留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaHCO3碳化后再生骨料混凝土早期力学性能试验研究

但宇 梁莹 许瑞天 宁璠 陈宗平

但宇, 梁莹, 许瑞天, 等. NaHCO3碳化后再生骨料混凝土早期力学性能试验研究[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 但宇, 梁莹, 许瑞天, 等. NaHCO3碳化后再生骨料混凝土早期力学性能试验研究[J]. 复合材料学报, 2024, 42(0): 1-13.
DAN Yu, LIANG Ying, XU Ruitian, et al. Experimental Study on Early Mechanical Properties of Recycled Aggregate Concrete after NaHCO3 Carbonation[J]. Acta Materiae Compositae Sinica.
Citation: DAN Yu, LIANG Ying, XU Ruitian, et al. Experimental Study on Early Mechanical Properties of Recycled Aggregate Concrete after NaHCO3 Carbonation[J]. Acta Materiae Compositae Sinica.

NaHCO3碳化后再生骨料混凝土早期力学性能试验研究

基金项目: 国家自然科学基金(51578163)、中央引导地方科技发展资金项目(桂科ZY21195010)、八桂学者专项研究经费项目([2019]79号)、广西科技基地与人才专项(桂科AD21075031)、广西重点研发计划项目(桂科AB21220012)、广西大学对口支援学科建设项目(2023N01)、广西研究生教育创新计划资助项目(YCBZ2024039)。
详细信息
    通讯作者:

    陈宗平,博士,教授,博士生导师,研究方向为再生混凝土材料及结构的力学性能 E-mail: zpchen@gxu.edu.cn

  • 中图分类号: TU528.59;TB332

Experimental Study on Early Mechanical Properties of Recycled Aggregate Concrete after NaHCO3 Carbonation

Funds: National Natural Science Foundation of China (No.51578163); Central guidance for local scientific and technological development funding projects (ZY21195010); Eight Gui Scholars Special Research Fund Project ([2019]79); Guangxi Science and Technology Base and Talent Special Project (AD21075031), Guangxi Key R&D Program Project (AB21220012); Counterpart Aid Project for Discipline Construction from Guangxi University (Grant No.2023N01); Innovation Project of Guangxi Graduate Education (YCBZ2024039).
  • 摘要: 为提高再生骨料混凝土(Recycled Aggregate Concrete,RAC)的固碳效率和力学性能,采用碳酸氢钠(NaHCO3)溶液对RAC进行浸泡养护和加速碳化,进行了立方体、棱柱体抗压试验和四点抗折试验,研究了三种碳化环境(自然碳化、碳化箱碳化、NaHCO3溶液碳化)和碳化龄期(3~28 d)对RAC早期力学性能的影响。结果表明,相较于自然养护,NaHCO3溶液碳化环境最大可以提高RAC的8.4%的早期抗压强度和12.4%的抗折强度,但会提高脆性;在21 d之前,NaHCO3溶液碳化后的RAC的早期抗压强度和强度发展略低于碳化箱碳化环境,但在28d时显著提高;碳化龄期对RAC的抗折强度影响不大,但在相同龄期时,NaHCO3溶液碳化后的抗折强度最高。通过热重分析发现,NaHCO3溶液碳化后RAC的碳酸钙含量比碳化箱碳化后高10.3%,比自然碳化高16.5%。最后,提出了NaHCO3溶液碳化后RAC的早期力学性能指标计算方法和本构方程。

     

  • 图  1  试验所用再生粗骨料和机制砂

    Figure  1.  Recycled coarse aggregate and machine-made sand used in the experiment

    图  2  试块养护过程

    Figure  2.  Curing process of specimens

    图  3  碳酸氢钠溶液配制过程

    Figure  3.  Preparation process of sodium bicarbonate solution

    图  4  试验加载示意图

    Figure  4.  Experimental loading diagram

    图  5  试件受压和抗折破坏形态

    Figure  5.  Compression and flexural failure modes of specimens

    图  6  不同养护环境下RAC的轴压应力-应变曲线(σ为轴向应力,ε为轴向应变)

    Figure  6.  Axial compressive stress-strain curves of RAC under different maintenance environments (σ is axial stress, ε is axial strain)

    图  7  不同龄期下RAC的轴压应力-应变曲线(σ为轴向应力,ε为轴向应变)

    Figure  7.  Axial compressive stress-strain curves of RAC at different ages (σ is axial stress, ε is axial strain)

    图  8  RAC抗压强度变化图(fcu为立方体抗压强度,fck为轴心抗压强度)

    Figure  8.  Compression strength variation chart of RAC (fcu is the compressive strength of the cube, fck is the axial compressive strength)

    图  9  RAC抗压强度增长率(fcu,28为28 d立方体抗压强度,fck,28为28 d轴心抗压强度)

    Figure  9.  Growth rate of compressive strength of RAC (fcu,28 is the compressive strength of the cube at 28 d,fck,28 is the axial compressive strength at 28 d)

    图  10  RAC延性系数μ变化图

    Figure  10.  Ductility coefficient (μ) variation chart of RAC

    图  11  RAC抗折强度ft变化图

    Figure  11.  Diagram of changes in flexural strength ft of RAC

    图  12  RAC TG结果分析

    Figure  12.  TG result analysis of RAC

    图  13  RAC DTG结果分析

    Figure  13.  DTG result analysis of RAC

    图  14  不同养护条件下RAC的微观形貌

    Figure  14.  Microscopic morphology of RAC under different curing conditions

    图  15  RAC早期强度预测结果对比

    Figure  15.  Comparison of early strength prediction results of RAC

    图  16  NaHCO3溶液碳化后RAC的轴心抗压强度fck和立方体抗压强度fcu的关系

    Figure  16.  Relationship between axial compressive strength fck and fcuof cube strength RAC after carbonation of NaHCO3 solution

    图  17  NaHCO3溶液碳化后RAC的抗折强度ft和立方体抗压强度fcu的关系

    Figure  17.  Relationship between flexural strength ft and cube strength fcu of RAC after carbonation of NaHCO3 solution

    图  18  NaHCO3溶液碳化后RAC的峰值应变εc和立方体抗压强度fcu的关系

    Figure  18.  Relationship between peak strain ε and cube strength fcu of RAC after carbonation of NaHCO3 solution

    图  19  RAC本构方程计算结果对比

    Figure  19.  Comparison of constitutive equation calculation results of RAC

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    Specimen number Carbonation environment Environmental parameters Curing
    age T/d
    RAC-3d Natural carbonation Natural
    environment
    3
    RAC-7d 7
    RAC-14d 14
    RAC-21d 21
    RAC-28d 28
    RAC-CB-3d Carbonation
    box
    Carbon dioxide
    concentration of
    20%, temperature of
    20℃, humidity
    of 70%
    3
    RAC-CB-7d 7
    RAC-CB-14d 14
    RAC-CB-21d 21
    RAC-CB-28d 28
    RAC-L10-3d NaHCO3
    solution
    10 g/L 3
    RAC-L10-7d 7
    RAC-L10-14d 14
    RAC-L10-21d 21
    RAC-L10-28d 28
    下载: 导出CSV

    表  2  再生混凝土(RAC)配合比(kg/m3)

    Table  2.   Mix ratio of recycled aggregate concrete (RAC) (kg/m3)

    CementRecycled coarse aggregateMachine-made sandWaterMineral powderWater reducing agentLimestone
    3401060735145709.4540
    下载: 导出CSV

    表  3  再生粗骨料和机制砂的基本性能

    Table  3.   Basic properties of recycled coarse aggregate and machine-made sand

    Types of aggregates Density/
    (kg∙m−3)
    Bulk density/
    (kg∙m−3)
    Loose packing
    porosity/%
    Mud
    content/%
    Stone powder
    content/%
    Clay
    lump/%
    Total content of needle
    shaped particles/%
    Crushing
    index
    Recycled coarse aggregate 2720 45 0.7 0.1 8 9
    Machine-made sand 2710 1610 41 5.5 0.8
    下载: 导出CSV

    表  4  力学性能指标

    Table  4.   Mechanical performance indicators

    Specimen number fcu/ MPa fck/ MPa ft/ MPa μ
    Measurement
    value
    Average Measurement
    value
    Average Measurement
    value
    Average Measurement
    value
    Average
    RAC-3d 50.1 51.3 27.9 26.5 4.96 5.11 1.21 1.42
    53.0 25.8 5.36 1.59
    50.7 25.7 5.02 1.46
    RAC-7d 62.4 60.7 31.6 32.2 4.41 5.05 1.56 1.45
    58.8 33.4 5.50 1.46
    60.9 31.6 5.26 1.33
    RAC-14d 64.9 64.9 31.8 34.8 5.05 5.10 1.44 1.41
    64.9 39.2 3.99 1.36
    54.2 33.5 5.21 1.43
    RAC-21d 64.9 67.9 36.2 37.5 5.10 5.21 1.38 1.34
    70.9 35.7 5.34 1.34
    37.8 40.7 5.18 1.31
    RAC-28d 71.4 72.1 38.6 39.0 5.22 5.18 1.33 1.26
    72.4 36.1 5.16 1.36
    72.7 42.3 4.96 1.10
    RAC-CB-3d 59.5 53.3 27.8 28.4 3.79 3.99 1.44 1.40
    49.7 27.8 2.64 1.46
    50.8 29.7 4.19 1.3
    RAC-CB-7d 61.6 62.8 34.6 31.6 3.99 4.22 1.28 1.39
    65.2 30.2 4.35 1.33
    61.7 30.1 4.33 1.56
    RAC-CB-14d 72.3 71.5 34.6 34.6 3.45 3.67 1.42 1.37
    60.7 35.7 3.89 1.31
    70.7 33.6 3.68 1.39
    RAC-CB-21d 69.5 71.8 38.9 37.0 4.29 4.44 1.18 1.27
    71.4 34.1 4.62 1.39
    74.6 37.9 4.43 1.25
    RAC-CB-28d 73.7 73.2 40.1 40.0 4.44 4.12 1.32 1.20
    74.5 37.7 3.86 1.33
    71.3 42.2 4.07 1.23
    RAC-L10-3d 52.8 52.0 26.3 26.6 4.63 4.33 1.47 1.29
    50.6 27.6 4.95 1.20
    52.6 25.9 3.43 1.42
    RAC-L10-7d 58.1 62.4 22.5 31.7 5.81 5.03 1.14 1.36
    66.4 31.7 4.84 1.46
    62.8 31.8 4.44 1.28
    RAC-L10-14d 64.1 66.0 38.8 35.3 4.88 4.80 1.26 1.29
    67.4 32.8 5.05 1.22
    66.4 34.2 4.48 1.28
    RAC-L10-21d 72.1 68.6 34.1 36.9 5.86 5.86 1.19 1.25
    63.9 38.7 5.94 1.18
    69.8 37.8 5.80 1.09
    RAC-L10-28d 79.5 78.2 38.4 40.8 4.94 5.26 1.32 1.15
    63.9 40.9 5.33 1.33
    76.9 43.0 5.54 1.23
    Notes: fcu, fck, and f represent the compressive strength of cubes, the compressive strength of prisms, and the flexural strength, respectively. μ is the ductility coefficient, which is calculated through the compressive stress-strain curve of a prism using the "equal energy" method[25]. The data in the table is taken as the average of the same operating conditions.
    下载: 导出CSV
  • [1] IPCC AR5. Climate change 2014: Synthesis report: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva: Intergovernmental Panel on Climate Change, 2014.
    [2] 中国建筑节能协会. 2021中国建筑能耗与碳排放研究报告: 省级建筑碳达峰形势评估[R]. 北京: 中国建筑节能协会, 2021.

    China Association for Building Energy Efficiency 2021 China Building Energy Consumption and Carbon Emissions Research Report: Evaluation of Provincial Building Carbon Peak Situation [R] Beijing: China Building Energy Efficiency Association, 2021(in Chinese)
    [3] DIXIT M K, FERNÁNDEZ-SOLÍS J L, LAVY S, ET al. Need for an embodied energy measurement protocol for buildings: A review paper[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 3730-3743. doi: 10.1016/j.rser.2012.03.021
    [4] TAVAKOLI M, SOROUSHIAN P. Strengths of recycled aggregate concrete made using field demolished concrete as aggregate[J]. Aci Materials Journal, 1996, 93(2): 182-190.
    [5] SILVA R V, NEVES R, DE BRITO J, et al. Carbonation behaviour of recycled aggregate concrete[J]. Cement and Concrete Composites, 2015, 62: 22-32. doi: 10.1016/j.cemconcomp.2015.04.017
    [6] STEINOUR H H. Some effects of carbon dioxide on mortars and concrete discussion[J]. Journal of American Concrete Institute, 1959, 30: 905-907.
    [7] POSSAN E, FELIX F E, THOMAZ A W. CO2 uptake by carbonation of concrete during life cycle of building structures[J]. Journal of Building Pathology and Rehabilitation, 2016, 1(1): 7. doi: 10.1007/s41024-016-0010-9
    [8] WEBER AP. Focus Group S-6: Using plants for carbon sequestration[M]. White Paper and Scientific Basis of the Strategic Research Agenda. 2021, 111.
    [9] MONKMAN S, MACDONALD M, HOOTON D R, et al. Properties and durability of concrete produced using CO2 as an accelerating admixture[J]. Cement and Concrete Composites, 2016, 74: 218-224. doi: 10.1016/j.cemconcomp.2016.10.007
    [10] MONKMAN S, MACDONALD M. Carbon dioxide upcycling into industrially produced concrete blocks[J]. Construction and Building Materials, 2016, 124: 127-132. doi: 10.1016/j.conbuildmat.2016.07.046
    [11] R. NIVEN, G. S, MONKMAN, D. FORGERON. Carbon dioxide treatment of concrete upstream from product mold[D]. Patent No. US8845940B2 (2014).
    [12] ZHOU L, WEINA M. Fundamental understanding of carbonation curing and durability of carbonation-cured cement-based composites: A review[J]. Journal of CO2 Utilization, 2021, 44: 101428. doi: 10.1016/j.jcou.2020.101428
    [13] MOON E, CHOI C Y. Carbon dioxide fixation via accelerated carbonation of cement-based materials: Potential for construction materials applications[J]. Construction and Building Materials, 2019, 199: 676-687. doi: 10.1016/j.conbuildmat.2018.12.078
    [14] LACKNER K S. A Guide to CO2 Sequestration[J]. Science, 2003, 300(5626): 1677-1679. doi: 10.1126/science.1079033
    [15] MAROTO-VALER M M, FAUTH D J, KUCHTA M E, et al. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration[J]. Fuel Processing Technology, 2005, 86(14-15): 1627-1645. doi: 10.1016/j.fuproc.2005.01.017
    [16] BAO L, PINGPING H, JIANHUI L, et al. Microstructure of Portland cement paste subjected to different CO2 concentrations and further water curing[J]. Journal of CO2 Utilization, 2021, 53: 101714. doi: 10.1016/j.jcou.2021.101714
    [17] LI Y, ZHANG S, WANG R, et al. Effects of carbonation treatment on the crushing characteristics of recycled coarse aggregates[J]. Construction and Building Materials, 2019, 201: 408-420. doi: 10.1016/j.conbuildmat.2018.12.158
    [18] WU J, ZHANG Y, ZHU P, et al. Mechanical Properties and ITZ Microstructure of Recycled Aggregate Concrete Using Carbonated Recycled Coarse Aggregate[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(3): 648-653. doi: 10.1007/s11595-018-1873-1
    [19] ZHAN J B, XUAN X D, POON S C, et al. Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates[J]. Cement and Concrete Composites, 2016, 71: 122-130. doi: 10.1016/j.cemconcomp.2016.05.002
    [20] KASHEF HAGHIGHI S, SHAO Y, GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cement and Concrete Research, 2015, 67: 1-10. doi: 10.1016/j.cemconres.2014.07.020
    [21] HASELBACH L M, THOMLE J N. An alternative mechanism for accelerated carbon sequestration in concrete[J]. Sustainable Cities and Society, 2014, 12: 25-30. doi: 10.1016/j.scs.2014.01.001
    [22] JANG J G, KIM H J, PARK S M, et al. The Influence of Sodium Hydrogen Carbonate On the Hydration of Cement[J]. Construction and Building Materials, 2015, 94: 746-749. doi: 10.1016/j.conbuildmat.2015.07.121
    [23] GB/T 14685-2022. 建设用卵石、碎石[S]. 北京: 中国计划出版社, 2022.

    GB/T 14685-2022. Pebble and crushed stone for construction [S]. Beijing: China Planning Press, 2022(in Chinese)
    [24] CHEN Z , XU R, LIANG H. Residual mechanical properties and numerical analysis of recycled pebble aggregate concrete after high temperature exposure and cooled by fire hydrant[J]. Construction and Building Materials, 2022, 319: 126137.
    [25] ZHENLEI Z , JIANG D , MEILUN S . Quantitative Analysis of the Calcium Hydroxide Content of EVA-Modified Cement Paste Based on TG-DSC in a Dual Atmosphere[J]. Materials, 2022, 15(7): 2660.
    [26] WANG C , CHAZALLON C , BRAYMAND S , et al. Thermogravimetric analysis (TGA) for characterization of self-cementation of recycled concrete aggregates in pavement[J]. Thermochimica Acta, 2024, 733: 179680.
    [27] CEB - FIP. Model code for concrete structure: CEB - FIP International Recommendations[Z]. Paris, 1990.
    [28] JGJ/T15-2021, 早期推定混凝土强度试验方法标准[S]. 北京: 中国建筑工业出版社, 2008.

    JGJ/T15-2021, Standard for test method of early estimating compressive strength of concrete [S] Beijing: China Architecture&Building Press, 2008(in Chinese)
    [29] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 1999.

    ZHU Bofang Temperature stress and temperature control of large volume concrete [M]. Beijing: China Electric Power Press, 1999(in Chinese)
    [30] GB 50010-2010. 钢筋混凝土结构设计规范[S]. 北京: 中国计划出版社, 2010.

    GB 50010-2010. Code for Design of Reinforced Concrete Structures [S]. Beijing: China Planning Press, 2010(in Chinese)
    [31] 肖建庄, 唐宇翔, 张凯建, 等. 再生粗骨料混凝土应力-应变关系[J]. 工程力学, 2024, 41(2): 43-55.

    XIAO Jianzhuang, TANG Yuxiang, ZHANG Kaijian, et al. Stress-strain relationship of recycled coarse aggregate concrete[J]. Engineering Mechanics, 2024, 41(2): 43-55(in Chinese)
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-08-13
  • 录用日期:  2024-08-23
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回