留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙脱土-BiVO4/BiOIO3复合材料的制备及其光催化性能

宋雪丽 王涛 漆于辉 常玥 查飞

宋雪丽, 王涛, 漆于辉, 等. 蒙脱土-BiVO4/BiOIO3复合材料的制备及其光催化性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 宋雪丽, 王涛, 漆于辉, 等. 蒙脱土-BiVO4/BiOIO3复合材料的制备及其光催化性能[J]. 复合材料学报, 2024, 42(0): 1-10.
SONG Xueli, WANG Tao, QI Yuhui, et al. Preparation and photocatalytic performance of montmorillonite-BiVO4/BiOIO3 composite[J]. Acta Materiae Compositae Sinica.
Citation: SONG Xueli, WANG Tao, QI Yuhui, et al. Preparation and photocatalytic performance of montmorillonite-BiVO4/BiOIO3 composite[J]. Acta Materiae Compositae Sinica.

蒙脱土-BiVO4/BiOIO3复合材料的制备及其光催化性能

基金项目: 国家自然科学基金 (21865031)
详细信息
    通讯作者:

    常玥,博士,教授,硕士生导师,研究方向为功能材料的制备及应用 E-mail: cy70@sina.com

  • 中图分类号: O611.3;TB333

Preparation and photocatalytic performance of montmorillonite-BiVO4/BiOIO3 composite

Funds: National Natural Science Foundation of China (21865031)
  • 摘要: 本文以十六烷基三甲基溴化铵改性蒙脱土、BiVO4及BiOIO3前驱体为原料,水热法制备了改性蒙脱土负载BiVO4/BiOIO3的复合材料(MMT- BiVO4/BiOIO3)。相比BiOIO3,UV-vis DRS显示复合材料的吸收边缘红移至可见光区,200~800 nm区域的吸光强度增强;40%MMT-65% BiVO4/BiOIO3位于579 nm附近的荧光强度低于BiVO4、BiOIO3的,其电化学阻抗圆弧半径最小,表明构建的II型BiVO4/BiOIO3异质结降低了光生载流子的复合率。同时,阳离子表面活性剂修饰的蒙脱土可静电吸引光生电子,载流子的分离率进一步提高,有利于光催化反应。模拟可见光降解酸性品红(AF)的实验中,光照60 min,40%MMT-65% BiVO4/BiOIO3对AF的降解率为97.7%,拟一级动力学反应速率常数为0.0532 min−1,h+、${\text{•}}\text{O}_{2}^{-} $光降解反应的活性基团。此外,复合材料对结晶紫(CV)、亚甲基蓝(MB)、孔雀石绿(MG)等阳离子染料的吸附性能极佳,光降解甲基橙(MO)、罗丹明B(RhB)、盐酸四环素(TC)效果较好。

     

  • 图  1  MMT(CTAB)、BiVO4、BiOIO3、65% BiVO4/BiOIO3和 40% MMT-65%BV/BO的XRD谱

    Figure  1.  图 Fig. 1 XRD patterns of MMT(CTAB), BiVO4, BiOIO3, 65% BiVO4/BiOIO3 and 40% MMT-65%BV/BO

    MMT—Montmorillonite; CTAB—Hexadecyltrimethyl ammonium bromide

    图  2  BiVO4 (a)、BiOIO3 (b)、65% BiVO4/BiOIO3 (c)和40% MMT-65%BV/BO (d)的扫描电镜图片;40% MMT- 65%BV/BO (e, f, g, h)的透射电镜图片

    Figure  2.  SEM patterns of BiVO4 (a), BiOIO3 (b), 65% BiVO4/BiOIO3 (c) and 40% MMT-65%BV/BO (d). TEM patterns of 40% MMT-65%BV/BO (e, f, g, h)

    图  3  不同BiVO4/BiOIO3材料的N2吸附-脱附等温线

    Figure  3.  N2 adsorption-desorption isotherms of different BiVO4/BiOIO3 materials

    图  4  不同BiVO4/BiOIO3样品的紫外-可见漫反射光谱(a)及对应的禁带宽度(b)

    Figure  4.  UV-Vis diffuse reflectance spectra of several different BiVO4/BiOIO3 samples (a) and corresponding band gap widths of different samples (b)

    α −Absorption coefficient; hv−Photon energy

    图  5  不同BiVO4/BiOIO3材料的光致发光光谱

    Figure  5.  Photoluminescence spectrum of different BiVO4/BiOIO3 materials

    图  6  不同BiVO4/BiOIO3材料的交流阻抗谱

    Figure  6.  EIS spectra of different BiVO4/BiOIO3 materials

    图  7  不同BiVO4/BiOIO3样品对AF的光催化活性

    Figure  7.  Photocatalytic activity of different BiVO4/BiOIO3 samples to AF

    图  8  不同MMT含量的MMT-65%BV/BO对AF的光降解(a)及相应的表观速率常数k(b)

    Figure  8.  The photodegradation of AF with different contents of MMT in MMT-65%BV/BO (a) and the associated apparent reaction rate constants k (b)

    图  9  40% MMT-65%BV/BO对有机污染物的光催化降解 (a)及相应的表观速率常数k(b)

    Figure  9.  Photocatalytic degradation of organic pollutants by 40% MMT-65%BV/BO (a) and the associated apparent reaction rate constants k (b)

    MO-Methyl orange; AF-Acid fuchsin; RhB-Rhodamine B; CV-Crystal violet; MB-Methylene blue; MG-Malachite green; TC-Tetracycline hydrochloride

    图  10  40% MMT-65%BV/BO光催化循环实验

    Figure  10.  Photocatalysis cycle experiment by 40% MMT-65%BV/BO

    图  11  40% MMT-65%BV/BO光催化剂使用前后XRD

    Figure  11.  XRD analysis before and after the use by 40% MMT-65%BV/BO photocatalysts

    图  12  不同捕获剂对40% MMT-65%BV/BO光催化降解AF的影响

    Figure  12.  Effect of different trapping agents on the photocatalytic degradation of AF by 40% MMT-65%BV/BO

    EDTA-2Na—Ethylenediamine tetraacetic acid disodium salt; IPA—Isopropyl alcohol

    图  13  40% MMT-65%BV/BO光催化降解AF可能机制

    Figure  13.  The proposed mechanism of the photocatalytic degradation of AF by 40% MMT-65%BV/BO

    表  1  BiVO4/BiOIO3复合材料的命名

    Table  1.   Naming of BiVO4/BiOIO3 composites

    Sample Mass of BiVO4 /g Mass ratio of BiVO4
    to BiOIO3/wt%
    35% BiVO4/BiOIO3 0.162 35
    45% BiVO4/BiOIO3 0.208 45
    55% BiVO4/BiOIO3 0.255 55
    65% BiVO4/BiOIO3 0.301 65
    下载: 导出CSV

    表  2  蒙脱土- 65%BiVO4/BiOIO3复合材料的命名

    Table  2.   Naming of MMT-65%BiVO4/BiOIO3 composites

    Sample Mass of MMT /g Mass ratio of MMT
    to 65%BV/BO/wt%
    10% MMT-65%BV/BO 0.076 10
    20% MMT-65%BV/BO 0.153 20
    30% MMT-65%BV/BO 0.229 30
    40% MMT-65%BV/BO 0.306 40
    下载: 导出CSV

    表  3  不同材料的比表面积、孔容及孔径

    Table  3.   Specific surface area, pore volume and pore diameter of different materials

    Sample Specific
    surface
    area /(m2.g−1)
    Pore
    volume/
    (cm3.g−1)
    Pore
    diameter/
    nm
    BiVO4 0.803 0.012 2.674
    BiOIO3 15.706 0.100 3.140
    65% BiVO4/BiOIO3 3.2337 0.024 2.849
    40%MMT-65%BV/BO 8.357 0.034 3.896
    下载: 导出CSV

    表  4  不同材料对酸性品红的光降解

    Table  4.   Photodegradation of acid fuchsin by different materials

    Sample Cat./AF
    mg/mg
    time/
    min
    degrading
    rate/%
    paper
    LaCoO3
    CeO2/ZnO
    100/1 60 98.94 [27]
    CeO2/ZnO 50/1 90 96.44 [28]
    Cs-Bi2WO6 25/1 105 87.2 [29]
    α-Bi2O3/CdS 12/1 240 81 [30]
    65%BiVO4/BiOIO3 33.3/1 60 98.5 This work
    下载: 导出CSV
  • [1] LI W, MU B, YANG Y. Feasibility of industrial-scale treatment of dye wastewater via bioadsorption technolog[J]. Bioresource Technology, 2019, 277: 157-170. doi: 10.1016/j.biortech.2019.01.002
    [2] LANJWANI M, TUZEN M, KHUHAWARET M, et al. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review[J]. Inorganic Chemistry Communications, 2024, 159: 111613. doi: 10.1016/j.inoche.2023.111613
    [3] DAHMAN B, SALEH T. Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions[J]. Biomass Conversion and Biorefnery, 2024, 14(2): 2439-2452. doi: 10.1007/s13399-022-02382-8
    [4] WU L, LIU M, YU W, et al. Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification[J]. Environmental Pollution, 2021, 280: 116998. doi: 10.1016/j.envpol.2021.116998
    [5] ROSA J, TAMBOURGI E, VANALLE R, et al. Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents[J]. Journal of Cleaner Production, 2020, 246: 119012. doi: 10.1016/j.jclepro.2019.119012
    [6] 李杰, 宋晨飞, 逄显娟. 可见光催化剂钒酸铋的可控合成及性能研究[J]. 无机材料学报, 2019, 34(9): 164-172.

    LI Jie, SONG Chenfei, PANG Xianjuan. Controllable synthesis and photocatalytic performance of BiVO4 under visible-light irradiation[J]. Journal of Inorganic Materials, 2019, 34(2): 164-172(in Chinese).
    [7] MURUGAN C, PANDIKUMAR A. Reinforcement of visible-light harvesting and charge-transfer dynamics of BiVO4 photoanode via formation of p-n heterojunction with CuO for efficient photoelectrocatalytic water splitting[J]. ACS Applied Energy Materials, 2022, 5(6): 6618-6632. doi: 10.1021/acsaem.1c04120
    [8] LIU J, LI B, KONG L, et al. Surfactants-assisted morphological regulation of BiVO4 nanostructures for photocatalytic degradation of organic pollutants in wastewater[J]. Journal of Physics and Chemistry of Solids, 2023, 172: 111079. doi: 10.1016/j.jpcs.2022.111079
    [9] YANG C, ZHANG X, LI Z, et al. In-situ preparation of Ag2S nanoparticle-anchored BiVO4 nanosheet p-n heterostructure on three-dimensional flexible substrate for enhancement of photocatalytic activity[J]. Materials Research Bulletin, 2024, 174: 112709. doi: 10.1016/j.materresbull.2024.112709
    [10] BOOCHAKIAT S, TANTRAVIWAT D, THONGSOOK O, et al. Effect of exposed facets of bismuth vanadate, controlled by ethanolamine, on oxidative coupling of primary amines[J]. Journal of Colloid and Interface Science, 2021, 602: 168-176. doi: 10.1016/j.jcis.2021.05.178
    [11] HU X, WANG Q, LI Y, et al. The hydrophilic treatment of a novel co-catalyst for greatly improving the solar water splitting performance over Mo-doped bismuth vanadate[J]. Journal of Colloid and Interface Science, 2022, 607: 219-228. doi: 10.1016/j.jcis.2021.08.195
    [12] HUANG H W, HE Y, HE R, et al. Novel Bi-based iodate photocatalysts with high photocatalytic activity[J]. Inorganic Chemistry Communications, 2014, 40: 215-219. doi: 10.1016/j.inoche.2013.12.024
    [13] YANG J, ZHENG D, XIAO X, et al. Iodine self-doping and oxygen vacancies doubly surface-modified BiOIO3: Facile in situ synthesis, band gap modulation, and excellent visible-light photocatalytic activity[J]. Chemical Engineering Journal, 2019, 373: 935-945. doi: 10.1016/j.cej.2019.05.057
    [14] LIU Y, FANG X, LIU Y, et al. Porous spherical indium oxide-loaded BiOIO3 nanosheets to construct Z-scheme heterojunction to enhance photocatalytic activity[J]. Materials Today Communications, 2024, 38: 107997. doi: 10.1016/j.mtcomm.2023.107997
    [15] WANG D, XU Y, YU W, et al. Modulating charge carrier transfer channel by 2D/2D Schottky heterojunction of Ti3C2/BiOIO3 for effective photocatalytic degradation of typical antibiotics[J]. Separation and Purification Technology, 2024, 337: 126393. doi: 10.1016/j.seppur.2024.126393
    [16] SANKEETHA S, MURALIDHARAN R, ABIRAMI N, et al. Interaction of BiVO4 anchored 2D hexagonal boron nitride nanocomposite for photocatalytic water pollutants degradation and phytotoxicity assessment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 132024.
    [17] WANG T, HE S, ZHANG Y, et al. Photocatalytic removal of elemental mercury on TiO2-BiOIO3 heterostructures: Mercury transformation, sulfur tolerance and SO2/SO3 conversion[J]. Chemical Engineering Journal, 2020, 388: 124390. doi: 10.1016/j.cej.2020.124390
    [18] XU C, WU H, GU F, et al. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites[J]. Journal of Hazardous Materials, 2014, 275: 185-192. doi: 10.1016/j.jhazmat.2014.04.064
    [19] YIN X, SUN X, MAO Y, et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109412. doi: 10.1016/j.jece.2023.109412
    [20] LU M, XIAO X, WANG Y, et al. Construction of novel BiOIO3/MoS2 2D/2D heterostructures with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 831: 154789. doi: 10.1016/j.jallcom.2020.154789
    [21] CUI H, LI B, LI Z, et al. Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution[J]. Applied Surface Science, 2018, 455: 831-840. doi: 10.1016/j.apsusc.2018.06.054
    [22] MA J, DING N, LIU H. Research progress in photocatalytic activated persulfate degradation of antibiotics by bismuth-based photocatalysts[J]. Separation and Purification Technology, 2023, 324: 124628. doi: 10.1016/j.seppur.2023.124628
    [23] ZHANG C, QIN D, ZHOU Y, et al. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and defect evolution[J]. Applied Catalysis B: Environmental, 2022, 303: 120904. doi: 10.1016/j.apcatb.2021.120904
    [24] RATHNAYAKE S, XI Y, FROST R, et al. Environmental applications of inorganic–organic clays for recalcitrant organic pollutants removal: Bisphenol A[J]. Journal of Colloid and Interface Science, 2016, 470: 183-195. doi: 10.1016/j.jcis.2016.02.034
    [25] ZHANG H, NIU C G, YANG S F, et al. Facile fabrication of BiOIO3/BiOBr composites with enhanced visible light photocatalytic activity[J]. RSC Advances, 2016, 6: 64617-64625. doi: 10.1039/C6RA14155B
    [26] XIAO Y, WU J, JIA T, et al. Fabrication of BiOI nanosheets with exposed (001) and (110) facets with different methods for photocatalytic oxidation elemental mercury[J]. Colloid and Interface Science Communications, 2021, 40: 100357. doi: 10.1016/j.colcom.2020.100357
    [27] 王潇潇, 郭世龙, 牛紫嫣, 等. LaCoO3 钙钛矿型催化剂的制备及其光催化降解酸性品红和碱性品红的研究[J]. 分子催化, 2024, 38(1): 71-80.

    WANG Xiaoxiao, GUO Shilong, NIU ZiYan, et al. Preparation of LaCoO3 perovskite catalyst and its photocatalytic degradation of acid fuchsin and basic fuchsin[J]. Journal of Molecular Catalysis, 2024, 38(1): 71-80(in Chinese).
    [28] 陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO 复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(9): 3000-3007.

    CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3000-3007(in Chinese).
    [29] 李冬梅, 王梓良, 杨 磊, 等. 铯、锶掺杂钨酸铋的可见光降解酸性品红性能研究[J]. 功能材料, 2022, 53(2): 2007-2011. doi: 10.3969/j.issn.1001-9731.2022.02.002

    LI Dongmei, WANG Ziliang, YANG Le, et al. Study on visib lelight degradation performance of bismuth tungstate doped by cesium and strontium[J]. Journal of Functional Materials, 2022, 53(2): 2007-2011(in Chinese). doi: 10.3969/j.issn.1001-9731.2022.02.002
    [30] LIN S T, SHAN L W, MA C G, et al. High-performance α-Bi2O3/CdS heterojunction photocatalyst: innovative design, electrochemical performance and DFT calculation[J]. Journal of Nano Research, 2022, 71: 13-28. doi: 10.4028/www.scientific.net/JNanoR.71.13
    [31] SUN B, HONG W, THIBAU E S, et al. Polyethylenimine (PEI) as an effective dopant to conveniently convert ambipolar and p-type polymers into unipolar n-type polymers[J]. ACS Applied Materials Interfaces, 2015, 7(33): 18662-1867. doi: 10.1021/acsami.5b05097
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-08-16
  • 录用日期:  2024-08-25
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回