Preparation and Electromagnetic Absorbing Performance of EPS-Graphene-Cement-based Composites
-
摘要: 为了应对城市建筑空间的电磁辐射威胁,本文研究了多层石墨烯(Multilayer graphene,MG)与发泡聚苯乙烯(Expanded polystyrene,EPS)球形颗粒对水泥基复合材料电磁吸波性能的影响规律,探究了双层平板结构EPS-MG-水泥基复合吸波材料的最优组合,阐述了该复合材料的吸波作用机制。实验结果表明:复合材料中的EPS颗粒在基体内形成了独特的多孔阵列结构,显著增强了材料与自由空间的电磁匹配性能;并且EPS球形颗粒既是透波剂也是谐振腔,在合理的掺量下能与MG搭配形成良好的多孔导电网络,可通过界面极化、电阻损耗以及极化弛豫等方式吸收入射电磁波的能量。在此基础上,通过双层平板组合结构,充分利用密度梯度及层间效应,进一步提高了电磁波能量在传输过程中的耗散作用,实现了结构与材料组分之间良好的协同增强效果,在2~18 GHz的有效吸收带宽达到了7.93 GHz,并获得−18.80 dB的最强吸收峰,具备良好的电磁吸波性能,为低成本建筑吸波材料的发展提供了新思路。Abstract: In order to cope with the threat of electromagnetic radiation in urban building spaces, the influence law of multi-layer graphene (MG) and expanded polystyrene (EPS) spherical particles on the electromagnetic absorption properties of cementitious composites was investigated. The optimal combination of EPS-MG-cement-based composite wave-absorbing materials with double-layer flat plate structure was explored, and the mechanism of wave-absorbing action of the composites was elaborated. The experimental results showed that the EPS particles in the composites form a unique porous array structure in the matrix, which significantly enhances the electromagnetic matching performance between the material and the free space. Moreover, the EPS spherical particles are both wave-transparent agents and resonance cavities, which can form a good porous conductive network with MG under reasonable doping, and can absorb the energy of the incident electromagnetic wave through interfacial polarization, resistive loss and polarization relaxation. On this basis, this paper makes full use of the density gradient and interlayer effect through the double-layer flat plate combination structure, which further improves the dissipation of electromagnetic wave energy in the transmission process, realizes a good synergistic enhancement effect between the structure and the material components, and the effective absorption bandwidth of 2~18 GHz reaches 7.93 GHz. The maximum absorption peak of −18.80 dB is obtained, which has a good electromagnetic wave absorbing performance, and provides a new idea for the development of wave-absorbing materials for low-cost buildings.
-
图 4 不同EPS粒径复合材料的(a)介电常数;(b)介电损耗角正切;(c)归一化阻抗;(d)衰减系数;(e) RL曲线图;(f) RL等高线图;(g)有效带宽
Figure 4. (a) Permittivity; (b) Dielectric loss tangent; (c) Normalized impedance; (d) Loss coefficient; (e) RL curve diagram; (f) RL contour map; (g) Effective bandwidth of absorbing composites with different EPS particle size
图 9 双层结构EPS-MG-水泥基复合吸波材料的(a)结构示意图和(b)不同EPS掺量及厚度组合试件的吸波性能;(c) E30+E30 MG1.5试件的理论计算与实测RL对比图
Figure 9. (a) Structure diagram of the double-layer EPS-MG-cement-based composite absorbing material and (b) the absorbing properties of the combined specimens with different EPS content and thickness; (c) Comparison of calculated and experimental RL values of E30+E30 MG1.5
表 1 多层石墨烯(MG)的主要性能参数
Table 1. Main properties of Multilayer graphene (MG)
Size Layer Purity Thickness Carbon content 5~50 μm 5~10 >95% 3.4~8 nm <97% 表 2 发泡聚苯乙烯(EPS)-MG-水泥基复合吸波材料试样配比
Table 2. Expanded polystyrene (EPS)-MG-cement-based composite wave-absorbing material specimen proportioning
Sample Cement/g W: C EPS/vol.% MG/wt.% EPS particle size range/mm SP/g E20 276.80 0.40 20 / 1~2 0.14 E30 242.20 0.40 30 / 1~2 0.12 E40 207.60 0.40 40 / 1~2 0.10 E30D0.75 242.20 0.40 30 / 0.5~1 0.12 E30D3 242.20 0.40 30 / 2~4 0.12 E20MG0.5 276.80 0.40 20 0.50 1~2 0.14 E20MG1 276.80 0.40 20 1.0 1~2 0.14 E20MG1.5 276.80 0.40 20 1.5 1~2 0.14 E30MG0.5 242.20 0.40 30 0.50 1~2 0.12 E30MG1 242.20 0.40 30 1.0 1~2 0.12 E30MG1.5 242.20 0.40 30 1.50 1~2 0.12 E40MG0.5 207.60 0.40 40 0.50 1~2 0.10 E40MG1 207.60 0.40 40 1.0 1~2 0.10 E40MG1.5 207.60 0.40 40 1.50 1~2 0.10 Notes: E—EPS; D—particle size of EPS; W: C represents the mass ratio of water to the cementitious material. The particle size of the unlabeled D value is unified as 1~2 mm. 表 3 不同EPS粒径下复合吸波材料的波速、RL及输入阻抗
Table 3. vm, nr and Zin of absorbing composites with different EPS particle size
EPS particle size fm1~fm5 Δfm1~Δfm4 0.5~1 mm 9.96 14.79 15.33 16.65 / 4.83 0.54 1.32 / 1~2 mm 9.86 10.64 14.40 16.65 / 0.78 3.76 2.25 / 2~4 mm 8.91 9.61 14.04 17.16 17.58 0.70 4.43 3.12 0.42 EPS particle size vm1~vm4 Average vm SD* nr Zin 0.5~1 mm 1.93 0.22 0.53 / 0.89 0.74 3.37 111.87 1~2 mm 0.31 1.50 0.90 / 0.90 0.49 3.33 113.21 2~4 mm 0.28 1.77 1.25 0.17 0.87 0.67 3.45 109.28 Notes: fmn denotes frequency corresponding to the nth coherent peak in the range of 8~18 GHz; Δfmn and vmn denotes the bandwidth and wave velocity between fm and fm(n+1), respectively; SD* are the standard deviation of the wave velocity. -
[1] XIA Y X, GAO W W, GAO C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. doi: 10.1002/adfm.202204591 [2] LI Y, LIU J L, JIN C Y, et al. Experimental study and mechanism analysis of functional nanocrystalline cellulose to improve the electromagnetic transmission performance of ordinary Portland cement[J]. Cement and Concrete Composites, 2023, 143: 105272. doi: 10.1016/j.cemconcomp.2023.105272 [3] LU Y H, ZHANG S L, HE M Y, et al. 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding[J]. Carbon, 2021, 178: 413-435. doi: 10.1016/j.carbon.2021.01.161 [4] LI X L, YIN X W, SONG C Q, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance[J]. Advanced Functional Materials, 2018, 28(41): 1803938. doi: 10.1002/adfm.201803938 [5] WANG Z Y, WANG Z, NING M. Optimization of electromagnetic wave absorption bandwidth of cement-based composites with doped expanded perlite[J]. Construction and Building Materials, 2020, 259: 119863. doi: 10.1016/j.conbuildmat.2020.119863 [6] LI C F, ZHOU C X, LV J B, et al. Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam[J]. Carbon, 2019, 149: 190-202. doi: 10.1016/j.carbon.2019.04.012 [7] MA G W, SUN J B, WANG L, et al. Electromagnetic and microwave absorbing properties of cementitious composite for 3D printing containing waste copper solids[J]. Cement and Concrete Composites, 2018, 94: 215-225. doi: 10.1016/j.cemconcomp.2018.09.005 [8] DENG S, WANG B M, AI H M, et al. Electromagnetic wave absorption properties and mechanism of graphene/Ni0.4Zn0.6Fe2O4 cement composites[J]. Journal of Materials in Civil Engineering, 2022, 34(7): 04022142. doi: 10.1061/(ASCE)MT.1943-5533.0004264 [9] HE Y J, LU L N, SUN K K, et al. Electromagnetic wave absorbing cement-based composite using Nano-Fe3O4 magnetic fluid as absorber[J]. Cement and Concrete Composites, 2018, 92: 1-6. doi: 10.1016/j.cemconcomp.2018.05.004 [10] 李宝毅, 段玉平, 刘顺华. 多孔集料砂浆的吸波特性[J]. 硅酸盐学报, 2011, 39(10): 1682-1686.LI B Y, DUAN Y P, LIU S H. Absorbing properties of cement mortar filled with porous aggregates[J]. Journal of the Chinese Cement Society, 2011, 39(10): 1682-1686(in Chinese). [11] 岑思谨. 碳微球/铁-钴合金/钴铁氧体@空心微珠吸波材料的制备与性能, 华南理工大学, 2021.CEN S J. Preparation and properties of carbon microspheres/ iron-cobalt alloy/cobalt ferrite @ hollow microspheres microwave absorbing materials[D]. South China University of Technology, 2021(in Chinese). [12] XIE S, JI Z J, ZHU L C, et al. Recent progress in electromagnetic wave absorption building materials[J]. Journal of Building Engineering, 2020, 27: 100963. doi: 10.1016/j.jobe.2019.100963 [13] 刘思遥, 王旱雨, 刘兵兵, 等. 损耗型吸波材料与水泥基复合吸波材料的制备及性能调控研究现状[J]. 化工新型材料, 2024, 52(2): 288-293.LIU S Y, WANG H Y, LIU B B, et al. Research status of preparation and performance regulation of loss-typewave-absorbing materials and cement-based composite wave-absorbing materials[J]. New Chemical Materials, 2024, 52(2): 288-293(in Chinese). [14] 王晓冉. 基于碳纳米管纤维水泥基材料的吸波超结构[D], 浙江大学, 2023.WANG X R. Electromagnetic wave absorbing metastructure based on carbon nanotube fiber reinforced cementitious composites[D]. Zhejiang University, 2023(in Chinese). [15] DENG G, YANG Y Y, ZHOU Q, et al. Lightweight and broadband electromagnetic wave absorbing foamed cement-based composites incorporated with hybrid dielectric fibers[J]. Construction and Building Materials, 2022, 327: 126931. doi: 10.1016/j.conbuildmat.2022.126931 [16] Ren M M, Li F X, Gao P, et al. Design and preparation of double-layer structured cement-based composite with inspiring microwave absorbing property[J]. Construction and Building Materials, 2020, 263: 120670. doi: 10.1016/j.conbuildmat.2020.120670 [17] 解帅, 冀志江, 水中和, 等. 网格表面结构石膏基材料的电磁波吸收性能[J]. 硅酸盐学报, 2018, 46(1): 156-162.XIE S, JI Z J, SHUI Z H, et al. Electromagnetic wave absorption properties of gypsum-based materials with grid structure[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 156-162(in Chinese). [18] HU J H, LIU Y Y, JIANG J L, et al. Development of electromagnetic microwave absorbers in cementitious materials[J]. Composite Structures, 2023, 312. [19] 中国国家标准化管理委员会. 固体材料微波频段使用波导装置的电磁参数测量方法: GBT356792017[S]. 北京: 中国标准出版社, 2017.Standardization Administration of the People's Republic of China. Measuring method for electromagnetic parameters of solid materials at microwave frequencies using waveguide[S]. Beijing: China Standards Press, 2017(in Chinese). [20] 国防科学技术工业委员会. 雷达吸波材料反射率测试方法[S]. 1994.Commission of Sicience, Technology and Industry for National Defense. Methods for measurement of reflectivity of radar absorbing material[S]. 1994(in Chinese). [21] 张秀芝, 郑沛祺, 陶文宏, 闫孝伟, 黄京立, 王嘉伟, 翟云芳. 纳米吸波剂改性水泥基材料研究进展[J]. 硅酸盐学报, 2023, 51(5): 1363-1372.ZHANG X Z, ZHENG P Q, TAO W H, et al. Research progress on ano-absorber modified cement-based wave absorbing material[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1363-1372(in Chinese). [22] BAI Y H, XIE B, LI H W, et al. Mechanical properties and electromagnetic absorption characteristics of foam cement-based absorbing materials[J]. Construction and Building. Materials, 2022, 330: 127221. doi: 10.1016/j.conbuildmat.2022.127221 [23] ZHANG W, ZHENG Q F, WANG D N, et al. Electromagnetic properties and mechanisms of multiwalled carbon nanotubes modified cementitious composites[J]. Construction and Building Materials, 2019, 208: 427-443. doi: 10.1016/j.conbuildmat.2019.03.029 [24] ZHANG L Q, LI L W, WANG Y L, et al. Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler[J]. Construction and Building Materials, 2020, 238: 11787. [25] 张月芳, 郝万军, 刘顺华. 频率选择表面对PET水泥基材料吸波性能的影响[J]. 建筑材料学报, 2018, 21(1): 118-123. doi: 10.3969/j.issn.1007-9629.2018.01.019ZHANG Y F, HAO W J, LIU S H. Effect of frequency selective surface on microwave absorbing properties of PET cement-based materials[J]. Journal of Buiding Materials, 2018, 21(1): 118-123(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.01.019 [26] 赵彦波, 刘顺华, 管洪涛. 水泥基多孔复合材料吸波性能[J]. 硅酸盐学报, 2006, 34(2): 225-228. doi: 10.3321/j.issn:0454-5648.2006.02.019ZHAO Y B, LIU S H, GUAN H T. Electromagnetic wave absorption properties of cement-based composite filled with expanded polystyrene[J]. Journal of the Chinese Ceramic Society, 2006, 34(2): 225-228(in Chinese). doi: 10.3321/j.issn:0454-5648.2006.02.019 [27] MA C, XIE S, WU Z H, et al. Research and simulation of three-layered lightweight cement-based electromagnetic wave absorbing composite containing expanded polystyrene and carbon black[J]. Construction and Building Materials, 2023, 393: 132047. doi: 10.1016/j.conbuildmat.2023.132047 [28] LIU X, WANG Z, WANG N, et al. Effects of EPS, Mn-Zn ferrite, and layers on the electromagnetic absorption performance of magnesium phosphate cement[J]. Journal of Materials in Civil Engineering, 2023, 35(2): 04022430. doi: 10.1061/(ASCE)MT.1943-5533.0004593 [29] LV X J, DUAN Y P, CHEN G Q. Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres[J]. Construction and Building Materials, 2018, 162: 280-285. doi: 10.1016/j.conbuildmat.2017.12.047 [30] BARBER P W. Absorption and scattering of light by small particles[J]. Journal of Colloid and Interface Science, 1984, 98(1): 290-291. [31] 杨喜, 曹敏, 简煜, 等. 多孔木炭Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4591-4601.YANG X, CAO M, JIAN Y, et al. Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4591-4601(in Chinese). [32] 刘佳良, 徐东卫, 陈平. 磁性多孔rGO@Co/CoO复合材料的制备和吸波性能[J]. 材料研究学报, 2022, 36(5): 333-342.LIU J L, XU D W, CHEN P. Preperation and microwave absorption properties of magnetic porous rGO@Co/CoO composites[J]. Chinese Journal of Materials Resarch, 36(5): 333-342(in Chinese). [33] MA C, XIE S, JI Z J, et al. Electromagnetic wave absorbing properties of pyramidal engineered cement mortar containing carbon black[J]. Journal of Building Engineering, 2024, 84: 108618. doi: 10.1016/j.jobe.2024.108618 [34] LI B, JI Z J, XIE S, et al. Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(13): 12416-12425. doi: 10.1007/s10854-019-01600-w [35] XU H L, YIN X W, LI M H, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon, 2018, 132: 343-351. doi: 10.1016/j.carbon.2018.02.040 [36] QIAO J, ZHANG X, XU D M, et al. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption[J]. Chemical Engineering Journal, 2020, 380: 122591. doi: 10.1016/j.cej.2019.122591 [37] FENG L, LI W C, WANG Y. Broadband electromagnetic wave absorbing metamaterial based on FeSiAl alloy[J]. Journal of Magnetism and Magnetic Materials, 2022, 541: 168510. doi: 10.1016/j.jmmm.2021.168510 [38] LI W C, LI C S, LIN L H, et al. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material[J]. Journal of Alloys and Compounds, 2019, 781: 883-891. doi: 10.1016/j.jallcom.2018.12.010 [39] ZHOU D F, YUAN H, YU Z R, et al. Broadband electromagnetic absorbing performance by constructing alternate gradient structure (AGS) for PMMA-based foams[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106557. doi: 10.1016/j.compositesa.2021.106557 [40] LI M H, FAN X M, XU H L, et al. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance[J]. Journal of Materials Science & Technology, 2020, 59: 164-172. [41] ZHAO B, DENG J S, ZHAO C X, et al. Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure[J]. Journal of Materials Chemistry C, 2020, 8(1): 58-70. doi: 10.1039/C9TC04575A [42] SUN X X, LI Y B, HUANG Y X, et al. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials[J]. Advanced Functional Materials, 2021, 32(5): 2107508. [43] CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials, 2019, 29(25): 1807398. doi: 10.1002/adfm.201807398
计量
- 文章访问数: 45
- HTML全文浏览量: 31
- 被引次数: 0