留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超双疏表面的制备及应用进展

周学湫 汪希奎 覃冰黎 罗鸿 韦函 梅益

周学湫, 汪希奎, 覃冰黎, 等. 超双疏表面的制备及应用进展[J]. 复合材料学报, 2024, 41(11): 5876-5893. doi: 10.13801/j.cnki.fhclxb.20240508.001
引用本文: 周学湫, 汪希奎, 覃冰黎, 等. 超双疏表面的制备及应用进展[J]. 复合材料学报, 2024, 41(11): 5876-5893. doi: 10.13801/j.cnki.fhclxb.20240508.001
ZHOU Xueqiu, WANG Xikui, QIN Bingli, et al. Progress in the preparation and application of superamphiphobic surface[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5876-5893. doi: 10.13801/j.cnki.fhclxb.20240508.001
Citation: ZHOU Xueqiu, WANG Xikui, QIN Bingli, et al. Progress in the preparation and application of superamphiphobic surface[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5876-5893. doi: 10.13801/j.cnki.fhclxb.20240508.001

超双疏表面的制备及应用进展

doi: 10.13801/j.cnki.fhclxb.20240508.001
基金项目: 国家自然科学基金青年项目(52205304);贵州大学自然科学专项(特岗)项目((2023)25);黔科合中引地([2023]010)贵州省科技创新基地建设项目
详细信息
    通讯作者:

    汪希奎,博士,副教授,主要研究方向为仿生微纳米表面与结构设计 Email: xkwang@gzu.edu.cn

    梅益,博士,教授,主要研究方向为智能制造工艺及设备 Email: mei_yi@163.com

  • 中图分类号: TQ638;TB332

Progress in the preparation and application of superamphiphobic surface

Funds: National Natural Science Foundation Youth Project of China (52205304); Natural Science Special Program of Guizhou University for Special Post ((2023)25); Guizhou Science and Technology Innovation Base Construction Project ([2023]010)
  • 摘要: 自然界中的超疏水/超疏油现象吸引了表界面科学、微纳制造及纳米涂层等多学科领域研究者的广泛关注,在人们的生产生活中展现出了巨大的应用前景。本文聚焦于具有微纳粗糙结构的超双疏表面发展现状,从基本润湿性理论出发,介绍了超双疏表面微观粗糙结构的主要类型和降低表面能的原理,探讨了表面微观粗糙结构和化学改性与润湿性之间的关系,并归纳了制备超双疏表面的主要方法。最后,总结了超双疏表面的主要应用现状,分析了超双疏表面目前存在的不足和缺陷,并对其未来的发展方向进行了展望。

     

  • 图  1  润湿性理论:(a)基于杨氏模型理论的接触角和滑动角;(b)超疏水表面(SHPS)与超双疏表面(SAPS); (c)接触角滞后;(d) Wenzel模型、Cassie-Baxter模型、混合模型示意图;(e)光滑液体注入多孔表面(SLIPS)

    γSV—Surface tension of solid-gas interfaces; γSL—Surface tension of solid-liquid interfaces; γLV—Surface tension of liquid-gas interfaces; m—Mass of the droplet; g—Gravitational constant; θR—Receding contact angel; θA—Advancing contact angel; α—Inclination of a bevel

    Figure  1.  Wettability theory: (a) Contact angle and slip angle base on Young model; (b) Air-mediated superhydrophobic surface (SHPS) or superamphiphobic surface (SAPS); (c) Contact angle hysteresis; (d) Schematic diagram of Wenzel model, Cassie-Baxter model and Mixed model; (e) Slippery lubricant-infused porous surface (SLIPS)

    图  2  多孔结构表面微观形貌:(a)液体火焰喷涂表面的SEM图像[58];(b)多孔表面的SEM图像[59];(c)经过拉伸后压缩微结构的重新排列过程[60]

    d, d'—Spacing of two clusters under different strain

    Figure  2.  Surface microstructure of porous structure: (a) SEM image of liquid flame spray surfaces[58]; (b) SEM images of porous surface[59]; (c) SEM image of rearranging process of the compacted microstructures after stretching[60]

    图  3  6种类型的凹角结构示意图:(a)微柱;(b)倒梯形;(c) T形凹角;(d) T-型折边凹角;(e) T-型双层凹角结构;(f)带凸角的蘑菇状结构

    Figure  3.  Six types of re-entrant structure diagram: (a) Micro-pillar structure; (b) Inverse-trapezoidal structure; (c) T-shape re-entrant structure; (d) T-shape with folding edge re-entrant structure; (e) T-shape double re-entrant structure; (f) Mushroom shaped re-entrant structure with convex edge

    图  4  凹角结构和层次结构的表面微观形貌:(a)涂层表面微柱状结构的SEM图像[67];(b)涂层表面的蘑菇双凹角结构横向SEM图像[66];(c)涂层表面悬垂结构的SEM图像[68];(d)三凹角结构示意图及SEM图像[69];(e)利用激光制备的周期微锥与堆叠的致密纳米颗粒[40];(f)微-纳复合的层次结构[77]

    h—Height of mushroom shaped re-entrant angular structure; Ds—Height of mushroom shaped side re-entrant angular structure; MCNP—Double-scale periodical microcones with dense nanoparticles; SMC—Single-scale periodical microcone; MBNP—Double-scale random microbumps with dense nanoparticles; L—Distance between adjacent mushroom structures

    Figure  4.  Surface microstructure of the concave structure and the hierarchical structure: (a) SEM image of the coating surface as a micropillars structure[67] ; (b) SEM image of the coating surface as mushroom shaped double re-entrant angular structure[66]; (c) SEM images of the coating surface as a overhang structure[68]; (d) Schematic diagram of triply re-entrant structures and SEM images[69]; (e) Periodical microcones with dense nanoparticles prepared by laser[40]; (f) Micro-nano composite hierarchy[77]

    图  5  喷涂法制备的超双疏涂层:(a)可拉伸超双疏表面上纳米丝结构和分层微/纳米结构的制造工艺示意图[60];(b)通过喷涂技术制备涂层的示意图[101]

    PFOTES—1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane; RP2—Superamphiphobic coating; R1—First spraying coating; RP1—First two spraying coating; PDMS—Poly(dimethylsiloxane); NF—Nanofilament

    Figure  5.  Superamphiphobic coating prepared by spraying method: (a) Schematic of the fabrication process of the nanofilament-structured and hierarchical micro/nanostructure on stretchable superamphiphobic surface[60]; (b) Schematic illustration for the preparation of the coatings by the spraying technique[101]

    图  6  基于超双疏表面的防腐蚀策略:(a)表面保护过程示意图[127];(b) AZ31B Mg基双功能涂层的防腐机制[128]

    EP—Epoxy; HD-POS@SiO2—Hexadecyl polysiloxane modified SiO2 nanoparticles; PF-POS@SiO2—Perfluorodecyl polysiloxane modified SiO2 nanoparticles; 2-MBI—2-mercaptabenzimidazole

    Figure  6.  Anti-corrosion strategies based on superamphiphobic surfaces: (a) Schematic illustration of the process of surface protection[127]; (b) Anticorrosion mechanisms of the prepared dual-functional coating for AZ31B Mg substrate[128]

    图  7  自清洁与抗污的应用:(a)太阳能板上的灰尘堆积现象[133];(b)对比ZnO粉末喷涂前(左)后(右)和PFDTS改性ChNFs涂层在玻璃玻片上指纹的时间变化[137];(c)涂层的指纹图谱时间变化对比[137];(d) Zn涂层的抗黏附过程示意图;(e)未涂覆和涂覆PES-PVDF-HFP/Pal@SiO2 (P-P/Pal@SiO2-F)涂层的Al板抗蜡试验照片[26]

    PFDTS—1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane; ChNFs—Chitin nanofibers; Pal@SiO2-F—Fluorinated palygorskite@SiO2; PES—Polyethersulfone; PVDF-HFP—Vinylidene fluoride-co-hexafluoropropylene

    Figure  7.  Self-cleaning and anti-fouling applications: (a) Dust accumulation on solar panel[133]; (b) Comparison of the fingerprints on glass slide before (left) and after (right) sprinkling ZnO powder and the ChNFs coating modified with PFDTS deposition for time change[137]; (c) Comparison of time change of coating fingerprint[137]; (d) Schematic diagram of anti-adhesion process of Zn coating; (e) Photographs of anti-waxing tests on Al sheet uncoated and coated with PES-PVDF-HFP/Pal@SiO2 (P-P/Pal@SiO2-F) coating[26]

  • [1] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [2] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. doi: 10.1002/adma.200290020
    [3] WISDOM K M, WATSON J A, QU X, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. Proceedings of the National Academy of Sciences, 2013, 110(20): 7992-7997. doi: 10.1073/pnas.1210770110
    [4] 尧婉辰, 程静, 孙文文, 等. 仿生超疏水表面的生物医学应用进展[J]. 复合材料学报, 2023, 40(10): 5502-5517.

    YAO Wanchen, CHENG Jing, SUN Wenwen, et al. Recent advances in bioinspired superhydrophobic surfaces for biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5502-5517(in Chinese).
    [5] 汪希奎, 苏一凡, 程真, 等. 基于多孔黏结层的超疏水复合涂层制备及其耐磨性研究[J]. 表面技术, 2023, 52(11): 63-71.

    WANG Xikui, SU Yifan, CHENG Zhen, et al. Fabrication and wear resistance of robust superhydrophobic composite coating based on porous adhesive layer[J]. Surface Technology, 2023, 52(11): 63-71(in Chinese).
    [6] ZHANG B, ZENG Y, WANG J, et al. Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency[J]. Materials & Design, 2020, 188: 108479.
    [7] SHI T, WANG H, JIA Q, et al. Preparation of a transparent coating with superamphiphobic and antifouling properties[J]. Materials Chemistry and Physics, 2023, 293: 126888. doi: 10.1016/j.matchemphys.2022.126888
    [8] MEENA N M D, GIARDINO M, JANNER D. Tunable pulsewidth nanosecond laser texturing: From environment friendly superhydrophobic to superamphiphobic surfaces[J]. Applied Surface Science, 2023, 610: 155356. doi: 10.1016/j.apsusc.2022.155356
    [9] 梁雷, 王彦玲, 张杉. 超双疏含氟聚合物的研究进展[J]. 化工进展, 2020, 39(3): 1070-1079.

    LIANG Lei, WANG Yanling, ZHANG Shan. Research progress of super-amphiphobic fluoropolymers[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1070-1079(in Chinese).
    [10] REN G, QIAO Z, TUO Y, et al. Graded fillers method fabricating superamphiphobic coatings with high thermal conductivity, wear resistance and durable corrosion resistance[J]. Progress in Organic Coatings, 2024, 189: 108268. doi: 10.1016/j.porgcoat.2024.108268
    [11] WANG C, AN D, YANG T, et al. Self-cleaning and amphiphobic properties of octadecyltrichlorosilane self-assembled modified polytetrafluoroethylene films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133132. doi: 10.1016/j.colsurfa.2023.133132
    [12] LIU W, GUAN F, ZHANG F, et al. Fabrication of bio-inspired superamphiphobic aluminum alloy surface with oil-triggered wenzel-slippery transition via femtosecond laser[J]. Journal of Bionic Engineering, 2024, 21(3): 1375-1387.
    [13] XIONG D, LIU G, HONG L, et al. Superamphiphobic diblock copolymer coatings[J]. Chemistry of Materials, 2011, 23(19): 4357-4366. doi: 10.1021/cm201797e
    [14] LEE S Y, RAHMAWAN Y, YANG S. Transparent and superamphiphobic surfaces from mushroom-like micropillar arrays[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24197-24203.
    [15] TIAN X, JOKINEN V, LI J, et al. Unusual dual superlyophobic surfaces in oil-water systems: The design principles[J]. Advanced Materials, 2016, 28(48): 10652-10658. doi: 10.1002/adma.201602714
    [16] WU Y, ZENG J, SI Y, et al. Large-area preparation of robust and transparent superomniphobic polymer films[J]. ACS Nano, 2018, 12(10): 10338-10346. doi: 10.1021/acsnano.8b05600
    [17] LI Y, HE Y, LI J, et al. Design of robust superamphiphobic surfaces with enlarged area fractions: The considerable role of Laplace pressure in dynamics of contact lines[J]. Physical Chemistry Chemical Physics, 2022, 24(16): 9308-9315. doi: 10.1039/D2CP00606E
    [18] DONG Z, LEVKIN P A. 3D microprinting of super-repellent microstructures: Recent developments, challenges, and opportunities[J]. Advanced Functional Materials, 2023, 33(39): 2213916.
    [19] YU F, WANG D, YANG J, et al. Durable super-repellent surfaces: From solid-liquid interaction to applications[J]. Accounts of Materials Research, 2021, 2(10): 920-932. doi: 10.1021/accountsmr.1c00147
    [20] CHEN D, GAO F, LIU T, et al. Fabrication of anti-fouling thin-film composite reverse osmosis membrane via constructing heterogeneous wettability surface[J]. Journal of Applied Polymer Science, 2021, 138(42): 51256. doi: 10.1002/app.51256
    [21] XIA B, LIU H, FAN Y, et al. Preparation of robust CuO/TiO2 superamphiphobic steel surface through chemical deposition and sol-gel methods [J]. Advanced Engineering Materials, 2017, 19(2): 1600572. doi: 10.1002/adem.201600572
    [22] EMELYANENKO A M, BOINOVICH L B, BEZDOMNIKOV A A, et al. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24210-24219.
    [23] WANG Z, LIU X, JI J, et al. Underwater drag reduction and buoyancy enhancement on biomimetic antiabrasive superhydrophobic coatings[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 48270-48280.
    [24] ZHANG B, XU W, ZHU Q, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corrosion Science, 2019, 158: 108083. doi: 10.1016/j.corsci.2019.06.031
    [25] ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review[J]. Advances in Colloid and Interface Science, 2017, 250: 132-157. doi: 10.1016/j.cis.2017.09.003
    [26] PENG J, YUAN S, GENG H, et al. Robust and multifunctional superamphiphobic coating toward effective anti-adhesion[J]. Chemical Engineering Journal, 2022, 428: 131162. doi: 10.1016/j.cej.2021.131162
    [27] YANG S, WU C, ZHAO G, et al. Condensation frosting and passive anti-frosting[J]. Cell Reports Physical Science, 2021, 2(7): 100474. doi: 10.1016/j.xcrp.2021.100474
    [28] CHU Z, SEEGER S. Superamphiphobic surfaces[J]. Chemical Society Reviews, 2014, 43(8): 2784-2798. doi: 10.1039/C3CS60415B
    [29] KANGO S, SINGH S, SHARMA N, et al. Recent advances in the mechanical durability of superamphiphobic surfaces: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 208-210: 1994-1996.
    [30] HUANG C, GUO Z. Fabrications and applications of slippery liquid-infused porous surfaces inspired from nature: A review[J]. Journal of Bionic Engineering, 2019, 16(5): 769-793. doi: 10.1007/s42235-019-0096-2
    [31] YAN X, JIN Y, CHEN X, et al. Nature-inspired surface topography: Design and function[J]. Science China Physics, Mechanics & Astronomy, 2019, 63(2): 224601.
    [32] JEEVAHAN J, CHANDRASEKARAN M, BRITTO JOSEPH G, et al. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. doi: 10.1007/s11998-017-0011-x
    [33] LI Q, GUO Z. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces[J]. Journal of Materials Chemistry A, 2018, 6(28): 13549-13581. doi: 10.1039/C8TA03259A
    [34] SEMPREBON C, MCHALE G, KUSUMAATMAJA H. Apparent contact angle and contact angle hysteresis on liquid infused surfaces[J]. Soft Matter, 2017, 13(1): 101-110. doi: 10.1039/C6SM00920D
    [35] PAN S, GUO R, BJÖRNMALM M, et al. Coatings super-repellent to ultralow surface tension liquids[J]. Nature Materials, 2018, 17(11): 1040-1047. doi: 10.1038/s41563-018-0178-2
    [36] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [37] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 8: 988-994.
    [38] CASSIE A B S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546
    [39] MILJKOVIC N, ENRIGHT R, WANG E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J]. ACS Nano, 2012, 6(2): 1776-1785. doi: 10.1021/nn205052a
    [40] WANG L, TIAN Z, JIANG G, et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 2022, 13(1): 378.
    [41] ZHANG X, GAN L, SUN B, et al. Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications[J]. Science China Technological Sciences, 2022, 65: 1975-1994.
    [42] JIANG Y, LIAN J, JIANG Z, et al. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces[J]. Advances in Colloid and Interface Science, 2020, 278: 102136. doi: 10.1016/j.cis.2020.102136
    [43] ZHANG K, LI Z, MAXEY M, et al. Self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition[J]. Langmuir, 2019, 35(6): 2431-2442. doi: 10.1021/acs.langmuir.8b03664
    [44] BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Advances in Colloid and Interface Science, 2015, 222: 92-103. doi: 10.1016/j.cis.2014.02.009
    [45] BOTTIGLIONE F, CARBONE G. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity[J]. Langmuir, 2013, 29(2): 599-609. doi: 10.1021/la304072p
    [46] MARMUR A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be?[J]. Langmuir, 2003, 19(20): 8343-8348. doi: 10.1021/la0344682
    [47] FURMIDGE C G L . Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of Colloid and Interface Science, 1962, 4: 309-324.
    [48] BHUSHAN B. Bioinspired structured surfaces[J]. Langmuir, 2012, 28(3): 1698-1714. doi: 10.1021/la2043729
    [49] NGUYEN S H, WEBB H K, MAHON P J, et al. Natural insect and plant micro-/nanostructsured surfaces: An excellent selection of valuable templates with superhydrophobic and self-cleaning properties[J]. Molecules, 2014, 19(9): 13614-13630. doi: 10.3390/molecules190913614
    [50] SU Y, JI B, ZHANG K, et al. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces[J]. Langmuir, 2010, 26(7): 4984-4989. doi: 10.1021/la9036452
    [51] CHEN L, GUO Z, LIU W. Outmatching superhydrophobicity: Bio-inspired re-entrant curvature for mighty superamphiphobicity in air[J]. Journal of Materials Chemistry A, 2017, 5(28): 14480-14507. doi: 10.1039/C7TA03248J
    [52] FANG R, LIU M, LIU H, et al. Bioinspired interfacial materials: From binary cooperative complementary interfaces to superwettability systems[J]. Advanced Materials Interfaces, 2018, 5(3): 1701176. doi: 10.1002/admi.201701176
    [53] WONG T, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. doi: 10.1038/nature10447
    [54] KOUHPOUR A, GOUDARZI S, ESLAMI R, et al. Micro-nano-engineered slippery liquid-infused porous surface coating with highly sustainable superhydrophobicity and omniphobicity[J]. Progress in Organic Coatings, 2024, 187: 108182. doi: 10.1016/j.porgcoat.2023.108182
    [55] LIU H, WANG Y, HUANG J, et al. Bioinspired surfaces with superamphiphobic properties: Concepts, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(19): 1707415. doi: 10.1002/adfm.201707415
    [56] ZHANG D, WU G, LI H, et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion[J]. Chemical Engineering Journal, 2021, 406: 126753. doi: 10.1016/j.cej.2020.126753
    [57] TUTEJA A, CHOI W, MA M, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622. doi: 10.1126/science.1148326
    [58] HEGNER K I, WONG W S Y, VOLLMER D. Ultrafast bubble bursting by superamphiphobic coatings[J]. Advanced Materials, 2021, 33(39): 2101855. doi: 10.1002/adma.202101855
    [59] LI F, DU M, ZHENG Q. Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating[J]. ACS Nano, 2016, 10(2): 2910-2921. doi: 10.1021/acsnano.6b00036
    [60] ZHOU X, LIU J, LIU W, et al. Fabrication of stretchable superamphiphobic surfaces with deformation-induced rearrangeable structures[J]. Advanced Materials, 2022, 34(10): 2107901. doi: 10.1002/adma.202107901
    [61] ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020, 398: 125403. doi: 10.1016/j.cej.2020.125403
    [62] LI X, LI H, HUANG K, et al. Durable superamphiphobic nano-silica/epoxy composite coating via coaxial electrospraying method[J]. Applied Surface Science, 2018, 436: 283-292. doi: 10.1016/j.apsusc.2017.11.241
    [63] ZHAO X, DUAN Y. Improve the mechanical durability of superhydrophobic/superamphiphobic coating through multiple cross-linked mesh structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642: 128560. doi: 10.1016/j.colsurfa.2022.128560
    [64] FU Y, SOLDERA M, WANG W, et al. Wettability control of polymeric microstructures replicated from laser-patterned stamps[J]. Scientific Reports, 2020, 10(1): 22428. doi: 10.1038/s41598-020-79936-1
    [65] KANG S M, CHOI J S. Selective liquid sliding surfaces with springtail-inspired concave mushroom-like micropillar arrays[J]. Small, 2020, 16(3): 1904612. doi: 10.1002/smll.201904612
    [66] DAS R, AHMAD Z, NAURUZBAYEVA J, et al. Biomimetic coating-free superomniphobicity[J]. Scientific Reports, 2020, 10(1): 7934.
    [67] MAMMEN L, BLEY K, PAPADOPOULOS P, et al. Functional superhydrophobic surfaces made of Janus micropillars[J]. Soft Matter, 2015, 11(3): 506-515. doi: 10.1039/C4SM02216E
    [68] CHOI H, CHOO S, SHIN J, et al. Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24354-24359. doi: 10.1021/jp4070399
    [69] SUN J, ZHU P, YAN X, et al. Robust liquid repellency by stepwise wetting resistance[J]. Applied Physics Reviews, 2021, 8(3): 31403. doi: 10.1063/5.0056377
    [70] YUN G, JUNG W, OH M S, et al. Springtail-inspired superomniphobic surface with extreme pressure resistance[J]. Science Advances, 2018, 4(8): eaat4978. doi: 10.1126/sciadv.aat4978
    [71] HU S, CAO X, REDDYHOFF T, et al. Liquid repellency enhancement through flexible microstructures[J]. Science Advances, 2020, 6(32): eaba9721. doi: 10.1126/sciadv.aba9721
    [72] LIU X, GU H, WANG M, et al. 3D printing of bioinspired liquid superrepellent structures[J]. Advanced Materials, 2018, 30(22): 1800103. doi: 10.1002/adma.201800103
    [73] TUOMINEN M, TEISALA H, HAAPANEN J, et al. Superamphiphobic overhang structured coating on a biobased material[J]. Applied Surface Science, 2016, 389: 135-143. doi: 10.1016/j.apsusc.2016.05.095
    [74] LIU Y, LU J, XUE W, et al. A strategy for fabricating multi-level micro-nano superamphiphobic surfaces by laser-electrochemistry subtractive-additive hybrid manufacturing method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 130946. doi: 10.1016/j.colsurfa.2023.130946
    [75] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. doi: 10.1038/s41586-020-2331-8
    [76] NEPAL D, KANG S, ADSTEDT K M, et al. Hierarchically structured bioinspired nanocomposites[J]. Nature Materials, 2023, 22(1): 18-35. doi: 10.1038/s41563-022-01384-1
    [77] CHEN J, LONG M, PENG S, et al. Superamphiphobic aluminum surfaces that maintain robust stability after undergoing severe chemical and physical damage[J]. New Journal of Chemistry, 2017, 41(3): 1334-1345. doi: 10.1039/C6NJ03696A
    [78] ZHAO D, PAN M, YUAN J, et al. A waterborne coating for robust superamphiphobic surfaces[J]. Progress in Organic Coatings, 2020, 138: 105368. doi: 10.1016/j.porgcoat.2019.105368
    [79] WANG L, WANG F, HUANG B, et al. Recent advances in superhydrophobic composites based on clay minerals[J]. Applied Clay Science, 2020, 198: 105793. doi: 10.1016/j.clay.2020.105793
    [80] SAJI V S. Recent progress in superhydrophobic and superamphiphobic coatings for magnesium and its alloys[J]. Journal of Magnesium and Alloys, 2021, 9(3): 748-778. doi: 10.1016/j.jma.2021.01.005
    [81] RIESS J G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery[J]. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 2005, 33(1): 47-63. doi: 10.1081/BIO-200046659
    [82] BAO M, TIE L, LI J. Smart superamphiphobic surface manipulating wetting behaviors of oil droplet in water[J]. Tribology International, 2023, 179: 108189. doi: 10.1016/j.triboint.2022.108189
    [83] TEISALA H, GEYER F, HAAPANEN J, et al. Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure[J]. Advanced Materials, 2018, 30(14): 1706529. doi: 10.1002/adma.201706529
    [84] LIN J, PENG Z, LIU Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5(1): 5714. doi: 10.1038/ncomms6714
    [85] YE R, CHYAN Y, ZHANG J, et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 2017, 29(37): 1702211. doi: 10.1002/adma.201702211
    [86] CHYAN Y, YE R, LI Y, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183. doi: 10.1021/acsnano.7b08539
    [87] KULYK B, PEREIRA S O, FERNANDES A J S, et al. Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine[J]. Carbon, 2022, 197: 253-263. doi: 10.1016/j.carbon.2022.06.013
    [88] CARVALHO A F, FERNANDES A J S, MARTINS R, et al. Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis[J]. Advanced Materials Technologies, 2020, 5(12): 2000630. doi: 10.1002/admt.202000630
    [89] ZHANG Q, XU P, PANG C, et al. A superhydrophobic surface with a synergistic abrasion–corrosion resistance effect prepared by femtosecond laser treatment on an FeMnSiCrNiNb shape memory alloy coating[J]. New Journal of Chemistry, 2022, 46(40): 19188-19197. doi: 10.1039/D2NJ03988E
    [90] SUN K, YANG H, XUE W, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel[J]. Applied Surface Science, 2018, 436: 263-267. doi: 10.1016/j.apsusc.2017.12.012
    [91] YUAN G, LIU Y, XIE F, et al. Fabrication of superhydrophobic gully-structured surfaces by femtosecond laser and imprinting for high-efficiency self-cleaning rain collection[J]. Langmuir, 2022, 38(8): 2720-2728. doi: 10.1021/acs.langmuir.1c03488
    [92] YANG Y, ZHANG Y, HU Y, et al. Femtosecond laser regulated ultrafast growth of mushroom-like architecture for oil repellency and manipulation[J]. Nano Letters, 2021, 21(21): 9301-9309. doi: 10.1021/acs.nanolett.1c03506
    [93] WANG T, ZHU H, ZHANG Z, et al. Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method[J]. Surfaces and Interfaces, 2021, 24: 101112. doi: 10.1016/j.surfin.2021.101112
    [94] 赵美蓉, 周惠言, 康文倩, 等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2): 361-379.

    ZHAO Meirong, ZHOU Huiyan, KANG Wenqian, et al. Comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 361-379(in Chinese).
    [95] CHECCO A, RAHMAN A, BLACK C T. Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self assembly[J]. Advanced Materials, 2014, 26(6): 886-891. doi: 10.1002/adma.201304006
    [96] SHAMSI A, AMIRI A, HEYDARI P, et al. Low cost method for hot embossing of microstructures on PMMA by SU-8 masters[J]. Microsystem Technologies, 2014, 20(10): 1925-1931.
    [97] TAN X, SHI T, LIN J, et al. One-step mask-based diffraction lithography for the fabrication of 3D suspended structures[J]. Nanoscale Research Letters, 2018, 13(1): 394. doi: 10.1186/s11671-018-2817-6
    [98] ABU JARAD N, IMRAN H, IMANI S M, et al. Fabrication of superamphiphobic surfaces via spray coating: A review[J]. Advanced Materials Technologies, 2022, 7(10): 2101702. doi: 10.1002/admt.202101702
    [99] PENG J, ZHAO X, WANG W, et al. Durable self-cleaning surfaces with superhydrophobic and highly oleophobic properties[J]. Langmuir, 2019, 35(25): 8404-8412.
    [100] DAS A, SCHUTZIUS T M, BAYER I S, et al. Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films[J]. Carbon, 2012, 50(3): 1346-1354. doi: 10.1016/j.carbon.2011.11.006
    [101] ZHU P, ZHU L, GE F, et al. Robust and transparent superamphiphobic coating prepared via layer-by-layer spraying[J]. Surface and Coatings Technology, 2021, 426: 127793. doi: 10.1016/j.surfcoat.2021.127793
    [102] LI J, XU L, YUAN X, et al. Preparation of robust and self-healing superamphiphobic cotton fabrics based on modified silica aerogel particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129634. doi: 10.1016/j.colsurfa.2022.129634
    [103] LIU L, PAN Y, BHUSHAN B, et al. Core-shell magnetic nanoparticles for substrate-independent super-amphiphobic surfaces and mechanochemically robust liquid marbles[J]. Chemical Engineering Journal, 2020, 391: 123523. doi: 10.1016/j.cej.2019.123523
    [104] PENNA M O, SILVA A A, DO ROSÁRIO F F, et al. Organophilic nano-alumina for superhydrophobic epoxy coatings[J]. Materials Chemistry and Physics, 2020, 255: 123543. doi: 10.1016/j.matchemphys.2020.123543
    [105] ZHANG J, LIU S, HUANG Y, et al. Durable fluorinated-SiO2/epoxy superhydrophobic coatings on polycarbonate with strong interfacial adhesion enhanced by solvent-induced crystallization[J]. Progress in Organic Coatings, 2021, 150: 106002. doi: 10.1016/j.porgcoat.2020.106002
    [106] WU B, LYU J, PENG C, et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineering Journal, 2020, 387: 124066. doi: 10.1016/j.cej.2020.124066
    [107] ZHANG J, WEI J, LI B, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science, 2021, 594: 836-847. doi: 10.1016/j.jcis.2021.03.005
    [108] YANG Y, TU Y, GUI X, et al. Facile fabrication of wear-resistant, fluorine-free, strongly adhesive superhydrophobic coating based on modified SiO2/silicone nanocomposites[J]. Progress in Organic Coatings, 2023, 182: 107694. doi: 10.1016/j.porgcoat.2023.107694
    [109] WEI J, LI B, TIAN N, et al. Scalable robust superamphiphobic coatings enabled by self-similar structure, protective micro-skeleton, and adhesive for practical anti-icing of high-voltage transmission tower[J]. Advanced Functional Materials, 2022, 32(43): 2206014. doi: 10.1002/adfm.202206014
    [110] ZHOU H, WANG H, NIU H, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: A super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. doi: 10.1002/adma.201200184
    [111] XIAO Z, XU D, ZHANG W, et al. Dip-coating of superhydrophobic surface on irregular substrates for dropwise condensation[J]. Journal of Bionic Engineering, 2021, 18(2): 387-397. doi: 10.1007/s42235-021-0024-0
    [112] LIAO K, ZHU J. Fabrication of superamphiphobic surface on Cu substrate via a novel and facile dip coating method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128379. doi: 10.1016/j.colsurfa.2022.128379
    [113] LI H, YU S, HAN X. Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties[J]. Chemical Engineering Journal, 2016, 283: 1443-1454. doi: 10.1016/j.cej.2015.08.112
    [114] HE H, DU J, WENG Z, et al. One-step electrodeposition to fabricate superhydrophobic surfaces on flexible conductive films: Optimization of metallic compounds[J]. Materials Today Communications, 2023, 35: 105492. doi: 10.1016/j.mtcomm.2023.105492
    [115] KUANG Y, JIANG F, ZHU T, et al. One-step electrodeposition of superhydrophobic copper coating from ionic liquid[J]. Materials Letters, 2021, 303: 130579. doi: 10.1016/j.matlet.2021.130579
    [116] LIU Q, KANG Z. One-step electrodeposition process to fabricate superhydrophobic surface with improved anticorrosion property on magnesium alloy[J]. Materials Letters, 2014, 137: 210-213. doi: 10.1016/j.matlet.2014.09.010
    [117] ZHAO Z E, SUN S H, HU Y M, et al. Robust superamphiphobic aluminum surfaces: Fabrication and investigation[J]. Journal of Coatings Technology and Research, 2019, 16(6): 1707-1714. doi: 10.1007/s11998-018-0143-7
    [118] ZHANG W, JOHNSON L, SILVA S R P, et al. The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes[J]. Applied Surface Science, 2012, 258(20): 8209-8213. doi: 10.1016/j.apsusc.2012.05.023
    [119] ZHANG L, UZOMA P C, XIAOYANG C, et al. Bio-inspired hierarchical micro/nanostructured surfaces for superhydrophobic and anti-ice applications[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 872268.
    [120] WECLAWSKI B T, HORROCKS A R, EBDON J R, et al. Combined atmospheric pressure plasma and UV surface functionalisation and diagnostics of nylon 6.6 fabrics[J]. Applied Surface Science, 2021, 562: 150090. doi: 10.1016/j.apsusc.2021.150090
    [121] MONTARSOLO A, VARESANO A, MOSSOTTI R, et al. Enhanced adhesion of conductive coating on plasma-treated polyester fabric: A study on the ageing effect[J]. Journal of Applied Polymer Science, 2012, 126(4): 1385-1393. doi: 10.1002/app.36762
    [122] OH K W, KIM S H, KIM E A. Improved surface characteristics and the conductivity of polyaniline–nylon 6 fabrics by plasma treatment[J]. Journal of Applied Polymer Science, 2001, 81(3): 684-694. doi: 10.1002/app.1485
    [123] ZHOU Y, LIU Y, DU F. Rational fabrication of fluorine-free, superhydrophobic, durable surface by one-step spray method[J]. Progress in Organic Coatings, 2023, 174: 107227. doi: 10.1016/j.porgcoat.2022.107227
    [124] LINSHA V, MAHESH K V, ANAS S, et al. Synthesis of organotrimethoxy silane modified alumino-siloxane hybrid gels: Physico-chemical properties evaluation and design of superhydrophobic smart powders and coatings[J]. Materials Chemistry and Physics, 2022, 278: 125587. doi: 10.1016/j.matchemphys.2021.125587
    [125] LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. doi: 10.1016/j.jcis.2018.08.060
    [126] ASLAN ÇAKIR M, YETIM T, YETIM A, et al. Superamphiphobic TiO2 film by sol-gel dip coating method on commercial pure titanium[J]. Journal of Materials Engineering and Performance, 2024, 33(3): 1472-1484.
    [127] WEI J, LI B, JING L, et al. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating[J]. Chemical Engineering Journal, 2020, 390: 124562. doi: 10.1016/j.cej.2020.124562
    [128] LIU X, HE H, ZHANG T C, et al. Superhydrophobic and self-healing dual-function coatings based on mercaptabenzimidazole inhibitor-loaded magnesium silicate nanotubes for corrosion protection of AZ31B magnesium alloys[J]. Chemical Engineering Journal, 2021, 404: 127106. doi: 10.1016/j.cej.2020.127106
    [129] ZHANG B, YAN J, LI X, et al. Self-cleaning and corrosion-resistant superamphiphobic coating with super-repellency towards low-surface-tension liquids[J]. Journal of Materials Research and Technology, 2023, 23: 1094-1104. doi: 10.1016/j.jmrt.2023.01.078
    [130] NAWAZ T, ALI A, AHMAD S, et al. Enhancing anticorrosion resistance of aluminum alloys using femtosecond laser-based surface structuring and coating[J]. Nanomaterials, 2023, 13(4): 644.
    [131] LIU X, CHEN J, SHAO Q, et al. Robust, flame-retardant and colorful superamphiphobic aramid fabrics for extreme conditions[J]. Science China Technological Sciences, 2021, 64(8): 1765-1774. doi: 10.1007/s11431-020-1781-y
    [132] JIAO X, LI M, YU X, et al. Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency[J]. Chemical Engineering Journal, 2021, 420: 127606. doi: 10.1016/j.cej.2020.127606
    [133] LASFAR S, HAIDARA F, MAYOUF C, et al. Study of the influence of dust deposits on photovoltaic solar panels: Case of nouakchott[J]. Energy for Sustainable Development, 2021, 63: 7-15. doi: 10.1016/j.esd.2021.05.002
    [134] ZHANG H, HUANG J, FAN D. Switchable radiative cooling from temperature-responsive thermal resistance modulation[J]. ACS Applied Energy Materials, 2022, 5(5): 6003-6010. doi: 10.1021/acsaem.2c00421
    [135] LIU L, ZHANG H, CAI Y, et al. Super-amphiphobic coatings with sub-ambient daytime radiative cooling—Part 2: Cooling effect under real conditions[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111736. doi: 10.1016/j.solmat.2022.111736
    [136] 王威, 余新泉, 张友法. 仿蝉翼超疏水疏油玻璃防指纹特性研究[J]. 表面技术, 2021, 50(10): 40-47.

    WANG Wei, YU Xinquan, ZHANG Youfa. Study on anti-fingerprint properties of biomimetic cicada-wing superhydro(oleo)phobic glass[J]. Surface Technology, 2021, 50(10): 40-47(in Chinese).
    [137] WANG P, ZHANG L, HU Z, et al. Transparent and anti-fingerprint coating prepared with chitin nanofibers and surface modification via vapor deposition[J]. Progress in Organic Coatings, 2022, 172: 107126. doi: 10.1016/j.porgcoat.2022.107126
    [138] LIANG W, ZHU L, XU C, et al. Ecologically friendly conversion coatings with special wetting behaviors for wax prevention[J]. RSC Advances, 2016, 6(31): 26045-26054. doi: 10.1039/C6RA00611F
    [139] CHANSOMWONG K, KIM Y H, LEE H, et al. Facile preparation of wear-resistant and anti-fingerprint hard coating with chemisorption of fluorosilane by simple wet coating[J]. Journal of Sol-Gel Science and Technology, 2020, 95(2): 447-455. doi: 10.1007/s10971-020-05294-z
    [140] CHAN Y, WU X H, CHIENG B W, et al. Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections[J]. Nanomaterials (Basel), 2021, 11(4): 1046.
    [141] ZHANG J, YANG J, LI Q, et al. Preparation of WPU-based super-amphiphobic coatings functionalized by in situ modified SiOx particles and their anti-biofilm mechanism[J]. Biomaterials Science, 2021, 9(22): 7504-7521. doi: 10.1039/D1BM01285A
    [142] LI M, YANG T, YANG Q, et al. Slippery quartz surfaces for anti-fouling optical windows[J]. Droplet, 2023, 2(1): e41. doi: 10.1002/dro2.41
    [143] DOTTO M E R, MARTINS R N, FERREIRA M, et al. Influence of hydrogenated amorphous carbon coatings on the formation of paraffin deposits[J]. Surface and Coatings Technology, 2006, 200(22): 6479-6483.
    [144] YANG F, ZHU H, LI C, et al. Investigation on the mechanism of wax deposition inhibition induced by asphaltenes and wax inhibitors[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108723. doi: 10.1016/j.petrol.2021.108723
    [145] LIU Z, LI Y, WANG W, et al. Wax and wax-hydrate deposition characteristics in single-, two-, and three-phase pipelines: A review[J]. Energy & Fuels, 2020, 34(11): 13350-13368.
    [146] HUANG Z, LU Y, HOFFMANN R, et al. The effect of operating temperatures on wax deposition[J]. Energy & Fuels, 2011, 25(11): 5180-5188.
    [147] SOUSA A M, MATOS H A, GUERREIRO L. Wax deposition mechanisms and the effect of emulsions and carbon dioxide injection on wax deposition: Critical review[J]. Petroleum, 2020, 6(3): 215-225. doi: 10.1016/j.petlm.2019.09.004
    [148] WANG Z, ZHU L, LI W, et al. Bioinspired in situ growth of conversion films with underwater superoleophobicity and excellent self-cleaning performance[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10904-10911.
    [149] LIANG W, ZHU L, LI W, et al. Bioinspired composite coating with extreme underwater superoleophobicity and good stability for wax prevention in the petroleum industry[J]. Langmuir, 2015, 31(40): 11058-11066. doi: 10.1021/acs.langmuir.5b03234
    [150] WU Y, ZHAO M, GUO Z. Multifunctional superamphiphobic SiO2 coating for crude oil transportation[J]. Chemical Engineering Journal, 2018, 334: 1584-1593. doi: 10.1016/j.cej.2017.11.080
    [151] GENG H, PENG J, YUAN S, et al. Bioinspired hybrid nanostructures for wax inhibition coatings with superhydrophilicity[J]. ACS Applied Nano Materials, 2021, 4(6): 6178-6188.
    [152] SHEN Y, WU X, TAO J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557. doi: 10.1016/j.pmatsci.2019.03.004
    [153] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.

    LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38(in Chinese).
    [154] SHI X, VENEZIANO D, XIE N, et al. Use of chloride-based ice control products for sustainable winter maintenance: A balanced perspective[J]. Cold Regions Science and Technology, 2013, 86: 104-112. doi: 10.1016/j.coldregions.2012.11.001
    [155] PENG C, YU J, ZHAO Z, et al. Synthesis and properties of a clean and sustainable deicing additive for asphalt mixture[J]. PLOS ONE, 2015, 10(1): e0115721. doi: 10.1371/journal.pone.0115721
    [156] ZHENG W, TENG L, LAI Y, et al. Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing[J]. Chemical Engineering Journal, 2022, 427: 130922. doi: 10.1016/j.cej.2021.130922
    [157] TOURKINE P, LE MERRER M, QUÉRÉ D. Delayed freezing on water repellent materials[J]. Langmuir, 2009, 25: 7214-7216.
    [158] 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11): 2769-2775.

    WU Zhuangzhuang, MA Guojia, CUI Xiangzhong, et al. Wettability and anti-icing properties of superhydrophobic surfaces of micro-nano structures[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2769-2775(in Chinese).
    [159] WEI J, LIANG W, ZHANG J. Preparation of mechanically stable superamphiphobic coatings via combining phase separation of adhesive and fluorinated SiO2 for anti-Icing[J]. Nanomaterials, 2023, 13(12): 1872.
    [160] EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale, 2014, 6(9): 4874-4881. doi: 10.1039/C3NR06644D
    [161] FLETCHER N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 2004, 29(3): 572-576.
    [162] BOINOVICH L B, EMELYANENKO A M, EMELYANENKO K A, et al. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings[J]. ACS Nano, 2019, 13(4): 4335-4346. doi: 10.1021/acsnano.8b09549
    [163] WU B, CUI X, JIANG H, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science, 2021, 590: 301-310. doi: 10.1016/j.jcis.2021.01.054
    [164] LI W, ZHAN Y, YU S. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. doi: 10.1016/j.porgcoat.2020.106117
    [165] JUNG S, DORRESTIJN M, RAPS D, et al. Are superhydrophobic surfaces best for icephobicity?[J]. Langmuir, 2011, 27(6): 3059-3066. doi: 10.1021/la104762g
  • 加载中
图(7)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  160
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-08
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回