留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EPS-石墨烯-水泥基复合吸波材料的制备与性能

杨元意 石显芸 丁仕豪 陈博雨 邹蕊麒 李才英 杨婷婷

杨元意, 石显芸, 丁仕豪, 等. EPS-石墨烯-水泥基复合吸波材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 杨元意, 石显芸, 丁仕豪, 等. EPS-石墨烯-水泥基复合吸波材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-16.
YANG Yuanyi, Shi Xianyun, DING Shihao, et al. Preparation and Electromagnetic Absorbing Performance of EPS-Graphene-Cement-based Composites[J]. Acta Materiae Compositae Sinica.
Citation: YANG Yuanyi, Shi Xianyun, DING Shihao, et al. Preparation and Electromagnetic Absorbing Performance of EPS-Graphene-Cement-based Composites[J]. Acta Materiae Compositae Sinica.

EPS-石墨烯-水泥基复合吸波材料的制备与性能

基金项目: 国家自然科学基金(52008359);中国博士后面上项目(2020M673284)
详细信息
    通讯作者:

    杨元意,博士,副教授,硕士生导师,研究方向为新型建筑材料, E-mail: yangyuanyi@swpu.edu.cn

  • 中图分类号: TU525;TB332

Preparation and Electromagnetic Absorbing Performance of EPS-Graphene-Cement-based Composites

Funds: National Natural Science Foundation of China (No. 52008359); China Postdoctoral Science Foundation (No. 2020M673284)
  • 摘要: 为了应对城市建筑空间的电磁辐射威胁,本文研究了多层石墨烯(Multilayer graphene,MG)与发泡聚苯乙烯(Expanded polystyrene,EPS)球形颗粒对水泥基复合材料电磁吸波性能的影响规律,探究了双层平板结构EPS-MG-水泥基复合吸波材料的最优组合,阐述了该复合材料的吸波作用机制。实验结果表明:复合材料中的EPS颗粒在基体内形成了独特的多孔阵列结构,显著增强了材料与自由空间的电磁匹配性能;并且EPS球形颗粒既是透波剂也是谐振腔,在合理的掺量下能与MG搭配形成良好的多孔导电网络,可通过界面极化、电阻损耗以及极化弛豫等方式吸收入射电磁波的能量。在此基础上,通过双层平板组合结构,充分利用密度梯度及层间效应,进一步提高了电磁波能量在传输过程中的耗散作用,实现了结构与材料组分之间良好的协同增强效果,在2~18 GHz的有效吸收带宽达到了7.93 GHz,并获得−18.80 dB的最强吸收峰,具备良好的电磁吸波性能,为低成本建筑吸波材料的发展提供了新思路。

     

  • 图  1  试样制备流程及性能测试

    Figure  1.  The specimen preparation process and test

    图  2  试样双层浇筑示意图

    Figure  2.  The specimen preparation process

    图  3  不同EPS体积掺量下水泥基复合材料的(a)介电常数;(b)介电损耗角正切;(c)归一化阻抗;(d)损耗系数;(e) RL曲线;(f) RL等高线图;(g)有效带宽

    Figure  3.  (a) Permittivity; (b) Dielectric loss tangent; (c) Normalized impedance; (d) Loss coefficients; (e) RL curves; (f) RL contour map; (g) Bandwidth of absorbing composites with different EPS volume content

    图  4  不同EPS粒径复合材料的(a)介电常数;(b)介电损耗角正切;(c)归一化阻抗;(d)衰减系数;(e) RL曲线图;(f) RL等高线图;(g)有效带宽

    Figure  4.  (a) Permittivity; (b) Dielectric loss tangent; (c) Normalized impedance; (d) Loss coefficient; (e) RL curve diagram; (f) RL contour map; (g) Effective bandwidth of absorbing composites with different EPS particle size

    图  5  EPS为20 vol.%时不同MG掺量下EPS/水泥基复合吸波材料的(a)介电常数;(b)介电损耗角正切;(c)归一化阻抗;(d)衰减系数

    Figure  5.  (a) Permittivity; (b) Dielectric loss tangent; (c) Normalized impedance; (d) Loss coefficient of cement-based EPS absorbing composites with 20 vol.% EPS and different dosage of MG

    图  6  EPS为30 vol.%时不同MG掺量下EPS/水泥基复合吸波材料的(a)介电常数;(b)介电损耗角正切;(c)归一化阻抗;(d)衰减系数

    Figure  6.  (a) Permittivity; (b) Dielectric loss tangent; (c) Normalized impedance; (d) Loss coefficient of cement-based EPS absorbing composites with 30 vol.% EPS and different dosage of MG

    图  7  EPS为40 vol.%时不同MG掺量下EPS-MG-水泥基复合吸波材料的(a)介电常数;(b)介电损耗角正切;(c)归一化阻抗;(d)衰减系数

    Figure  7.  (a) Permittivity; (b) Dielectric loss tangent; (c) Normalized impedance; (d) Loss coefficient of cement-based EPS absorbing composites with 40 vol.% EPS and different dosage of MG

    图  8  EPS掺量为(a)20 vol.%;(b)30 vol.%;(c)40 vol.%时,与不同含量MG复掺的吸波材料的RL曲线及(d)有效带宽

    Figure  8.  The RL curves and (d)effective bandwidths of wave-absorbing materials doped with different contents of MG were obtained when EPS content was (a) 20 vol.%, (b) 30 vol.%, (c) 40 vol.%.

    图  9  双层结构EPS-MG-水泥基复合吸波材料的(a)结构示意图和(b)不同EPS掺量及厚度组合试件的吸波性能;(c) E30+E30 MG1.5试件的理论计算与实测RL对比图

    Figure  9.  (a) Structure diagram of the double-layer EPS-MG-cement-based composite absorbing material and (b) the absorbing properties of the combined specimens with different EPS content and thickness; (c) Comparison of calculated and experimental RL values of E30+E30 MG1.5

    图  10  典型单层介质材料RL曲线的干涉吸收峰

    Figure  10.  Coherent absorption peaks in the RL curve of a typical single-layer dielectric material

    图  11  E20MG1.5样品在(a) 8~12 GHz和(b) 12~18 GHz频率范围内各吸收峰处的Cole-Cole半圆曲线图

    Figure  11.  The Cole-Cole semicircle curves at the absorbing peaks in the frequency of (a) 8~12 GHz and (b) 12~18 GHz of sample E20MG1.5

    图  12  (a) EPS-MG-水泥基材料的Smith图和吸波机制图:(b1)多重反射;(b2)电阻损耗;(b3)偶极子极化;(b4)界面极化

    Figure  12.  The (a) Smith chart and schematic diagram of the absorption mechanism of EPS-MG-cement-based composites: (b1) multi-reflection; (b2) resistive loss; (b3) dipole polarization; (b4) interfacial polarization

    表  1  多层石墨烯(MG)的主要性能参数

    Table  1.   Main properties of Multilayer graphene (MG)

    SizeLayerPurityThicknessCarbon content
    5~50 μm5~10>95%3.4~8 nm<97%
    下载: 导出CSV

    表  2  发泡聚苯乙烯(EPS)-MG-水泥基复合吸波材料试样配比

    Table  2.   Expanded polystyrene (EPS)-MG-cement-based composite wave-absorbing material specimen proportioning

    Sample Cement/g W: C EPS/vol.% MG/wt.% EPS particle size range/mm SP/g
    E20 276.80 0.40 20 / 1~2 0.14
    E30 242.20 0.40 30 / 1~2 0.12
    E40 207.60 0.40 40 / 1~2 0.10
    E30D0.75 242.20 0.40 30 / 0.5~1 0.12
    E30D3 242.20 0.40 30 / 2~4 0.12
    E20MG0.5 276.80 0.40 20 0.50 1~2 0.14
    E20MG1 276.80 0.40 20 1.0 1~2 0.14
    E20MG1.5 276.80 0.40 20 1.5 1~2 0.14
    E30MG0.5 242.20 0.40 30 0.50 1~2 0.12
    E30MG1 242.20 0.40 30 1.0 1~2 0.12
    E30MG1.5 242.20 0.40 30 1.50 1~2 0.12
    E40MG0.5 207.60 0.40 40 0.50 1~2 0.10
    E40MG1 207.60 0.40 40 1.0 1~2 0.10
    E40MG1.5 207.60 0.40 40 1.50 1~2 0.10
    Notes: E—EPS; D—particle size of EPS; W: C represents the mass ratio of water to the cementitious material. The particle size of the unlabeled D value is unified as 1~2 mm.
    下载: 导出CSV

    表  3  不同EPS粒径下复合吸波材料的波速、RL及输入阻抗

    Table  3.   vm, nr and Zin of absorbing composites with different EPS particle size

    EPS particle size fm1~fm5 Δfm1fm4
    0.5~1 mm 9.96 14.79 15.33 16.65 / 4.83 0.54 1.32 /
    1~2 mm 9.86 10.64 14.40 16.65 / 0.78 3.76 2.25 /
    2~4 mm 8.91 9.61 14.04 17.16 17.58 0.70 4.43 3.12 0.42
    EPS particle size vm1~vm4 Average vm SD* nr Zin
    0.5~1 mm 1.93 0.22 0.53 / 0.89 0.74 3.37 111.87
    1~2 mm 0.31 1.50 0.90 / 0.90 0.49 3.33 113.21
    2~4 mm 0.28 1.77 1.25 0.17 0.87 0.67 3.45 109.28
    Notes: fmn denotes frequency corresponding to the nth coherent peak in the range of 8~18 GHz; Δfmn and vmn denotes the bandwidth and wave velocity between fm and fm(n+1), respectively; SD* are the standard deviation of the wave velocity.
    下载: 导出CSV
  • [1] XIA Y X, GAO W W, GAO C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. doi: 10.1002/adfm.202204591
    [2] LI Y, LIU J L, JIN C Y, et al. Experimental study and mechanism analysis of functional nanocrystalline cellulose to improve the electromagnetic transmission performance of ordinary Portland cement[J]. Cement and Concrete Composites, 2023, 143: 105272. doi: 10.1016/j.cemconcomp.2023.105272
    [3] LU Y H, ZHANG S L, HE M Y, et al. 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding[J]. Carbon, 2021, 178: 413-435. doi: 10.1016/j.carbon.2021.01.161
    [4] LI X L, YIN X W, SONG C Q, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance[J]. Advanced Functional Materials, 2018, 28(41): 1803938. doi: 10.1002/adfm.201803938
    [5] WANG Z Y, WANG Z, NING M. Optimization of electromagnetic wave absorption bandwidth of cement-based composites with doped expanded perlite[J]. Construction and Building Materials, 2020, 259: 119863. doi: 10.1016/j.conbuildmat.2020.119863
    [6] LI C F, ZHOU C X, LV J B, et al. Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam[J]. Carbon, 2019, 149: 190-202. doi: 10.1016/j.carbon.2019.04.012
    [7] MA G W, SUN J B, WANG L, et al. Electromagnetic and microwave absorbing properties of cementitious composite for 3D printing containing waste copper solids[J]. Cement and Concrete Composites, 2018, 94: 215-225. doi: 10.1016/j.cemconcomp.2018.09.005
    [8] DENG S, WANG B M, AI H M, et al. Electromagnetic wave absorption properties and mechanism of graphene/Ni0.4Zn0.6Fe2O4 cement composites[J]. Journal of Materials in Civil Engineering, 2022, 34(7): 04022142. doi: 10.1061/(ASCE)MT.1943-5533.0004264
    [9] HE Y J, LU L N, SUN K K, et al. Electromagnetic wave absorbing cement-based composite using Nano-Fe3O4 magnetic fluid as absorber[J]. Cement and Concrete Composites, 2018, 92: 1-6. doi: 10.1016/j.cemconcomp.2018.05.004
    [10] 李宝毅, 段玉平, 刘顺华. 多孔集料砂浆的吸波特性[J]. 硅酸盐学报, 2011, 39(10): 1682-1686.

    LI B Y, DUAN Y P, LIU S H. Absorbing properties of cement mortar filled with porous aggregates[J]. Journal of the Chinese Cement Society, 2011, 39(10): 1682-1686(in Chinese).
    [11] 岑思谨. 碳微球/铁-钴合金/钴铁氧体@空心微珠吸波材料的制备与性能, 华南理工大学, 2021.

    CEN S J. Preparation and properties of carbon microspheres/ iron-cobalt alloy/cobalt ferrite @ hollow microspheres microwave absorbing materials[D]. South China University of Technology, 2021(in Chinese).
    [12] XIE S, JI Z J, ZHU L C, et al. Recent progress in electromagnetic wave absorption building materials[J]. Journal of Building Engineering, 2020, 27: 100963. doi: 10.1016/j.jobe.2019.100963
    [13] 刘思遥, 王旱雨, 刘兵兵, 等. 损耗型吸波材料与水泥基复合吸波材料的制备及性能调控研究现状[J]. 化工新型材料, 2024, 52(2): 288-293.

    LIU S Y, WANG H Y, LIU B B, et al. Research status of preparation and performance regulation of loss-typewave-absorbing materials and cement-based composite wave-absorbing materials[J]. New Chemical Materials, 2024, 52(2): 288-293(in Chinese).
    [14] 王晓冉. 基于碳纳米管纤维水泥基材料的吸波超结构[D], 浙江大学, 2023.

    WANG X R. Electromagnetic wave absorbing metastructure based on carbon nanotube fiber reinforced cementitious composites[D]. Zhejiang University, 2023(in Chinese).
    [15] DENG G, YANG Y Y, ZHOU Q, et al. Lightweight and broadband electromagnetic wave absorbing foamed cement-based composites incorporated with hybrid dielectric fibers[J]. Construction and Building Materials, 2022, 327: 126931. doi: 10.1016/j.conbuildmat.2022.126931
    [16] Ren M M, Li F X, Gao P, et al. Design and preparation of double-layer structured cement-based composite with inspiring microwave absorbing property[J]. Construction and Building Materials, 2020, 263: 120670. doi: 10.1016/j.conbuildmat.2020.120670
    [17] 解帅, 冀志江, 水中和, 等. 网格表面结构石膏基材料的电磁波吸收性能[J]. 硅酸盐学报, 2018, 46(1): 156-162.

    XIE S, JI Z J, SHUI Z H, et al. Electromagnetic wave absorption properties of gypsum-based materials with grid structure[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 156-162(in Chinese).
    [18] HU J H, LIU Y Y, JIANG J L, et al. Development of electromagnetic microwave absorbers in cementitious materials[J]. Composite Structures, 2023, 312.
    [19] 中国国家标准化管理委员会. 固体材料微波频段使用波导装置的电磁参数测量方法: GBT356792017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People's Republic of China. Measuring method for electromagnetic parameters of solid materials at microwave frequencies using waveguide[S]. Beijing: China Standards Press, 2017(in Chinese).
    [20] 国防科学技术工业委员会. 雷达吸波材料反射率测试方法[S]. 1994.

    Commission of Sicience, Technology and Industry for National Defense. Methods for measurement of reflectivity of radar absorbing material[S]. 1994(in Chinese).
    [21] 张秀芝, 郑沛祺, 陶文宏, 闫孝伟, 黄京立, 王嘉伟, 翟云芳. 纳米吸波剂改性水泥基材料研究进展[J]. 硅酸盐学报, 2023, 51(5): 1363-1372.

    ZHANG X Z, ZHENG P Q, TAO W H, et al. Research progress on ano-absorber modified cement-based wave absorbing material[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1363-1372(in Chinese).
    [22] BAI Y H, XIE B, LI H W, et al. Mechanical properties and electromagnetic absorption characteristics of foam cement-based absorbing materials[J]. Construction and Building. Materials, 2022, 330: 127221. doi: 10.1016/j.conbuildmat.2022.127221
    [23] ZHANG W, ZHENG Q F, WANG D N, et al. Electromagnetic properties and mechanisms of multiwalled carbon nanotubes modified cementitious composites[J]. Construction and Building Materials, 2019, 208: 427-443. doi: 10.1016/j.conbuildmat.2019.03.029
    [24] ZHANG L Q, LI L W, WANG Y L, et al. Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler[J]. Construction and Building Materials, 2020, 238: 11787.
    [25] 张月芳, 郝万军, 刘顺华. 频率选择表面对PET水泥基材料吸波性能的影响[J]. 建筑材料学报, 2018, 21(1): 118-123. doi: 10.3969/j.issn.1007-9629.2018.01.019

    ZHANG Y F, HAO W J, LIU S H. Effect of frequency selective surface on microwave absorbing properties of PET cement-based materials[J]. Journal of Buiding Materials, 2018, 21(1): 118-123(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.01.019
    [26] 赵彦波, 刘顺华, 管洪涛. 水泥基多孔复合材料吸波性能[J]. 硅酸盐学报, 2006, 34(2): 225-228. doi: 10.3321/j.issn:0454-5648.2006.02.019

    ZHAO Y B, LIU S H, GUAN H T. Electromagnetic wave absorption properties of cement-based composite filled with expanded polystyrene[J]. Journal of the Chinese Ceramic Society, 2006, 34(2): 225-228(in Chinese). doi: 10.3321/j.issn:0454-5648.2006.02.019
    [27] MA C, XIE S, WU Z H, et al. Research and simulation of three-layered lightweight cement-based electromagnetic wave absorbing composite containing expanded polystyrene and carbon black[J]. Construction and Building Materials, 2023, 393: 132047. doi: 10.1016/j.conbuildmat.2023.132047
    [28] LIU X, WANG Z, WANG N, et al. Effects of EPS, Mn-Zn ferrite, and layers on the electromagnetic absorption performance of magnesium phosphate cement[J]. Journal of Materials in Civil Engineering, 2023, 35(2): 04022430. doi: 10.1061/(ASCE)MT.1943-5533.0004593
    [29] LV X J, DUAN Y P, CHEN G Q. Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres[J]. Construction and Building Materials, 2018, 162: 280-285. doi: 10.1016/j.conbuildmat.2017.12.047
    [30] BARBER P W. Absorption and scattering of light by small particles[J]. Journal of Colloid and Interface Science, 1984, 98(1): 290-291.
    [31] 杨喜, 曹敏, 简煜, 等. 多孔木炭Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4591-4601.

    YANG X, CAO M, JIAN Y, et al. Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4591-4601(in Chinese).
    [32] 刘佳良, 徐东卫, 陈平. 磁性多孔rGO@Co/CoO复合材料的制备和吸波性能[J]. 材料研究学报, 2022, 36(5): 333-342.

    LIU J L, XU D W, CHEN P. Preperation and microwave absorption properties of magnetic porous rGO@Co/CoO composites[J]. Chinese Journal of Materials Resarch, 36(5): 333-342(in Chinese).
    [33] MA C, XIE S, JI Z J, et al. Electromagnetic wave absorbing properties of pyramidal engineered cement mortar containing carbon black[J]. Journal of Building Engineering, 2024, 84: 108618. doi: 10.1016/j.jobe.2024.108618
    [34] LI B, JI Z J, XIE S, et al. Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(13): 12416-12425. doi: 10.1007/s10854-019-01600-w
    [35] XU H L, YIN X W, LI M H, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon, 2018, 132: 343-351. doi: 10.1016/j.carbon.2018.02.040
    [36] QIAO J, ZHANG X, XU D M, et al. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption[J]. Chemical Engineering Journal, 2020, 380: 122591. doi: 10.1016/j.cej.2019.122591
    [37] FENG L, LI W C, WANG Y. Broadband electromagnetic wave absorbing metamaterial based on FeSiAl alloy[J]. Journal of Magnetism and Magnetic Materials, 2022, 541: 168510. doi: 10.1016/j.jmmm.2021.168510
    [38] LI W C, LI C S, LIN L H, et al. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material[J]. Journal of Alloys and Compounds, 2019, 781: 883-891. doi: 10.1016/j.jallcom.2018.12.010
    [39] ZHOU D F, YUAN H, YU Z R, et al. Broadband electromagnetic absorbing performance by constructing alternate gradient structure (AGS) for PMMA-based foams[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106557. doi: 10.1016/j.compositesa.2021.106557
    [40] LI M H, FAN X M, XU H L, et al. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance[J]. Journal of Materials Science & Technology, 2020, 59: 164-172.
    [41] ZHAO B, DENG J S, ZHAO C X, et al. Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure[J]. Journal of Materials Chemistry C, 2020, 8(1): 58-70. doi: 10.1039/C9TC04575A
    [42] SUN X X, LI Y B, HUANG Y X, et al. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials[J]. Advanced Functional Materials, 2021, 32(5): 2107508.
    [43] CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials, 2019, 29(25): 1807398. doi: 10.1002/adfm.201807398
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 修回日期:  2024-07-30
  • 录用日期:  2024-08-13
  • 网络出版日期:  2024-09-05

目录

    /

    返回文章
    返回