留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多工艺参数对预浸料摩擦系数的影响及机器学习预示方法

宋锋 张佳晨 吕柄熠 王时玉 校金友 文立华 侯晓

宋锋, 张佳晨, 吕柄熠, 等. 多工艺参数对预浸料摩擦系数的影响及机器学习预示方法[J]. 复合材料学报, 2024, 41(11): 5801-5811. doi: 10.13801/j.cnki.fhclxb.20240304.001
引用本文: 宋锋, 张佳晨, 吕柄熠, 等. 多工艺参数对预浸料摩擦系数的影响及机器学习预示方法[J]. 复合材料学报, 2024, 41(11): 5801-5811. doi: 10.13801/j.cnki.fhclxb.20240304.001
SONG Feng, ZHANG Jiachen, LYU Bingyi, et al. Influence of multiple process parameters on the friction coefficient of prepregs and machine learning prediction method[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5801-5811. doi: 10.13801/j.cnki.fhclxb.20240304.001
Citation: SONG Feng, ZHANG Jiachen, LYU Bingyi, et al. Influence of multiple process parameters on the friction coefficient of prepregs and machine learning prediction method[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5801-5811. doi: 10.13801/j.cnki.fhclxb.20240304.001

多工艺参数对预浸料摩擦系数的影响及机器学习预示方法

doi: 10.13801/j.cnki.fhclxb.20240304.001
基金项目: 国家自然科学基金重点项目(52090051);陕西省重点研发计划(2021ZDLGY11-02);国家自然科学基金委员会-中国航天科技集团有限公司航天先进制造技术研究联合基金(U1837601)
详细信息
    通讯作者:

    校金友,博士,教授,博士生导师,研究方向为计算结构力学、复合材料结构设计 E-mail: xiaojy@nwpu.edu.cn

    文立华,博士,教授,博士生导师,研究方向为飞行器结构设计 E-mail: Lhwen@nwpu.edu.cn

  • 中图分类号: TB332

Influence of multiple process parameters on the friction coefficient of prepregs and machine learning prediction method

Funds: Key Project of National Natural Science Foundation of China (52090051); Key Research and Development Plan of Shaanxi Province (2021ZDLGY11-02); The Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China and China Aerospace Science and Technology Corporation (U1837601)
  • 摘要: 在复合材料成型过程中,预浸料/预浸料和预浸料/模具之间的摩擦滑移行为会导致褶皱、孔隙等缺陷,严重影响构件力学性能。然而复杂构件成型过程中预浸料层间摩擦行为影响因素众多,现有理论模型涵盖的工艺参数有限,导致成型工艺仿真精度低,无法满足高质量成型要求。本文设计了面向多工艺参数的碳纤维预浸料摩擦试验方法,研究了速率、法向力、黏度、表面粗糙度、接触材料、纤维方向等工艺参数对摩擦系数的影响规律,以典型纤维方向$ {{\text{0}}^{\text{o}}}{\text{/4}}{{\text{5}}^{\text{o}}}{\text{/9}}{{\text{0}}^{\text{o}}} $为例,揭示了不同纤维方向的界面摩擦机制。为实现多工艺参数下摩擦系数的快速、准确预示,建立了基于支持向量回归(SVR)的预浸料摩擦系数预示模型。开展相对纤维方向为$ {\text{[3}}{{\text{0}}^{\text{o}}}{\text{/}}{{\text{0}}^{\text{o}}}{\text{]}} $和$ {\text{[6}}{{\text{0}}^{\text{o}}}{\text{/}}{{\text{0}}^{\text{o}}}{\text{]}} $的预浸料/预浸料界面摩擦系数的试验和预测,两者偏差小于9%。

     

  • 图  1  层间摩擦试验方法

    Figure  1.  Inter-ply friction test method

    图  2  试验装置及仪器

    Figure  2.  Test setup and apparatus

    图  3  不同接触材料

    Figure  3.  Different contact materials

    图  4  摩擦试验力-位移关系曲线示意图

    Figure  4.  Schematic curve of force-displacement relation for the friction test

    图  5  不同法向力和速率下预浸料/Ra12.5金属界面的摩擦系数

    Figure  5.  Friction coefficients at the prepreg/Ra12.5 metal interface under different normal forces and rates

    图  6  不同黏度下Ra12.5金属、复合材料板和预浸料之间的摩擦系数

    Figure  6.  Friction coefficients at the Ra12.5 metal, laminate and prepreg interface under different viscosity

    图  7  不同表面粗糙度下预浸料/金属界面的摩擦系数

    Figure  7.  Friction coefficients at the prepreg/metal interface under different surface roughness

    图  8  不同接触材料对应的摩擦系数

    Figure  8.  Friction coefficients corresponding to different contact materials

    图  9  不同纤维方向对应的摩擦系数

    Figure  9.  Friction coefficients corresponding to different fiber orientations

    图  10  不同纤维方向界面的剖面图和立体示意图

    Figure  10.  Cross sectional view and stereogram of the sliding interfaces for different fiber orientations

    图  11  支持向量回归(SVR)超平面

    SV—Support vector

    Figure  11.  Support vector regression (SVR) hyperplane

    图  12  测试集中不同样本静摩擦系数的试验值与预测值

    BPNN—Backpropagation neural network; RF—Random forest

    Figure  12.  Test and predicted values of static friction coefficients for different samples in the test set

    图  13  测试集中不同样本动摩擦系数的试验值与预测值

    Figure  13.  Test and predicted values of kinetic friction coefficients for different samples in the test set

    图  14  预浸料/预浸料界面的预示值与试验值对比

    Figure  14.  Comparison between predicted and test values of prepreg ply-ply interface

    图  15  速率和法向力对预浸料/Ra12.5金属界面摩擦系数的影响

    Figure  15.  Influence of velocity and normal force on friction coefficient of the prepreg/Ra12.5 metal interface

    表  1  摩擦试验参数

    Table  1.   Friction test parameters

    Parameter Baseline value Additional values
    investigated
    Surface roughness Ra12.5 Ra12.5, Ra25
    Contact material Ra12.5 Metal, Sand, Laminate, Gypsum, Prepreg, Rubber
    Fiber orientation/(°) 0 0, 45, 90
    Sliding velocity/
    (mm·min−1)
    100 30, 100, 200
    Normal force/N 10 2, 10, 20
    Viscosity/
    ($ {\text{MPa}} \cdot {\text{s}} $)
    591.8 591.8, 895.7
    下载: 导出CSV

    表  2  测试集中不同静摩擦系数预示模型的决定系数${R^2}$和预测误差的方差${S^2}$

    Table  2.   Coefficient of determination ${R^2}$ and forecast error variance ${S^2}$ for different static friction coefficient prediction models in the test set

    Model${R^2}$ value${S^2}$ value
    BPNN0.6420.0091
    RF0.8840.0029
    SVR0.9300.0016
    下载: 导出CSV

    表  3  测试集中不同动摩擦系数预示模型的决定系数${R^2}$和预测误差的方差${S^2}$

    Table  3.   Coefficient of determination ${R^2}$ and forecast error variance ${S^2}$ for different kinetic friction coefficient prediction models in the test set

    Model ${R^2}$ value ${S^2}$ value
    BPNN 0.682 0.0062
    RF 0.908 0.0018
    SVR 0.938 0.0011
    下载: 导出CSV
  • [1] TEN THIJE R H W, AKKERMAN R, UBBINK M, et al. A lubrication approach to friction in thermoplastic composites forming processes[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(8): 950-960. doi: 10.1016/j.compositesa.2011.03.023
    [2] 李哲夫. 航空复合材料热模压预成型缺陷形成机理与仿真预测研究[D]. 上海: 东华大学, 2023.

    LI Zhefu. Study on the formation mechanism and simulation prediction of defects in the process of hot-press forming for aerospace composites[D]. Shanghai: Donghua University, 2023(in Chinese).
    [3] 矫维成, 王荣国, 刘文博, 等. 缠绕纤维与芯模表面间滑线系数的测量表征[J]. 复合材料学报, 2012(3): 191-196.

    JIAO Weicheng, WANG Rongguo, LIU Wenbo, et al. Measurement of slippage coefficient between fiber and mandrel surface for non-geodesic filament winding[J]. Acta Materiae Compositae Sinica, 2012(3): 191-196(in Chinese).
    [4] MARTIN C J, SEFERIS J C, WILHELM M A. Frictional resistance of thermoset prepregs and its influence on honeycomb composite processing[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(10): 943-951. doi: 10.1016/1359-835X(96)00037-1
    [5] ÅKERMO M, LARBERG Y R, SJÖLANDER J, et al. Influence of interply friction on the forming of stacked UD prepreg[C]. The International Conference on Composite Materials. Palais Des Congrès, Montréal: Concordia University, 2013: 919-928.
    [6] BENDEMRA H, COMPSTON P, CROTHERS P J. Optimisation study of tapered scarf and stepped-lap joints in composite repair patches[J]. Composite Structures, 2015, 130: 1-8. doi: 10.1016/j.compstruct.2015.04.016
    [7] LIU S, SINKE J, DRANSFELD C. An inter-ply friction model for thermoset based fibre metal laminate in a hot-pressing process[J]. Composites Part B: Engineering, 2021, 227: 109400. doi: 10.1016/j.compositesb.2021.109400
    [8] DUTTA A, HAGNELL M K, ÅKERMO M. Interply friction between unidirectional carbon/epoxy prepreg plies: Influence of fibre orientation[J]. Composites Part A: Applied Science and Manufacturing, 2023, 166: 107375. doi: 10.1016/j.compositesa.2022.107375
    [9] LARBERG Y R, ÅKERMO M. On the interply friction of different generations of carbon/epoxy prepreg systems[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1067-1074. doi: 10.1016/j.compositesa.2011.04.010
    [10] HALLANDER P, ÅKERMO M, MATTEI C, et al. An experimental study of mechanisms behind wrinkle development during forming of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2013, 50: 54-64. doi: 10.1016/j.compositesa.2013.03.013
    [11] SOSE A T, JOSHI S Y, KUNCHE L K, et al. A review of recent advances and applications of machine learning in tribology[J]. Physical Chemistry Chemical Physics, 2023, 25(6): 4408-4443. doi: 10.1039/D2CP03692D
    [12] PATURI U M R, PALAKURTHY S T, REDDY N S. The role of machine learning in tribology: A systematic review[J]. Archives of Computational Methods in Engineering, 2023, 30: 1345-1397. doi: 10.1007/s11831-022-09841-5
    [13] BAŞ H, KARABACAK Y E. Triboinformatic modeling of the friction force and friction coefficient in a cam-follower contact using machine learning algorithms[J]. Tribology International, 2023, 181: 108336. doi: 10.1016/j.triboint.2023.108336
    [14] WU B, QIN D, HU J, et al. Experimental data mining research on factors influencing friction coefficient of wet clutch[J]. Journal of Tribology, 2021, 143(12): 121802. doi: 10.1115/1.4050140
    [15] WANG Q, WANG X, ZHANG X, et al. Tribological properties study and prediction of PTFE composites based on experiments and machine learning[J]. Tribology International, 2023, 188: 108815. doi: 10.1016/j.triboint.2023.108815
    [16] EGALA R, JAGADEESH G V, SETTI S G. Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites[J]. Friction, 2021, 9: 250-272. doi: 10.1007/s40544-019-0332-0
    [17] NIRMAL U. Prediction of friction coefficient of treated betelnut fibre reinforced polyester (T-BFRP) composite using artificial neural networks[J]. Tribology International, 2010, 43(8): 1417-1429. doi: 10.1016/j.triboint.2010.01.013
    [18] American Society for Testing and Materials. Standard test method for static and kinetic coefficients of friction of plastic film and sheeting: ASTM D1894[S]. West Conshohoken: American Society for Testing and Materials Standard International, 1998.
    [19] ZHANG W, ZHOU H, HUANG B, et al. Characterization of tool-ply friction behavior for treated jute/PLA biocomposite prepregs in thermoforming[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107875. doi: 10.1016/j.compositesa.2023.107875
    [20] RASHIDI A, MONTAZERIAN H, YESILCIMEN K, et al. Experimental characterization of the inter-ply shear behavior of dry and prepreg woven fabrics: Significance of mixed lubrication mode during thermoset composites processing[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105725. doi: 10.1016/j.compositesa.2019.105725
    [21] 薛建凯. 一种新型的群智能优化技术的研究与应用: 麻雀搜索算法[D]. 上海: 东华大学, 2021.

    XUE Jiankai. Research and application of a novel swarm intelligence optimization technique: Sparrow search algorithm[D]. Shanghai: Donghua University, 2021(in Chinese).
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  181
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-02-21
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回