Preparation and photocatalytic performance of montmorillonite-BiVO4/BiOIO3 composite
-
摘要: 本文以十六烷基三甲基溴化铵改性蒙脱土、BiVO4及BiOIO3前驱体为原料,水热法制备了改性蒙脱土负载BiVO4/BiOIO3的复合材料(MMT- BiVO4/BiOIO3)。相比BiOIO3,UV-vis DRS显示复合材料的吸收边缘红移至可见光区,200~800 nm区域的吸光强度增强;40%MMT-65% BiVO4/BiOIO3位于579 nm附近的荧光强度低于BiVO4、BiOIO3的,其电化学阻抗圆弧半径最小,表明构建的II型BiVO4/BiOIO3异质结降低了光生载流子的复合率。同时,阳离子表面活性剂修饰的蒙脱土可静电吸引光生电子,载流子的分离率进一步提高,有利于光催化反应。模拟可见光降解酸性品红(AF)的实验中,光照60 min,40%MMT-65% BiVO4/BiOIO3对AF的降解率为97.7%,拟一级动力学反应速率常数为
0.0532 min−1,h+、${\text{•}}\text{O}_{2}^{-} $光降解反应的活性基团。此外,复合材料对结晶紫(CV)、亚甲基蓝(MB)、孔雀石绿(MG)等阳离子染料的吸附性能极佳,光降解甲基橙(MO)、罗丹明B(RhB)、盐酸四环素(TC)效果较好。-
关键词:
- 有机改性蒙脱土 /
- BiVO4/BiOIO3 /
- 模拟可见光 /
- 光降解
Abstract: Montmorillonite supported BiVO4/BiOIO3 composites (MMT-BiVO4/BiOIO3) were prepared by hydrothermal method using hexadecyl trimethyl ammonium bromide modified montmorillonite, BiVO4 and precursor of BiOIO3 as raw material. Compared to BiOIO3, the absorption edge of composite materials occur red shift to visible light region and absorption intensity is enhanced located near 579 nm is lower than that of BiVO4 or BiOIO3. Its half circular diameter is the smallest in electrochemical impedance spectra. These results indicate that the recombination rate of photo generated carriers is reduced by constructing II-scheme BiVO4/BiOIO3 heterojunction. Meanwhile, the electrostatic attraction between modified montmorillonite and photogenerated electron further improve the separation rate of photo generated charge carriers and is beneficial for photocatalytic reactions. In the experiment of simulating visible light degradation of acid fuchsin (AF), the degradation rate of AF is 97.7% with 60 min by 40% MMT-65% BiVO4/BiOIO3 as photocatalysts. The pseudo-first-order rate constant is0.0532 min−1 and the active species are h+, ${\text{•}}\text{O}_{2}^{-} $ in photodegradation reaction. As well as, the composite has excellent adsorption performance for cationic dyes, such as crystal violet (CV), methylene blue (MB) and malachite green (MG). The photodegradation effect on methyl orange (MO), Rhodamine B (RhB) and tetracycline hydrochloride (TC) is more effective. -
图 9 40% MMT-65%BV/BO对有机污染物的光催化降解 (a)及相应的表观速率常数k(b)
Figure 9. Photocatalytic degradation of organic pollutants by 40% MMT-65%BV/BO (a) and the associated apparent reaction rate constants k (b)
MO-Methyl orange; AF-Acid fuchsin; RhB-Rhodamine B; CV-Crystal violet; MB-Methylene blue; MG-Malachite green; TC-Tetracycline hydrochloride
表 1 BiVO4/BiOIO3复合材料的命名
Table 1. Naming of BiVO4/BiOIO3 composites
Sample Mass of BiVO4 /g Mass ratio of BiVO4
to BiOIO3/wt%35% BiVO4/BiOIO3 0.162 35 45% BiVO4/BiOIO3 0.208 45 55% BiVO4/BiOIO3 0.255 55 65% BiVO4/BiOIO3 0.301 65 表 2 蒙脱土- 65%BiVO4/BiOIO3复合材料的命名
Table 2. Naming of MMT-65%BiVO4/BiOIO3 composites
Sample Mass of MMT /g Mass ratio of MMT
to 65%BV/BO/wt%10% MMT-65%BV/BO 0.076 10 20% MMT-65%BV/BO 0.153 20 30% MMT-65%BV/BO 0.229 30 40% MMT-65%BV/BO 0.306 40 表 3 不同材料的比表面积、孔容及孔径
Table 3. Specific surface area, pore volume and pore diameter of different materials
Sample Specific
surface
area /(m2.g−1)Pore
volume/
(cm3.g−1)Pore
diameter/
nmBiVO4 0.803 0.012 2.674 BiOIO3 15.706 0.100 3.140 65% BiVO4/BiOIO3 3.2337 0.024 2.849 40%MMT-65%BV/BO 8.357 0.034 3.896 -
[1] LI W, MU B, YANG Y. Feasibility of industrial-scale treatment of dye wastewater via bioadsorption technolog[J]. Bioresource Technology, 2019, 277: 157-170. doi: 10.1016/j.biortech.2019.01.002 [2] LANJWANI M, TUZEN M, KHUHAWARET M, et al. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review[J]. Inorganic Chemistry Communications, 2024, 159: 111613. doi: 10.1016/j.inoche.2023.111613 [3] DAHMAN B, SALEH T. Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions[J]. Biomass Conversion and Biorefnery, 2024, 14(2): 2439-2452. doi: 10.1007/s13399-022-02382-8 [4] WU L, LIU M, YU W, et al. Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification[J]. Environmental Pollution, 2021, 280: 116998. doi: 10.1016/j.envpol.2021.116998 [5] ROSA J, TAMBOURGI E, VANALLE R, et al. Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents[J]. Journal of Cleaner Production, 2020, 246: 119012. doi: 10.1016/j.jclepro.2019.119012 [6] 李杰, 宋晨飞, 逄显娟. 可见光催化剂钒酸铋的可控合成及性能研究[J]. 无机材料学报, 2019, 34(9): 164-172.LI Jie, SONG Chenfei, PANG Xianjuan. Controllable synthesis and photocatalytic performance of BiVO4 under visible-light irradiation[J]. Journal of Inorganic Materials, 2019, 34(2): 164-172(in Chinese). [7] MURUGAN C, PANDIKUMAR A. Reinforcement of visible-light harvesting and charge-transfer dynamics of BiVO4 photoanode via formation of p-n heterojunction with CuO for efficient photoelectrocatalytic water splitting[J]. ACS Applied Energy Materials, 2022, 5(6): 6618-6632. doi: 10.1021/acsaem.1c04120 [8] LIU J, LI B, KONG L, et al. Surfactants-assisted morphological regulation of BiVO4 nanostructures for photocatalytic degradation of organic pollutants in wastewater[J]. Journal of Physics and Chemistry of Solids, 2023, 172: 111079. doi: 10.1016/j.jpcs.2022.111079 [9] YANG C, ZHANG X, LI Z, et al. In-situ preparation of Ag2S nanoparticle-anchored BiVO4 nanosheet p-n heterostructure on three-dimensional flexible substrate for enhancement of photocatalytic activity[J]. Materials Research Bulletin, 2024, 174: 112709. doi: 10.1016/j.materresbull.2024.112709 [10] BOOCHAKIAT S, TANTRAVIWAT D, THONGSOOK O, et al. Effect of exposed facets of bismuth vanadate, controlled by ethanolamine, on oxidative coupling of primary amines[J]. Journal of Colloid and Interface Science, 2021, 602: 168-176. doi: 10.1016/j.jcis.2021.05.178 [11] HU X, WANG Q, LI Y, et al. The hydrophilic treatment of a novel co-catalyst for greatly improving the solar water splitting performance over Mo-doped bismuth vanadate[J]. Journal of Colloid and Interface Science, 2022, 607: 219-228. doi: 10.1016/j.jcis.2021.08.195 [12] HUANG H W, HE Y, HE R, et al. Novel Bi-based iodate photocatalysts with high photocatalytic activity[J]. Inorganic Chemistry Communications, 2014, 40: 215-219. doi: 10.1016/j.inoche.2013.12.024 [13] YANG J, ZHENG D, XIAO X, et al. Iodine self-doping and oxygen vacancies doubly surface-modified BiOIO3: Facile in situ synthesis, band gap modulation, and excellent visible-light photocatalytic activity[J]. Chemical Engineering Journal, 2019, 373: 935-945. doi: 10.1016/j.cej.2019.05.057 [14] LIU Y, FANG X, LIU Y, et al. Porous spherical indium oxide-loaded BiOIO3 nanosheets to construct Z-scheme heterojunction to enhance photocatalytic activity[J]. Materials Today Communications, 2024, 38: 107997. doi: 10.1016/j.mtcomm.2023.107997 [15] WANG D, XU Y, YU W, et al. Modulating charge carrier transfer channel by 2D/2D Schottky heterojunction of Ti3C2/BiOIO3 for effective photocatalytic degradation of typical antibiotics[J]. Separation and Purification Technology, 2024, 337: 126393. doi: 10.1016/j.seppur.2024.126393 [16] SANKEETHA S, MURALIDHARAN R, ABIRAMI N, et al. Interaction of BiVO4 anchored 2D hexagonal boron nitride nanocomposite for photocatalytic water pollutants degradation and phytotoxicity assessment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 132024. [17] WANG T, HE S, ZHANG Y, et al. Photocatalytic removal of elemental mercury on TiO2-BiOIO3 heterostructures: Mercury transformation, sulfur tolerance and SO2/SO3 conversion[J]. Chemical Engineering Journal, 2020, 388: 124390. doi: 10.1016/j.cej.2020.124390 [18] XU C, WU H, GU F, et al. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites[J]. Journal of Hazardous Materials, 2014, 275: 185-192. doi: 10.1016/j.jhazmat.2014.04.064 [19] YIN X, SUN X, MAO Y, et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109412. doi: 10.1016/j.jece.2023.109412 [20] LU M, XIAO X, WANG Y, et al. Construction of novel BiOIO3/MoS2 2D/2D heterostructures with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 831: 154789. doi: 10.1016/j.jallcom.2020.154789 [21] CUI H, LI B, LI Z, et al. Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution[J]. Applied Surface Science, 2018, 455: 831-840. doi: 10.1016/j.apsusc.2018.06.054 [22] MA J, DING N, LIU H. Research progress in photocatalytic activated persulfate degradation of antibiotics by bismuth-based photocatalysts[J]. Separation and Purification Technology, 2023, 324: 124628. doi: 10.1016/j.seppur.2023.124628 [23] ZHANG C, QIN D, ZHOU Y, et al. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and defect evolution[J]. Applied Catalysis B: Environmental, 2022, 303: 120904. doi: 10.1016/j.apcatb.2021.120904 [24] RATHNAYAKE S, XI Y, FROST R, et al. Environmental applications of inorganic–organic clays for recalcitrant organic pollutants removal: Bisphenol A[J]. Journal of Colloid and Interface Science, 2016, 470: 183-195. doi: 10.1016/j.jcis.2016.02.034 [25] ZHANG H, NIU C G, YANG S F, et al. Facile fabrication of BiOIO3/BiOBr composites with enhanced visible light photocatalytic activity[J]. RSC Advances, 2016, 6: 64617-64625. doi: 10.1039/C6RA14155B [26] XIAO Y, WU J, JIA T, et al. Fabrication of BiOI nanosheets with exposed (001) and (110) facets with different methods for photocatalytic oxidation elemental mercury[J]. Colloid and Interface Science Communications, 2021, 40: 100357. doi: 10.1016/j.colcom.2020.100357 [27] 王潇潇, 郭世龙, 牛紫嫣, 等. LaCoO3 钙钛矿型催化剂的制备及其光催化降解酸性品红和碱性品红的研究[J]. 分子催化, 2024, 38(1): 71-80.WANG Xiaoxiao, GUO Shilong, NIU ZiYan, et al. Preparation of LaCoO3 perovskite catalyst and its photocatalytic degradation of acid fuchsin and basic fuchsin[J]. Journal of Molecular Catalysis, 2024, 38(1): 71-80(in Chinese). [28] 陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO 复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(9): 3000-3007.CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3000-3007(in Chinese). [29] 李冬梅, 王梓良, 杨 磊, 等. 铯、锶掺杂钨酸铋的可见光降解酸性品红性能研究[J]. 功能材料, 2022, 53(2): 2007-2011. doi: 10.3969/j.issn.1001-9731.2022.02.002LI Dongmei, WANG Ziliang, YANG Le, et al. Study on visib lelight degradation performance of bismuth tungstate doped by cesium and strontium[J]. Journal of Functional Materials, 2022, 53(2): 2007-2011(in Chinese). doi: 10.3969/j.issn.1001-9731.2022.02.002 [30] LIN S T, SHAN L W, MA C G, et al. High-performance α-Bi2O3/CdS heterojunction photocatalyst: innovative design, electrochemical performance and DFT calculation[J]. Journal of Nano Research, 2022, 71: 13-28. doi: 10.4028/www.scientific.net/JNanoR.71.13 [31] SUN B, HONG W, THIBAU E S, et al. Polyethylenimine (PEI) as an effective dopant to conveniently convert ambipolar and p-type polymers into unipolar n-type polymers[J]. ACS Applied Materials Interfaces, 2015, 7(33): 18662-1867. doi: 10.1021/acsami.5b05097
计量
- 文章访问数: 33
- HTML全文浏览量: 27
- 被引次数: 0