留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能

胡正浪 吴海华 杨增辉 姜建堂 周建新

胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316. doi: 10.13801/j.cnki.fhclxb.20210903.004
引用本文: 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316. doi: 10.13801/j.cnki.fhclxb.20210903.004
HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316. doi: 10.13801/j.cnki.fhclxb.20210903.004
Citation: HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316. doi: 10.13801/j.cnki.fhclxb.20210903.004

石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能

doi: 10.13801/j.cnki.fhclxb.20210903.004
基金项目: 国家自然科学基金(51575313);华中科技大学材料成形与模具技术国家重点实验室开放课题研究基金(P2020-003)
详细信息
    通讯作者:

    吴海华,博士,教授,博士生导师,研究方向为3D打印吸波材料及其工程应用技术 E-mail: wuhaihua@ctgu.edu.cn

  • 中图分类号: TB34;TP391.73

Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties

  • 摘要: 发展轻量化、宽频带的微波吸收材料来应对严重的电磁污染是一个巨大的挑战。本文通过熔融沉积成形(FDM)工艺制备出石墨烯(GR)-铁镍合金(FeNi50)-聚乳酸(PLA)复合材料,采用XRD、Raman、SEM和矢量网络分析仪(VNA)对复合材料的物相结构、微观形貌和电磁性能进行表征分析,并讨论了GR-FeNi50质量比对复合材料吸波性能的影响。结果表明,与未添加GR的复合材料相比,复合材料内部形成了触发极化损耗的异质界面,并产生了丰富的褶皱和孔隙,从而增强了微波的多次反射和散射;随着GR-FeNi50质量比的增加,吸波性能先增强、后减弱,当GR-FeNi50质量比为4∶20时,吸波性能最佳,最小反射损耗达到−40.5 dB,有效吸收带宽为4.7 GHz(13.28~18 GHz)。其优异的吸波性能归因于良好的阻抗匹配和界面极化损耗、偶极极化损耗、电导损耗、磁损耗之间的协同作用。此外,与湿化学法制备的吸波材料相比,GR-FeNi50-PLA复合材料在环保、易加工和规模化生产方面具有优势。

     

  • 图  1  石墨烯(GR)的SEM (a) 和TEM (b) 图像;铁镍合金(FeNi50) (c) 和聚乳酸(PLA) (d) 的SEM图像

    Figure  1.  SEM image (a) and TEM image (b) of graphene (GR); SEM images of Fe-Ni alloy (FeNi50) (c) and polylactic acid (PLA) (d)

    图  2  (a) GR的N2吸附-脱附等温线;(b) PLA的TG和DSC曲线

    Figure  2.  (a) N2 adsorption-desorption isothermals of GR; (b) TG and DSC curves of PLA

    Sg—Specific surface area of the tested sample; vm—Saturated adsorption capacity of N2 molecule monolayer in standard state; Tm—Melting temperature; Td—Decomposition temperature

    图  3  (a) GR-FeNi50-PLA复合粉末;(b) GR-FeNi50-PLA复合线材;(c) 测试用的同轴环

    Figure  3.  (a) GR-FeNi50-PLA composite powders; (b) GR-FeNi50-PLA composite filaments; (c) Coaxial rings of testing

    图  4  不同GR质量分数GR-FeNi50-PLA复合材料的XRD图谱

    Figure  4.  XRD patterns of GR-FeNi50-PLA composites with different GR mass fraction

    图  5  不同GR质量分数GR-FeNi50-PLA复合材料的拉曼光谱

    Figure  5.  Raman spectra of GR-FeNi50-PLA composites with different GR mass fraction

    ID/IG—Intensity ratio of the D band to the G band

    图  6  不同GR-FeNi50质量比GR-FeNi50-PLA复合材料的SEM图像

    Figure  6.  SEM images of GR-FeNi50-PLA composites with different GR-FeNi50 mass ratio

    图  7  6个不同GR-FeNi50质量比同轴环的电磁参数:在2~18 GHz频率范围内,复介电常数的实部(a)、虚部(b)和介电损耗角正切(c);复磁导率的实部(d)、虚部(e)和磁损耗角正切(f)

    Figure  7.  Electromagnetic parameters of six coaxial rings with different GR-FeNi50 mass ratio: Real part (a), imaginary part (b); tangent dielectric loss (c) of the complex permittivity; Real part (d), imaginary part (e), tangent magnetic loss (f) of the complex permeability in the frequency range of 2–18 GHz

    图  8  不同GR-FeNi50质量比GR-FeNi50-PLA复合材料的的Cole–Cole曲线

    Figure  8.  Cole–Cole curves of GR-FeNi50-PLA composites with different GR-FeNi50 mass ratios

    图  9  不同GR-FeNi50质量比GR-FeNi50-PLA复合材料的的电导率

    Figure  9.  Conductivity of GR-FeNi50-PLA composites with different GR-FeNi50 mass ratios

    图  10  GR-FeNi50-PLA复合材料的电磁损耗机制示意图

    Figure  10.  Schematic illustration of electromagnetic loss mechanism of GR-FeNi50-PLA composites

    图  11  不同GR-FeNi50质量比GR-FeNi50-PLA复合材料的$ \mu ''{(\mu \prime )}^{-2}{f}^{-1} $计算值

    Figure  11.  Calculated $ \mu ''{(\mu \prime )}^{-2}{f}^{-1} $ for GR-FeNi50-PLA composites with different GR-FeNi50 mass ratios

    图  12  0wt GR-FeNi50-PLA (a)、 1wt%GR-FeNi50-PLA (b)、 2wt%GR-FeNi50-PLA (c)、3wt%GR-FeNi50-PLA (d)、4wt%GR-FeNi50-PLA (e) 和5wt%GR-FeNi50-PLA (f) 的反射损耗三维图和吸波曲线

    Figure  12.  3D maps of reflection loss and microwave absorption curves of 0wt%GR-FeNi50-PLA (a), 1wt%GR-FeNi50-PLA (b),2wt%GR-FeNi50-PLA (c), 3wt%GR-FeNi50-PLA (d), 4wt%GR-FeNi50-PLA (e) and 5wt%GR-FeNi50-PLA (f)

    RLmin—Minimum reflection loss; EAB—Electromagnetic wave absorption bandwidth

    图  13  (a) 不同GR-FeNi50质量比GR-FeNi50-PLA复合材料的衰减常数;(b) 4wt% GR-FeNi50-PLA的delta值二维图;(c) 5wt% GR-FeNi50-PLA的delta值二维图

    Figure  13.  (a) Attenuation constant of GR-FeNi50-PLA composites with different GR-FeNi50 mass ratio; Calculated delta value 2D maps: (b) 4wt% GR-FeNi50-PLA and (c) 5wt% GR-FeNi50-PLA

    表  1  GR-FeNi50-PLA复合材料的组分

    Table  1.   Components of GR-FeNi50-PLA composites

    SampleMass fraction/wt%
    GRFeNi50PLA
    0wt%GR-FeNi50-PLA 0 20 80
    1wt%GR-FeNi50-PLA 1 20 79
    2wt%GR-FeNi50-PLA 2 20 78
    3wt%GR-FeNi50-PLA 3 20 77
    4wt%GR-FeNi50-PLA 4 20 76
    5wt%GR-FeNi50-PLA 5 20 75
    下载: 导出CSV

    表  2  近3年其他文献GR基磁性复合材料吸波性能比较

    Table  2.   Comparison of microwave absorption performance of GR-based magnetic composites in other literature in the last 3 years

    MaterialMatrix$ {\text{R}}{{\text{L}}_{{\text{min}}}} $/dB (mm)Bandwidth/GHzRef.
    FeNi3/N-GN Paraffin −57.2(1.45) 3.4 [10]
    KH550@Fe3O4/rGO Paraffin −49.32(1.48) 9.52 [39]
    ZnCO2O4/C/MG Paraffin −52.9(3.5) 4.48 [42]
    Fe3O4@SiO2−rGO Paraffin −55.4(3.7) 6.24 [43]
    SiC/Fe3O4/rGO Paraffin −30.3(2.0) 6.65 [44]
    Fe-Co/NC/rGO Paraffin −43.26(2.5) 9.29 [45]
    CoFe2O4/graphene Paraffin −55.2(1.7) 5.4 [46]
    Co/NPC@ZnO/rGO Paraffin −25.4(2.0) 5.4 [47]
    SGN/Fe3O4 Paraffin −41(2.0) 5.3 [48]
    Fe3O4−doped graphene Paraffin −53.6(1.8) 5.0 [49]
    GR-FeNi50-PLA PLA −40.5(1.5) 4.7 This work
    Notes: SGN—Sulfide doped graphene; MG—Magnetic graphene; GN—Graphene nanocrystals.
    下载: 导出CSV
  • [1] HUANG L, DUAN Y, DAI X, et al. Bioinspired metamater-ials: Multibands electromagnetic wave adaptability and hydrophobic characteristics[J]. Small,2019,15(40):1902730. doi: 10.1002/smll.201902730
    [2] LIU J, ZHANG H, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [3] WANG C, MURUGADOSS V, KONG J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon,2018,140:696-733. doi: 10.1016/j.carbon.2018.09.006
    [4] WANG J, HUYAN Y, YANG Z, et al. Tubular carbon nano-fibers: Synthesis, characterization and applications in microwave absorption[J]. Carbon,2019,152:255-266. doi: 10.1016/j.carbon.2019.06.048
    [5] WANG Y, GAO X, WU X, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber[J]. Chemical Engineering Journal,2019,375:121942. doi: 10.1016/j.cej.2019.121942
    [6] LI Y, LIU X, LIU R, et al. Improved microwave absorption properties by atomic-scale substitutions[J]. Carbon,2018,139:181-188. doi: 10.1016/j.carbon.2018.06.030
    [7] SHEN Z, XING H, WANG H, et al. Synthesis and enhanced electromagnetic absorption properties of Co-doped CeO2/RGO nanocomposites[J]. Journal of Alloys and Compounds,2018,753:28-34. doi: 10.1016/j.jallcom.2018.04.195
    [8] SHU R, WAN Z, ZHANG J, et al. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers[J]. ACS Applied Materials & Interfaces,2020,12(4):4689-4698.
    [9] 吴海华, 胡正浪, 李雨恬, 等. 熔融沉积成形制备铁镍合金/聚乳酸复合材料的电磁吸收性能与力学性能[J]. 复合材料学报, 2022, 39(1):172-182.

    WU H H, HU Z L, LI Y T, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2022,39(1):172-182(in Chinese).
    [10] FENG J, ZONG Y, SUN Y, et al. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance[J]. Chemical Engineering Journal,2018,345:441-451. doi: 10.1016/j.cej.2018.04.006
    [11] GUAN Z J, JIANG J T, YAN S J, et al. Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting synergetic electromagnetic loss effect[J]. Journal of Colloid and Interface Science,2020,561:687-695. doi: 10.1016/j.jcis.2019.11.045
    [12] WANG S, ZHAO Y, XUE H, et al. Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties[J]. Materials Letters,2018,223:186-189. doi: 10.1016/j.matlet.2018.04.050
    [13] YIN P, DENG Y, ZHANG L, et al. One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band[J]. Ceramics International,2018,44(17):20896-20905. doi: 10.1016/j.ceramint.2018.08.096
    [14] HEIDARI P, MASOUDPANAH S M. A facial synthesis of MgFe2O4/RGO nanocomposite powders as a high performance microwave absorber[J]. Journal of Alloys and Compounds,2020,834:155166. doi: 10.1016/j.jallcom.2020.155166
    [15] CHEN W, LIU Q, ZHU X, et al. One-stepin situ growth of magnesium ferrite nanorods on graphene and their microwave-absorbing properties[J]. Applied Organometallic Chemistry,2018,32(2):e4017.
    [16] HU C, LI Z, WANG Y, et al. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocompo-sites: Reduced graphene oxide or carbon nanotubes[J]. Journal of Materials Chemistry C,2017,5(9):2318-2328. doi: 10.1039/C6TC05261D
    [17] FAN J X, ZHANG L, WEI S S, et al. A review of additive manu-facturing of metamaterials and developing trends[J]. Materials Today,2021,50:303-328.
    [18] CHENG Y, SEOW J Z Y, ZHAO H, et al. A flexible and lightweight biomass-reinforced microwave absorber[J]. Nano-Micro Letters,2020,12(10):5-19.
    [19] XIANG Z, SONG Y, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon,2019,142:20-31. doi: 10.1016/j.carbon.2018.10.014
    [20] LIN Y, DAI J, YANG H, et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal,2018,334:1740-1748. doi: 10.1016/j.cej.2017.11.150
    [21] YANG L, LV H, LI M, et al. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 compo-sites and their wideband electromagnetic wave absorption properties[J]. Chemical Engineering Journal,2020,392:123666. doi: 10.1016/j.cej.2019.123666
    [22] LV H, ZHANG H, JI G, et al. Interface strategy to achieve tunable high frequency attenuation[J]. ACS Applied Materials & Interfaces,2016,8(10):6529-6538.
    [23] CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials,2019,29(25):1807398. doi: 10.1002/adfm.201807398
    [24] LIANG X, QUAN B, MAN Z, et al. Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation[J]. ACS Applied Materials & Interfaces,2019,11(33):30228-30233.
    [25] LIU W, TAN S, YANG Z, et al. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design[J]. ACS Applied Materials & Interfaces,2018,10(37):31610-31622. doi: 10.1021/acsami.8b10685
    [26] ZHANG N, HUANG Y, ZONG M, et al. Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber[J]. Chemical Engineering Journal,2017,308:214-221. doi: 10.1016/j.cej.2016.09.065
    [27] YANG Y, XIA L, ZHANG T, et al. Fe3O4@LAS/RGO compo-sites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal,2018,352:510-518. doi: 10.1016/j.cej.2018.07.064
    [28] LV H, GUO Y, WU G, et al. Interface polarization strategy to solve electromagnetic wave interference issue[J]. ACS Applied Materials & Interfaces,2017,9(6):5660-5668.
    [29] LIU W, LIU L, JI G, et al. Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties[J]. ACS Sustainable Chemistry & Engineering,2017,5(9):7961-7971.
    [30] DENG B, XIANG Z, XIONG J, et al. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption[J]. Nano-Micro Letters,2020,12(4):125-140.
    [31] ZHANG Z, CAI Z, WANG Z, et al. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials[J]. Nano-Micro Letters,2021,13(4):7-35.
    [32] FENG J, HOU Y, WANG Y, et al. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces,2017,9(16):14103-14111. doi: 10.1021/acsami.7b03330
    [33] CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen der Physik,2019,531(4):1800390. doi: 10.1002/andp.201800390
    [34] CAO M, CAI Y, HE P, et al. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal,2019,359:1265-1302. doi: 10.1016/j.cej.2018.11.051
    [35] LIU D, DU Y, LI Z, et al. Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties[J]. Journal of Materials Chemistry C,2018,6(36):9615-9623. doi: 10.1039/C8TC02931H
    [36] XIANG J, LI J, ZHANG X, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A,2014,2(40):16905-16914. doi: 10.1039/C4TA03732D
    [37] XU Z, DU Y, LIU D, et al. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption[J]. ACS Applied Materials & Interfaces,2019,11(4):4268-4277.
    [38] ZHANG Y, WANG X, CAO M. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research,2018,11(3):1426-1436. doi: 10.1007/s12274-017-1758-1
    [39] SHU X, REN H, JIANG Y, et al. Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites[J]. Journal of Materials Chemistry C,2020,8(8):2913-2926. doi: 10.1039/C9TC05658K
    [40] LIAN Y, HAN B, LIU D, et al. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption[J]. Nano-Micro Letters,2020,12(11):145-157.
    [41] WANG X, PAN F, XIANG Z, et al. Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance[J]. Carbon,2020,157:130-139. doi: 10.1016/j.carbon.2019.10.030
    [42] LIU X, HUANG Y, ZHANG N, et al. Fabrication of carbon-doped ZnCo2O4 yolk-shell microspheres compounded with magnetic graphene for enhanced electromagnetic wave absorption performance[J]. Ceramics International,2019,45(16):19720-19729. doi: 10.1016/j.ceramint.2019.06.224
    [43] LIU X, HUANG Y, YAN J, et al. Covalently bonded Fe3O4@SiO2-reduced graphene oxide nanocomposites as high-efficiency electromagnetic wave absorbers[J]. Ceramics International,2020,46(4):5175-5184. doi: 10.1016/j.ceramint.2019.10.263
    [44] 王玉江, 黄威, 黄玉炜, 等. SiC/Fe3O4/rGO复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10):1624-1629. doi: 10.11896/cldb.18060055

    WANG Y J, HUANG W, HUANG Y W, et al. Preparation and microwave absorbing properties of SiC/Fe3O4/rGO composite materials[J]. Materials reports,2019,33(10):1624-1629(in Chinese). doi: 10.11896/cldb.18060055
    [45] WANG S, XU Y, FU R, et al. Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO compo-sites for broadband microwave absorption[J]. Nano-Micro Letters,2019,11(4):337-352.
    [46] ZHANG N, LIU X, HUANG Y, et al. Novel nanocomposites of cobalt ferrite covalently-grafted on graphene by amide bond as superior electromagnetic wave absorber[J]. Jour-nal of Colloid and Interface Science,2019,540:218-227. doi: 10.1016/j.jcis.2019.01.025
    [47] KANG S, ZHANG W, HU Z, et al. Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber[J]. Journal of Alloys and Compounds,2020,818:152932. doi: 10.1016/j.jallcom.2019.152932
    [48] CHEN C, BAO S, ZHANG B, et al. Development of sulfide-doped Graphene/Fe3O4 absorber with wide band electromagnetic absorption performance[J]. Journal of Alloys and Compounds,2019,770:90-97. doi: 10.1016/j.jallcom.2018.08.057
    [49] WANG X, MA T, SHU J, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal,2018,332:321-330. doi: 10.1016/j.cej.2017.09.101
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1194
  • HTML全文浏览量:  732
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-08-10
  • 录用日期:  2021-08-17
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回