留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维泡沫混凝土的细观结构及损伤特性

周程涛 陈波 张娟 李松

周程涛, 陈波, 张娟, 等. 玄武岩纤维泡沫混凝土的细观结构及损伤特性[J]. 复合材料学报, 2024, 41(8): 4225-4234. doi: 10.13801/j.cnki.fhclxb.20231109.001
引用本文: 周程涛, 陈波, 张娟, 等. 玄武岩纤维泡沫混凝土的细观结构及损伤特性[J]. 复合材料学报, 2024, 41(8): 4225-4234. doi: 10.13801/j.cnki.fhclxb.20231109.001
ZHOU Chengtao, CHEN Bo, ZHANG Juan, et al. Microstructure and damage characteristics of basalt fiber reinforced foam concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4225-4234. doi: 10.13801/j.cnki.fhclxb.20231109.001
Citation: ZHOU Chengtao, CHEN Bo, ZHANG Juan, et al. Microstructure and damage characteristics of basalt fiber reinforced foam concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4225-4234. doi: 10.13801/j.cnki.fhclxb.20231109.001

玄武岩纤维泡沫混凝土的细观结构及损伤特性

doi: 10.13801/j.cnki.fhclxb.20231109.001
基金项目: 国家自然科学基金面上项目(52079049);国家重点实验室基本科研业务费(522012272;5230248 A2)
详细信息
    通讯作者:

    陈波,博士,教授,博士生导师,研究方向为水工混凝土新材料 E-mail: chenbo@hhu.edu.cn

  • 中图分类号: TU528.2;TB332

Microstructure and damage characteristics of basalt fiber reinforced foam concrete

Funds: General Program of National Natural Science Foundation of China (52079049); Basic Scientific Research Business Expenses of National Key Laboratories (522012272; 5230248 A2)
  • 摘要: 为了研究玄武岩纤维增强泡沫混凝土的细观结构特征和不同纤维掺量对其损伤特性的影响,本文对密度等级1000 kg/cm3的玄武岩纤维增强泡沫混凝土开展了X-CT试验及单轴压缩-声发射联合试验,基于Avizo图像处理及声发射bi值(改进版b值)等参数分析了纤维及孔隙的细观结构特征及材料损伤演化特性。结果表明:掺入玄武岩纤维可有效改善泡沫混凝土力学性能,掺入0.5vol%、1.5vol%、2.5vol%纤维后试件平均抗压强度分别提升了1.37 MPa、4.58 MPa、2.77 MPa;2.5vol%掺量的试件中纤维分形维数主要在1.0~1.3,纤维团聚明显,纤维角度集中,试件性能较1.5vol%掺量有所降低;掺入玄武岩纤维后试件声发射bi值趋势更平缓,玄武岩纤维可有效抑制裂纹发育。

     

  • 图  1  玄武岩纤维

    Figure  1.  Basalt fiber

    图  2  BFRFC的X-CT图像分析示意图

    Figure  2.  X-CT image analysis diagram of BFRFC

    图  3  泡沫混凝土中玄武岩纤维三维分布图

    Figure  3.  Three-dimensional distribution of basalt fiber in foam concrete

    图  4  玄武岩纤维三向均匀性分析图

    Figure  4.  Three-dimensional uniformity analysis diagram of basalt fiber

    图  5  空间方位角θ和极角φ示意图

    Figure  5.  Spatial azimuth θ and polar angle φ diagram

    图  6  纤维角度空间分布

    Figure  6.  Spatial distribution of fiber angle

    图  7  BFRFC的孔隙球形度

    Figure  7.  Pore sphericity of BFRFC

    图  8  BFRFC的单轴压缩应力-应变曲线

    Figure  8.  Uniaxial compression stress-strain curves of BFRFC

    图  9  BFRFC的声发射信号参数

    Figure  9.  Acoustic emission signal parameters of BFRFC

    图  10  BFRFC的声发射$ {b}_{\mathrm{i}} $值

    Figure  10.  Acoustic emission $ {b}_{\mathrm{i}} $ value of BFRFC

    表  1  玄武岩纤维增强泡沫混凝土(BFRFC)的配合比

    Table  1.   Mix proportion of basalt fiber reinforced foam concrete (BFRFC)

    SampleMix proportion/(kg·m−3)Wet density/(kg·m−3)Dry density/(kg·m−3)
    CementWaterFoamBasalt fiber
    0%BF/FC-1743.05371.5321.38 011701033
    0%BF/FC-2743.05371.5321.38 012001046
    0%BF/FC-3743.05371.5321.38 011801041
    0.5%BF/FC-1743.05371.5321.38 4.212061052
    0.5%BF/FC-2743.05371.5321.38 4.212001050
    0.5%BF/FC-3743.05371.5321.38 4.211991048
    1.5%BF/FC-1743.05371.5321.38 8.411691032
    1.5%BF/FC-2743.05371.5321.38 8.411701035
    1.5%BF/FC-3743.05371.5321.38 8.411721036
    2.5%BF/FC-1743.05371.5321.3812.611811045
    2.5%BF/FC-2743.05371.5321.3812.612031047
    2.5%BF/FC-3743.05371.5321.3812.612081050
    Notes: The specimen number as 0.5%BF/FC-1, where 0.5%BF/FC represents the volume ratio of basalt fiber, and 1 represents the specimen number; BF—Basalt fiber; FC—Foam concrete.
    下载: 导出CSV
  • [1] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410. doi: 10.14062/j.issn.0454-5648.20200316

    SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410(in Chinese). doi: 10.14062/j.issn.0454-5648.20200316
    [2] GUO Y Z, CHEN X D, CHEN B, et al. Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography[J]. Construction and Building Materials, 2021, 273: 121773. doi: 10.1016/j.conbuildmat.2020.121773
    [3] 袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127.

    YUAN Zhiying, CHEN Bo, CHEN Jialin, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127(in Chinese).
    [4] AMRAN M, FEDIUK R, VATIN N, et al. Fibre-reinforced foamed concretes: A review[J]. Materials, 2020, 13(19): 4323.
    [5] GENCEL O, NODEHI M, YAVUZ BAYRAKTAR O, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials, 2022, 326: 126861. doi: 10.1016/j.conbuildmat.2022.126861
    [6] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.

    WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585(in Chinese).
    [7] 程新, 詹炳根, 周安. 玄武岩纤维对泡沫混凝土收缩开裂的影响[J]. 合肥工业大学学报(自然科学版), 2019, 42(8): 1114-1118.

    CHENG Xin, ZHAN Binggen, ZHOU An. Effect of basalt fiber on shrinkage and cracking of foam concrete[J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(8): 1114-1118(in Chinese).
    [8] 范然森, 程新, 詹炳根. 玄武岩纤维泡沫混凝土性能研究及抗裂评价[J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1223-1228.

    FAN Ransen, CHENG Xin, ZHAN Binggen. Performance study and crack resistance evaluation of basalt fiber foam concrete[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(9): 1223-1228(in Chinese).
    [9] YAVUZ BAYRAKTAR O, KAPLAN G, GENCEL O, et al. Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag[J]. Construction and Building Materials, 2021, 288: 123128. doi: 10.1016/j.conbuildmat.2021.123128
    [10] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能[J]. 建筑材料学报, 2023, 26(7): 723-730. doi: 10.3969/j.issn.1007-9629.2023.07.004

    GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.07.004
    [11] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1): 93-98.

    PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials, 2017, 20(1): 93-98(in Chinese).
    [12] 焦华喆, 吴亚闯, 陈峰宾, 等. 基于可视化分析的玄武岩纤维喷射混凝土微观结构研究[J]. 土木工程学报, 2020, 53(S1): 371-377. doi: 10.15951/j.tmgcxb.2020.s1.059

    JIAO Huazhe, WU Yachuang, CHEN Fengbin, et al. Microstructure of basalt fiber shotcrete based on visual analysis[J]. China Civil Engineering Journal, 2020, 53(S1): 371-377(in Chinese). doi: 10.15951/j.tmgcxb.2020.s1.059
    [13] CHEN B, CHEN J L, CHEN X D, et al. Experimental study on compressive strength and frost resistance of steam cured concrete with mineral admixtures[J]. Construction and Building Materials, 2022, 325: 126725. doi: 10.1016/j.conbuildmat.2022.126725
    [14] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T 266—2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Foamed concrete: JG/T 266—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [15] 中华人民共和国国家质量监督检验检疫总局. 无损检测 声发射检测 总则: GB/T 26644—2011 [S]. 北京: 中国质检出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. General principles of acoustic emission testing for non-destructive testing: GB/T 26644—2011[S]. Beijing: China Quality Inspection Press, 2011(in Chinese).
    [16] PÉREZ BERNAL J L, BELLO M A. Fractal geometry and mercury porosimetry[J]. Applied Surface Science, 2001, 185: 99-107. doi: 10.1016/S0169-4332(01)00649-3
    [17] 詹奇淇, 詹炳根. 玄武岩纤维增强泡沫混凝土韧性及抗压强度试验研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(5): 667-672.

    ZHAN Qiqi, ZHAN Binggen. Experimental study on toughness and compressive strength of basalt fiber reinforced foamed concrete[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(5): 667-672.
    [18] 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241. doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304011

    ZHOU Chengtao, CHEN Bo, GAO Zhihan. Uniaxial compression characteristics of foamed concrete under freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1233-1241(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304011
    [19] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6): 1146-1153. doi: 10.3969/j.issn.1007-9629.2021.06.004

    LI Shengtao, CHEN Xudong, ZHANG Jinhua, et al. Failure characteristics of foam concrete with different density under uniaxial compression[J]. Journal of Building Materials, 2021, 24(6): 1146-1153(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.06.004
    [20] GUTENBERG B, RICHTER C F. Frequency of earthquakes in California[J]. Nature, 1945, 156: 371.
    [21] LI S L, HOU J, GUO P, et al. Analysis of acoustic emission parameters of steel plate reinforcement effect on shearing zone of ECC-NC composite beams[J]. Engineering Structures, 2022, 266: 114505. doi: 10.1016/j.engstruct.2022.114505
    [22] LIU F, GUO R, LIN X J, et al. Monitoring the damage evolution of reinforced concrete during tunnel boring machine hoisting by acoustic emission[J]. Construction and Building Materials, 2022, 327: 127000. doi: 10.1016/j.conbuildmat.2022.127000
    [23] 曾鹏, 曹蔚, 赵奎, 等. 选矿废水拌合尾砂胶结充填体强度演化规律及声发射特征[J/OL]. 煤炭学报:1-13[2024-06-17].

    ZENG Peng, CAO Wei, ZHAO Kui, et al. Strength evolution and acoustic emission characteristics of cemented tailing filling body mixed with mineral processing wastewater[J/OL]. Journal of China Coal Society, 1-13[2024-06-17] (in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  184
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-10-20
  • 录用日期:  2023-11-02
  • 网络出版日期:  2023-11-10
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回