留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫化DOPO衍生物阻燃环氧树脂的性能与阻燃机制

许志彦 侯泽明 叶小林 张玉鹏 侯学清 张道海 蔡晓东 周国永 谭芳 宝冬梅

许志彦, 侯泽明, 叶小林, 等. 硫化DOPO衍生物阻燃环氧树脂的性能与阻燃机制[J]. 复合材料学报, 2022, 39(10): 4518-4530. doi: 10.13801/j.cnki.fhclxb.20211228.001
引用本文: 许志彦, 侯泽明, 叶小林, 等. 硫化DOPO衍生物阻燃环氧树脂的性能与阻燃机制[J]. 复合材料学报, 2022, 39(10): 4518-4530. doi: 10.13801/j.cnki.fhclxb.20211228.001
XU Zhiyan, HOU Zeming, YE Xiaolin, et al. Properties and flame retardant mechanism of sulfuretted DOPO derivative in epoxy resin[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4518-4530. doi: 10.13801/j.cnki.fhclxb.20211228.001
Citation: XU Zhiyan, HOU Zeming, YE Xiaolin, et al. Properties and flame retardant mechanism of sulfuretted DOPO derivative in epoxy resin[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4518-4530. doi: 10.13801/j.cnki.fhclxb.20211228.001

硫化DOPO衍生物阻燃环氧树脂的性能与阻燃机制

doi: 10.13801/j.cnki.fhclxb.20211228.001
基金项目: 国家自然科学基金(51863004);贵州省省级科技计划项目(黔科合基础[2020]1Y211,黔科合基础-ZK[2021]一般248);贵州省2018年度高层次创新型人才培养-千层次人才项目
详细信息
    通讯作者:

    宝冬梅,博士,教授,硕士生导师,研究方向为聚合物基阻燃复合材料  E-mail:dongtian1314521@163.com

  • 中图分类号: TB332

Properties and flame retardant mechanism of sulfuretted DOPO derivative in epoxy resin

  • 摘要: 为了获得综合性能好的阻燃环氧树脂(EP)复合材料,将9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS)的衍生物应用于EP。首先,通过DOPS和马来酸酐(MAH)反应合成磷杂菲衍生物马来酸酐-9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(MAH-DOPS),采用FTIR、1H NMR、31P NMR等手段确定其结构;其次,分别将DOPS和MAH-DOPS添加到EP中,通过共混制备复合材料DOPS/EP和MAH-DOPS/EP;再次,对比了DOPS/EP和MAH-DOPS/EP的热稳定性、阻燃性能和力学性能;最后,探讨了MAH-DOPS对EP的燃烧性能和热降解行为的影响,深入分析其阻燃机制。通过对比发现:阻燃剂DOPS的初始分解温度(T5%,205.4℃)低于MAH-DOPS(235.2℃),在添加相同质量分数的阻燃剂时,复合材料DOPS/EP的热稳定性也低于MAH-DOPS/EP,与阻燃剂热稳定性一致;阻燃剂DOPS和MAH-DOPS均能改善EP的阻燃性能,MAH-DOPS/EP具有更优异的阻燃效果。当阻燃剂添加量为15wt%时,MAH-DOPS/EP和DOPS/EP的极限氧指数(LOI) 值分别为28.6%和29.1%,分别达到UL-94 V-0级和V-1级。力学测试结果表明,与EP相比,MAH-DOPS/EP的弯曲强度提高了45.8%,而DOPS/EP下降了62.5%,DOPS/EP体系的力学性能下降明显,几乎失去使用价值。锥形量热测试表明,复合材料MAH-DOPS/EP的平均热释放速率(av-HRR)和总热释放量(THR)显著降低。TG-IR结果表明,MAH-DOPS/EP热解产生的含磷自由基捕捉了H•、O•或HO•等自由基,起到了自由基淬灭作用;SEM-EDS结果表明,MAH-DOPS/EP能够形成更加完整致密的炭层,炭层中P含量较高。研究表明,MAH-DOPS通过抑制火焰和成炭分别在气相和凝聚相发挥阻燃作用,并以气相阻燃机制为主。

     

  • 图  1  马来酸酐-9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(MAH-DOPS)的合成反应

    Figure  1.  Synthetic route of maleic anhydride-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-sulfide (MAH-DOPS)

    THF—Tetrahydrofuran; TEA—Triethylamine

    图  2  DOPS和MAH-DOPS的红外图谱

    Figure  2.  FTIR spectra of DOPS and MAH-DOPS

    图  3  两种阻燃剂在氮气下的TG-DTG曲线

    Figure  3.  TG-DTG curves of two flame retardants in N2

    图  4  EP及其复合材料在氮气下的TG-DTG曲线

    Figure  4.  TG-DTG curves of EP and EP composites in N2

    图  5  EP和MAH-DOPS/EP在氮气下的TG (a)和DTG (b)曲线

    Figure  5.  TG (a) and DTG (b) curves of EP and MAH-DOPS/EP in N2

    图  6  EP和MAH-DOPS/EP的热释放速率 (a) 和总热释放量 (b) 曲线

    Figure  6.  Heat release rate (a) and total heat release (b) curves of EP and MAH-DOPS/EP

    图  7  EP和MAH-DOPS/EP的总烟释放量 (a) 和CO生成量 (b) 曲线

    Figure  7.  Total smoke release (a) and CO production (b) curves of EP and MAH-DOPS/EP

    图  8  ((a), (b)) 不同温度下EP和MAH-DOPS/EP裂解产物吸光度图;((c), (d)) EP和MAH-DOPS/EP三维TG-IR曲线

    Figure  8.  ((a), (b)) Absorbance of pyrolysis products of EP and MAH-DOPS/EP at different temperatures; ((c), (d)) 3D TG-IR curves of EP and MAH-DOPS/EP

    图  9  锥量测试后残炭的数码图像

    Figure  9.  Digital photographs of char residues after cone calorimeter test

    图  10  锥量测试后残炭的SEM图像

    Figure  10.  SEM images of char residues after cone calorimeter test

    图  11  阻燃剂对EP力学性能的影响

    Figure  11.  Influence of flame retardants on mechanical properties of EP

    表  1  阻燃环氧树脂的配方

    Table  1.   Formulation of flame retardant epoxy resin

    SampleComposition/g
    EPMTHPABDMAMAH-DOPSDOPS
    5wt%MAH-DOPS/EP1008519.79
    5wt%DOPS/EP1008519.79
    10wt%MAH-DOPS/EP10085120.67
    10wt%DOPS/EP10085120.67
    15wt%MAH-DOPS/EP10085132.82
    15wt%DOPS/EP10085132.82
    Notes: EP—Epoxy resin; MTHPA—Methyl tetrahydrophthalic anhydride; BDMA—N,N-dimethylbenzylamine; MAH-DOPS—Maleic anhydride-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-sulfide; DOPS—9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-sulfide.
    下载: 导出CSV

    表  2  两种阻燃剂在氮气下的TG和DTG数据

    Table  2.   TG and DTG data of two flame retardants in N2

    SampleT5%/℃T10%/℃T50%/℃TP1/℃TP2/℃Rmax1Rmax2Char residue
    at 600℃/%
    DOPS205.4216.9341.6225.5381.50.310.833.57
    MAH-DOPS235.2248.7435.4245.1469.70.340.8615.81
    Notes: T5%, T10%, T50%—Temperature corresponding to weight loss 5%, 10% and 50% of material; TP—Temperature corresponding to maximum thermal degradation rate; Rmax—Maximum thermal degradation rate.
    下载: 导出CSV

    表  3  EP及其复合材料在氮气下的TG、DTG数据

    Table  3.   TG and DTG data of EP and EP composites in N2

    SampleT5%/℃T10%/℃T50%/℃TP1/℃TP2/℃Rmax1Rmax2Char residue at 600℃/%
    EP345.1369.7410.1407.61.617.22
    5wt%MAH-DOPS/EP271.2326.5400.8402.61.508.90
    10wt%MAH-DOPS/EP292.8342.8393.2395.11.5311.42
    10wt%DOPS/EP230.2276.5409.8308.1449.70.370.793.52
    15wt%MAH-DOPS/EP319.2357.1402.8392.51.4911.93
    下载: 导出CSV

    表  4  EP及其复合材料的LOI和垂直燃烧测试(UL-94)数据

    Table  4.   LOI and vertical combustion test (UL-94) data of EP an EP composites

    SampleLOI/%UL-94
    t1/t2DrippingRating
    EP19.5NON.R.
    5wt%DOPS/EP26.2>50/>50NON.R.
    5wt%MAH-DOPS/EP24.919.21/15.08NOV-2
    10wt%DOPS/EP30.75.81/43.53NOV-2
    10wt%MAH-DOPS/EP27.115.37/13.42NOV-1
    15wt%DOPS/EP29.112.27/1.91NOV-1
    15wt%MAH-DOPS/EP28.65.01/4.45NOV-0
    Notes: LOI—Limiting oxygen index; t1/t2—First and second combustion time in UL-94 test; N.R.—No rating.
    下载: 导出CSV

    表  5  EP和MAH-DOPS/EP的锥形量热测试(CONE)数据

    Table  5.   Cone calorimeter (CONE) data of EP and MAH-DOPS/EP

    SampleTTI/sav-HRR/
    (kW·m−2)
    PHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    av-EHC/
    (MJ·kg−1)
    TSR/
    (m2·m−2)
    av-COY/
    (kg·kg−1)
    EP66218.88918.01155.5731.412251.690.21
    5wt%MAH-DOPS/EP55129.55697.8396.9828.312859.350.27
    10wt%MAH-DOPS/EP58132.37644.5481.4327.822873.670.33
    15wt%MAH-DOPS/EP52137.43603.6771.3728.753098.420.37
    Notes: TTI—Time to ignition; av-HRR—Average heat release rate; PHRR—Peak heat release rate; THR—Total heat release; av-EHC—Average effective heat of combustion; TSR—Total smoke release; av-COY—Average carbon monoxide yield.
    下载: 导出CSV

    表  6  MAH-DOPS/EP残炭的EDS数据

    Table  6.   EDS data of char residues of MAH-DOPS/EP

    SampleChar residueComposites
    C/wt%O/wt%P/wt%S/wt%P/wt%S/wt%
    5wt%MAH-DOPS/EP67.7024.177.061.070.470.48
    10wt%MAH-DOPS/EP64.4529.575.320.280.940.97
    15wt%MAH-DOPS/EP66.0129.184.010.811.411.46
    下载: 导出CSV

    表  7  EP和MAH-DOPS/EP的力学性能

    Table  7.   Mechanical properties of EP and MAH-DOPS/EP

    SampleBending strength/MPaBending modulus/MPaTensile strength/MPaNotched izod impact strengh/(kJ·m−2)
    EP96.472326.6875.193.11
    5wt%MAH-DOPS/EP125.333224.8352.392.94
    10wt%MAH-DOPS/EP140.664099.7047.562.89
    15wt%MAH-DOPS/EP116.463258.9730.632.67
    下载: 导出CSV
  • [1] GHARIEH A, SEYED M S. A systematic study on the synergistic effects of MWCNTs and core-shell particles on the physicomechanical properties of epoxy resin[J]. Scientific Reports,2021,11:20789.
    [2] HUO S Q, SONG P A, YU B, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives[J]. Progress in Polymer Science,2021,114:101366. doi: 10.1016/j.progpolymsci.2021.101366.
    [3] YANG S, HUO S Q, WANG J, et al. A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate[J]. Composites Part B: Engineering,2021,207:108601. doi: 10.1016/j.compositesb.2020.108601.
    [4] DENG J, SHI W F. Synthesis and effect of hyper-branched (3-hydroxyphenyl) phosphate as a curing agent on the thermal and combustion behaviours of novolac epoxy resin[J]. European Polymer Journal,2004,40(6):1137-1143. doi: 10.1016/j.eurpolymj.2003.12.015.
    [5] WANG J Y, QIAN L J, HUANG Z G, et al. Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylene-phosphinate and phosphaphenan-threne in epoxy resin[J]. Polymer Degradation and Stability,2016,130:173-181. doi: 10.1016/j.polymdegradstab.2016.06.010.
    [6] WANG P, CHEN L, XIAO H, et al. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polymer Degradation and Stabi-lity, 2020, 171: 109023.
    [7] SHI Y Q, YU B, ZHENG Y Y, et al. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin[J]. Journal of Colloid and Interface Science,2018,521:160-171. doi: 10.1016/j.jcis.2018.02.054.
    [8] ČOLOVIC M, VASILJEVIC J, ŠTIM Z, et al. New sustainable flame retardant DOPO-NH-functionalized polyamide 6 and filament yarn[J]. Chemical Engineering Journal,2021,426(7):130760.
    [9] JIANG P, GU X Y, ZHANG S, et al. Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant[J]. Industrial & Engineering Chemistry Research,2015,54(11):2974-2982.
    [10] QIAN L J, QIU Y, SUN N, et al. Pyrolysis route of a novel flame retardant constructed by phosphaphenanthrene and triazine-trione groups and its flame-retardant effect on epoxy resin[J]. Polymer Degradation and Stability,2014,107:98-105. doi: 10.1016/j.polymdegradstab.2014.05.007.
    [11] GU L Q, QIU J H. Effect of DOPO-containing flame retardants on poly(lactic acid): Non-flammability, mechanical properties and thermal behaviors[J]. Chemical Research in Chinese Universitie,2017,33(1):143-149. doi: 10.1007/s40242-017-6196-9.
    [12] YU T, TUERHONGJIANG T, SHENG C, et al. Phosphorus-containing diacid and its application in jute/poly(lactic acid) composites: Mechanical, thermal and flammability properties[J]. Composites Part A: Applied Science and Manufacturing,2017,97:60-66. doi: 10.1016/j.compositesa.2017.03.004.
    [13] YANG S, WANG J, HUO S Q, et al. Preparation and flame retardancy of an intumescent flame-retardant epoxy resin system constructed by multiple flame-retardant compositions containing phosphorus and nitrogen heterocycle[J]. Polymer Degradation and Stability,2015,119:251-259. doi: 10.1016/j.polymdegradstab.2015.05.019.
    [14] LIU Y L. Flame-retardant epoxy resins from novel phosphorus-containing novolac[J]. Polymer,2001,42(8):3445-3454. doi: 10.1016/S0032-3861(00)00717-5.
    [15] WANG X, HU Y, SONG L, et al. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on DOPO substituted organophosphorus oligomer[J]. Polymer,2010,51(11):2435-2445. doi: 10.1016/j.polymer.2010.03.053.
    [16] 陈仕梅. 磷杂菲类阻燃剂的合成及在环氧树脂中的应用[D].贵阳: 贵州师范大学, 2018.

    CHEN Shimei. Synthesis of flame retardant based on phospha-phenanthrene and its application in epoxy resin[D]. Guiyang: Guizhou Normal University, 2018(in Chinese).
    [17] 陈仕梅, 来方, 李霈, 等. 磷杂菲类阻燃剂的合成及其与聚磷酸铵复合膨胀体系对环氧树脂的阻燃性能研究[J]. 高分子学报, 2017(8):1358-1365.

    CHEN Shimei, LAI Fang, LI Pei, et al. Synthesis of flame retardant based on phosphaphenanthrene and flame retardancy study of epoxy resin modified by intumescent flame retardant system composed of ammonium polyphosphate[J]. Acta Polymerica Sinica,2017(8):1358-1365(in Chinese).
    [18] 罗继永, 张道海, 周密, 等. PBT/TPU/DOPO-MA阻燃复合材料的制备及性能[J]. 化工进展, 2020, 39(8):3221-3229.

    LUO Jiyong, ZHANG Daohai, ZHOU Mi, et al. Preparation and properties of PBT/TPU/DOPO-MA flame retardant composites[J]. Chemical Industry and Engineering Progress,2020,39(8):3221-3229(in Chinese).
    [19] LIU P, LIU M M, GAO C, et al. Preparation, characterization and properties of a halogen-free phosphorous flameretarded poly(butylene terephthalate) composite based on a DOPO derivative[J]. Journal of Applied Polymer Science,2013,130(2):1301-1307. doi: 10.1002/app.39318.
    [20] 王昱, 罗炎, 张桢. 阻燃型DOPO-马来酸酐改性的环氧树脂研究[J]. 绝缘材料, 2010, 43(3):20-23, 28. doi: 10.3969/j.issn.1009-9239.2010.03.006.

    WANG Yu, LUO Yan, ZHANG Zhen. Study on epoxy resin modified with flame retardant DOPO-MA[J]. Insulating Materials,2010,43(3):20-23, 28(in Chinese). doi: 10.3969/j.issn.1009-9239.2010.03.006.
    [21] 王建航, 许志彦, 张玉鹏, 等. 磷杂菲/环氧树脂复合材料的热分解动力学研究[J]. 功能材料, 2020, 51(11):11152-11158. doi: 10.3969/j.issn.1001-9731.2020.11.022.

    WANG Jianhang, XU Zhiyan, ZHANG Yupeng, et al. Thermal decomposition kinetics of phosphaphenanthrene/epoxy composites[J]. Journal of Functional Materials,2020,51(11):11152-11158(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.11.022.
    [22] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为第1部分: 导则: GB/T 2406.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index—Part 1: Guidance: GB/T 2406.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [23] 中国国家标准化管理委员会. 塑料燃烧性能的测定: 水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24] International Organization for Standardization. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method): ISO 5660-1—2002[S]. Switzerland: International Organization for Standardization, 2002.
    [25] 中国国家标准化管理委员会. 塑料拉伸性能的测定第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [26] 中国国家标准化管理委员会. 塑料弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28] 崔锦峰, 王心远, 郭永亮, 等. P元素杂化本征阻燃热塑性聚氨酯弹性体的制备及其性能研究[J]. 功能材料, 2015, 8(46):8050-8054.

    CUI Jinfeng, WANG Xinyuan, GUO Yongliang, et al. Study on preparation and properties of phosphorus hybrid intrinsic flame retardant thermoplastic polyurethane elastomer[J]. Journal of Functional Materials,2015,8(46):8050-8054(in Chinese).
    [29] 魏振杰, 刘伟区, 李宏静, 等. 含磷有机硅杂化环氧树脂固化体系性能研究[J]. 高分子学报, 2012(2):148-153.

    WEI Zhenjie, LIU Weiqu, LI Hongjing, et al. Propeties of phosphorus-containing organic silicon/epoxy hybrid resin[J]. Acta Polymerica Sinica,2012(2):148-153(in Chinese).
    [30] ZHAO Z, JIN Q, ZHANG N, et al. Preparation of a novel polysiloxane and its synergistic effect with ammonium polyphosphate on the flame retardancy of polypropylene[J]. Polymer Degradation and Stability,2018,150:73-85. doi: 10.1016/j.polymdegradstab.2018.02.007.
    [31] LONG L J, CHANG Q F, HE W T, et al. Effects of bridged DOPO derivatives on the thermal stability and flame retardant properties of poly(lactic acid)[J]. Polymer Degradation and Stability,2017,139:55-66. doi: 10.1016/j.polymdegradstab.2017.03.016.
    [32] LIU L, ZHU M H, MA Z W, et al. A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust[J]. Chemical Engineering Journal,2022,430(1):132712. doi: 10.1016/j.cej.2021.132712.
    [33] YANG Y Y, LIU J, CAI X F, et al. Antagonistic flame retardancy between hexakis(4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulf-one sulfonate in the PC system[J]. Journal of Thermal Analysis Calorimetry,2016,126(2):571-583. doi: 10.1007/s10973-016-5519-2.
    [34] BATTIG A, MARKWARTT J, WURM F, et al. Sulfur's role in the flame retardancy of thio-ether-linked hyperbranched poly(phosphoesters) in epoxy resins[J]. European Polymer Journal,2019,122:109390.
    [35] 张通, 龙丽娟, 何文涛, 等. 9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物衍生物阻燃聚乳酸的性能研究[J]. 高分子学报, 2019, 50(1): 71-81.

    ZHANG Tong, LONG Lijuan, HE Wentao, et al. Flame-retardant properties of 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivatives in poly(lactic acid)[J]. Acta Polymerica Sinica, 2019, 50(1): 71-81(in Chinese).
    [36] 徐文静, 龙丽娟, 徐国敏, 等. DOPO衍生物/聚乳酸复合材料的热降解、阻燃及力学性能[J]. 复合材料学报, 2021, 38(9):2848-2861.

    XU Wenjing, LONG Lijuan, XU Guomin, et al. Thermal degradation, flame retardancy and mechanical properties of DOPO derivatives/poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica,2021,38(9):2848-2861(in Chinese).
    [37] WANG P, XIA L, JIAN R K, et al. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: Preparation, thermal stability, and flame retardance[J]. Polymer Degradation and Stability,2018,149:69-77. doi: 10.1016/j.polymdegradstab.2018.01.026.
    [38] 张通. 桥链基团对双DOPO膦酸酯阻燃聚乳酸性能的影响[D]. 贵阳: 贵州大学, 2019.

    ZHANG Tong. Synthesis of DOPO phosphonates and their flame retardant mechanism on polylactic acid[D]. Guiyang: Guizhou University, 2019(in Chinese).
    [39] 魏柯. 磷杂菲类阻燃剂的制备及其在聚乳酸中的应用研究[D]. 贵阳: 贵州大学, 2019.

    WEI Ke. Preparation of phosphorus phenanthrene flame retardant and its application in polylactic acid[D]. Guiyang: Guizhou University, 2019(in Chinese).
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  940
  • HTML全文浏览量:  434
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2021-12-02
  • 录用日期:  2021-12-10
  • 网络出版日期:  2021-12-28
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回