1016/j.apcatb.2020.118850
    [32] HUANG J, WANG M, LUO S, et al. In situ preparation of highly graphitized N-doped biochar geopolymer composites for efficient catalytic degradation of tetracycline in water by H2O2[J]. Environmental Research, 2023, 219: 115166. doi: 10.1016/j.envres.2022.115166
    [33] HE Y-L, HE C-S, LAI L-D, et al. Activating peroxymonosulfate by N and O co-doped porous carbon for efficient BPA degradation: A re-visit to the removal mechanism and the effects of surface unpaired electrons[J]. Applied Catalysis B: Environmental, 2022, 314: 121390. doi: 10.1016/j.apcatb.2022.121390
    [34] 赵洁, 贺宇宏, 张晓明, 等. 酸碱改性对生物炭吸附Cr(Ⅵ)性能的影响[J]. 环境工程, 2020, 38(6): 28-34.

    ZHAO Jie, HE Yuhong, ZHANG Xiaoming, et al. Effect on Cr(Ⅵ) adsorption performance of acid- base modified biochar[J]. Environmental engineering, 2020, 38(6): 28-34(in Chinese).
    [35] PENG L, SHANG Y, GAO B, et al. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride[J]. Applied Catalysis B: Environmental, 2021, 282: 119484. doi: 10.1016/j.apcatb.2020.119484
    [36] LUO R, WANG C, YAO Y, et al. Insights into the relationship of reactive oxygen species and anions in persulfate-based advanced oxidation processes for saline organic wastewater treatment[J]. Environmental Science: Water Researchearch & Technology, 2022, 8(3): 465-83.
    [37] CHEN X, QIAN S, MA Y, et al. Efficient degradation of sulfamethoxazole in various waters with peroxymonosulfate activated by magnetic-modified sludge biochar: Surface-bound radical mechanism[J]. Environmental Pollution, 2023, 319: 121010. doi: 10.1016/j.envpol.2023.121010
    [38] SUN F, CHEN T, CHU Z, et al. The synergistic effect of calcite and Cu2+ on the degradation of sulfadiazine via PDS activation: A role of Cu(Ш)[J]. Water Research, 2022, 219: 118529. doi: 10.1016/j.watres.2022.118529
    [39] LU C, SONG R, WANG J, et al. New insights into cupric ion-mediated ligand-to-metal charge transfer between TiO2 with peroxydisulfate under visible light for bolstering benzophenone-3 degradation[J]. Separation and Purification Technology, 2023, 310: 123168. doi: 10.1016/j.seppur.2023.123168
    [40] XU L, CAO S, BAI X, et al. Efficient Fe(III) reduction and persulfate activation induced by ligand-to-metal charge transfer under visible light enhances degradation of organics[J]. Chemical Engineering Journal, 2022, 446: 137052. doi: 10.1016/j.cej.2022.137052
    [41] XIONG S, DENG Y, GONG D, et al. Magnetically modified in-situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway[J]. Chemosphere, 2021, 284: 131404. doi: 10.1016/j.chemosphere.2021.131404
    [42] DOU J, CHENG J, LU Z, et al. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process[J]. Applied Catalysis B: Environmental, 2022, 301: 120832. doi: 10.1016/j.apcatb.2021.120832
    [43] PENG X, WU J, ZHAO Z, et al. Activation of peroxymonosulfate by single atom Co N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: Electron-transfer mechanism[J]. Chemical Engineering Journal, 2022, 429: 132245. doi: 10.1016/j.cej.2021.132245
    [44] WU Liying, SUN Zhiqiang, ZHEN Yufei, et al. OxygenVacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O2) in the Fe–Co LDH/Peroxymonosulfate System[J]. Environmental Science & Technology, 2021, 55(22): 15400-15411.
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-06-14

目录

    /

    返回文章
    返回