留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

研磨活化再生微粉/多元复合胶凝材料的微观结构演变与碳足迹评价

高淑玲 张虎彪

高淑玲, 张虎彪. 研磨活化再生微粉/多元复合胶凝材料的微观结构演变与碳足迹评价[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 高淑玲, 张虎彪. 研磨活化再生微粉/多元复合胶凝材料的微观结构演变与碳足迹评价[J]. 复合材料学报, 2024, 42(0): 1-15.
GAO Shuling, ZHANG Hubiao. Microstructure evolution and carbon footprint evaluation of ground activated recycled powder / multi-component composite cementitious materials[J]. Acta Materiae Compositae Sinica.
Citation: GAO Shuling, ZHANG Hubiao. Microstructure evolution and carbon footprint evaluation of ground activated recycled powder / multi-component composite cementitious materials[J]. Acta Materiae Compositae Sinica.

研磨活化再生微粉/多元复合胶凝材料的微观结构演变与碳足迹评价

基金项目: 国家自然科学基金 (52179127);河北省自然科学基金 (E2023202030)
详细信息
    通讯作者:

    高淑玲,博士,教授,博士生导师,研究方向为复合材料微观结构分析、绿色节能建筑; E-mail: gaoshuling@hebut.edu.cn

  • 中图分类号: TB332; TU528.58

Microstructure evolution and carbon footprint evaluation of ground activated recycled powder / multi-component composite cementitious materials

Funds: National Natural Science Foundation of China (No.52179127); Natural science foundation of hebei province (No.E2023202030)
  • 摘要: 为大规模应用再生微粉(RP)替代普通硅酸盐水泥(OPC)作为辅助胶凝材料(SCM)。本研究旨在构建RP/多元复合胶凝材料(MCCM),通过抗压强度试验和XRD、FT-IR、SEM、BSE-EDS、TEM等微观测试手段,对RP/MCCM的强度发展、相组织演化和微观结构等进行了研究,并以生命周期评价(LCA)方法对RP/MCCM碳减排效益进行分析。研究发现:研磨活化后,RP掺量为30% (R30)时,28 d抗压强度在未活化的基础上提高7.6%。RP掺入后Al—OH增强,C—O和$\text{CO}_{3}^{2-} $键峰变窄,S元素分布均匀,有利于钙矾石(AFt)和CaCO3相的生成。CaCO3、Ca(OH)2、SiO2纳米结构在RP和粉煤灰(FA)分别复掺15%时(R15F15),其三元体系中紧密的结合在一起,未出现明显的断层,从而改善了其结构致密性和强度。此外,碳排放分析发现,RP掺入降低了原材料提取和运输过程碳排放,实现了减排目标。

     

  • 图  1  再生微粉(RP)生产和制备过程

    Figure  1.  Recycled powder (RP) manufacturing and preparation process

    图  2  原材料粒度分布检测

    Figure  2.  Detection of particle size distribution of raw materials

    图  3  原材料XRD和SEM检测结果

    Figure  3.  Results of raw materials XRD and SEM

    图  4  原材料SEM检测结果

    Figure  4.  SEM test results of raw materials

    图  5  RP/多元复合胶凝材料(MCCM)抗压强度试验结果

    Figure  5.  RP/multi-component composite cementitious material (MCCM) compressive strength test results

    图  6  RP/MCCM相对强度贡献率

    Figure  6.  The RP / MCCM relative intensity contribution rate

    图  7  RP/MCCM的28 d强度活性指数

    Figure  7.  28 d intensity activity index of RP / MCCM

    图  8  RP整形前后表面形貌

    Figure  8.  Surface topography before and after RP shaping

    图  9  不同龄期下RP/MCCM的XRD图谱

    Figure  9.  The XRD profiles at different instars of RP/MCCM

    图  10  不同龄期下RP/MCCM的FT-IR图谱

    Figure  10.  For FT-IR profiles at different instars RP/MCCM

    图  11  28 d龄期不同配比RP/MCCM的SEM微观结构

    Figure  11.  Microstructure of SEM with different ratios in 28 d instar period of RP/MCCM

    图  12  R0水泥净浆28 d BSE-EDS面扫结果

    Figure  12.  Surface sweep results of R0 cement net slurry 28 d BSE-EDS

    图  13  R30二元净浆体系28 d BSE-EDS面扫结果

    Figure  13.  28 d BSE-EDS face results of R30 binary clean slurry system

    图  14  R15F15三元净浆体系28 d BSE-EDS面扫结果

    Figure  14.  28 d BSE-EDS face results of R15F15 ternary slurry system

    图  15  R15F15配比28 d龄期TEM图像

    Figure  15.  R15F15 ratio TEM images at 28 d instar ages

    图  16  R0和R15F15多元水化模型

    Figure  16.  R0 and R15F15 multivariate hydration models

    图  17  水泥净浆体系生命周期系统边界

    Figure  17.  Life cycle system boundary of cement net slurry system

    图  18  RP/MCCM碳排放量对比分析

    Figure  18.  Comparative analysis of RP/MCCM carbon emissions

    图  19  RP/MCCM碳排放总量及每部分占比

    Figure  19.  The total carbon emissions and the proportion of each part of RP/MCCM

    表  1  化学成分检测

    Table  1.   chemical composition

    Chemical composition/wt% SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O NaO2 TiO2
    Cement 20.13 9.53 3.65 60.08 1.69 2.57 1.20 0.18 0.95
    RP 46.792 11.99 5.649 25.602 3.071 1.34 2.23 1.11 1.12
    FA 46.39 34.28 7.23 3.60 2.08 2.00 1.03 0.68 2.48
    下载: 导出CSV

    表  2  水泥净浆配合比设计

    Table  2.   Mix proportion design of cement paste

    Number Unit/g w/b
    Cement URP RP FA Water
    R0 450 0 0 0 135 0.3
    UR30 315 135 0 0 135 0.3
    R30 315 0 135 0 135 0.3
    R0F30 315 0 0 135 135 0.3
    R15F15 315 0 67.5 67.5 135 0.3
    Note: URP is Ungrounded recycled powder; R0 is cement paste, R15 is 15% of the recycled powder blending ratio after grinding, and F15 is 15% of the fly ash blending ratio.
    下载: 导出CSV

    表  3  原料提取阶段碳排放量计算结果

    Table  3.   Calculation results of carbon emission in the raw material extraction stage

    Mixture type Materials The mass of 1 m3 mixture/t The mass of each
    material in 1/(m3·t−1)
    Raw material production CEF/(kgCO2eq·t−1) Raw material CE/kg Raw materials
    for CE Ce/kg
    R0 Cement 2.1 1.83 735 1345.1 1345.1
    Water 0.29 0.15 0.04
    R30 Cement 2.1 1.28 785 941.5 941.6
    RP 0.54 0 0
    Water 0.29 0.15 0.1
    R0F30 Cement 2.1 1.28 735 941.5 960.5
    FA 0.55 34.5 18.94
    Water 0.29 0.15 0.1
    R15F15 Cement 2.1 1.28 735 941.5 950.9
    RP 0.27 0 0
    FA 0.19 34.5 9.3
    Water 0.29 0.15 0.1
    Notes: Carbon Emission Factor(CEF); Carbon Emissions(CE)
    下载: 导出CSV

    表  4  原料和混合物运输阶段的碳排放的计算结果

    Table  4.   Calculation results of carbon emissions during the transportation stage of raw materials and mixture

    Mixture
    type
    Materials
    The mass of 1 m3
    mixture /t
    The mass of each material in 1/(m3·t−1) Transport CEF/
    (kgCO2eq·t−1)
    Raw material transportation distance/km Transport CE/kg Raw material transportationCE Ct1/kg Net slurry transportation distance /km Mixed material transportationCE Ct2/kg
    R0 Cement 2.10 1.83 1.1 30 72.5 72.5 20.00 50.4
    Water 0.29 30 0.00
    R30 Cement 2.10 1.28 1.1 30 46.1 65.56 20.00 50.4
    RP 0.54 30 19.4
    Water 0.29 30 0.00
    R0F30 Cement 2.10 1.28 1.1 30 46.1 65.88 20.00 50.4
    FA 0.55 30 19.4
    Water 0.29 30 0.00
    R15F15 Cement 2.10 1.28 1.1 30 46.50 62.75 20.00 50.4
    RP 0.27 30 9.72
    FA 0.19 30 6.91
    Water 0.29 30 0.00
    下载: 导出CSV

    表  5  混合物生产阶段碳排放量的计算结果

    Table  5.   Calculation results of carbon emissions during the mixture production stage

    Mixture
    type
    Materials The mass
    of 1 m3
    mixture /t
    The mass of
    each material
    in 1/(m3·t−1)
    In the production
    process CEF/
    (kgCO2eq·t−1)
    Produce
    CE/kg
    After processing
    CEF/(kgCO2eq·t−1)
    After
    processing
    CE/kg
    The mixture
    produces the
    CE Cp/kg
    R0 Cement 2.1 1.83 1.1 2.89 / / 2.3
    Water 0.29
    R30 Cement 2.1 1.28 1.1 2.88 2.32 1.26 3.6
    RP 0.54
    Water 0.29
    R0F30 Cement 2.1 1.28 1.1 3.01 / / 2.4
    FA 0.55
    Water 0.29
    R15F15 Cement 2.1 1.28 1.1 2.77 2.32 0.63 2.9
    RP 0.27
    FA 0.19
    Water 0.29
    下载: 导出CSV

    表  6  建筑固废(CSW)处理碳排放量计算

    Table  6.   Calculation of carbon emissions from construction solid waste (CSW) treatment

    Mixture
    type
    CSW
    Materials
    The mass
    of 1 m3
    mixture /t
    The mass of
    each material
    in 1/(m3·t−1)
    Transport
    CEF/
    (kgCO2eq·t−1)
    CSW
    transport
    distance/km
    CSW
    transport
    CE /kg
    CSW-
    processed
    CEF/
    (kgCO2eq·t−1)
    Sewage
    treatment
    sCE/kg
    Avoid CSW
    landfilling
    CEF/(kgCO2eq·t−1)
    CSW
    landfill
    CE/kg
    Reductive
    CE R/kg
    R30 Cement 2.1 1.83 −1.1 0 −47.5 −7.1 4.1 −2.1 −1.13 −52.7
    RP 0.29 80
    Water 1.28 0
    R0F30 Cement 2.1 0.54 −1.1 0 −22.5 −7.1 3.9 −2.1 −1.15 −29.4
    FA 0.29 40
    Water 1.28 0
    R15F15 Cement 2.1 0.55 −1.1 0 −22.2 −7.1 3.3 −2.1 −0.97 −33.7
    RP 0.29 80
    FA 1.28 40
    Water 0.27 0
    下载: 导出CSV
  • [1] 侯文静, 何彩庆, 陈文清. 农业固废基水凝胶用于水体中重金属吸附的研究进展[J]. 复合材料学报, 2024, 1-15.

    HOU Wenjing, HE Caiqing, CHEN Wenqing. Adsorption of heavy metals by agricultural solid waste based hydrogel: A review[J]. Acta Materiae Compositae Sinica, 2024, 1-15 (in Chinese).
    [2] 刘树龙, 王贻明, 吴爱祥, 等. 赤泥复合充填材料浸出行为及固化机制[J]. 复合材料学报, 2023, 40(12): 6729-6739.

    LIU Shulong, WANG Yiming, WU Aixiang, et al. Leaching behavior and curing mechanism of red mud composite filling material[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6729-6739 (in Chinese).
    [3] 刘超, 林鑫, 刘化威, 等. 风积沙与再生复合微粉对超高性能混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(11): 5415-5422.

    LIU Chao, LIN Xin, LIU Huawei et al. Effect of wind sand and recycled composite powder on mechanical properties of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5415-5422 (in Chinese).
    [4] ZHANG H, GAO S, LI H, et al. Triaxial test analysis and discrete element simulation of CFBC[J]. Construction and Building Materials, 2023, 409: 133754. doi: 10.1016/j.conbuildmat.2023.133754
    [5] LIN Y, ALENGARAM U J, IBRAHIM Z, et al. Performance appraisal of high volume of sustainable unprocessed eco-minerals, ground and unground eco-processed pozzolan as cement replacement materials in mortar[J]. Construction and Building Materials, 2024, 411: 134344. doi: 10.1016/j.conbuildmat.2023.134344
    [6] BOGAS J A, REAL S, CRUZ R, et al. Mechanical performance and shrinkage of compressed earth blocks stabilised with thermoactivated recycled cement[J]. Journal of Building Engineering, 2023, 79: 107892. doi: 10.1016/j.jobe.2023.107892
    [7] LEE J, LOTHENBACH B, MOON J. Performance improvement of Portland-limestone cement by mechanochemical activation[J]. Cement and Concrete Research, 2024, 176: 107411. doi: 10.1016/j.cemconres.2023.107411
    [8] ALZAZA A, OHENOJA K, DABBEBI R, et al. Enhancing the hardened properties of blended cement paste cured at 0° C by using alkali-treated ground granulated blast furnace slag[J]. Cement and Concrete Composites, 2022, 134: 104757. doi: 10.1016/j.cemconcomp.2022.104757
    [9] SHEN P, ZHANG Y, JIANG Y, et al. Phase assemblance evolution during wet carbonation of recycled concrete fines[J]. Cement and Concrete Research, 2022, 154: 106733. doi: 10.1016/j.cemconres.2022.106733
    [10] YAO Y, LIU C, LIU H, et al. Deterioration mechanism understanding of recycled powder concrete under coupled sulfate attack and freeze–thaw cycles[J]. Construction and Building Materials, 2023, 388: 131718. doi: 10.1016/j.conbuildmat.2023.131718
    [11] HOU S, DUAN Z, YE T, et al. Mechanical properties and pore structure of 3D printed mortar with recycled powder[J]. Construction and Building Materials, 2023, 394: 132068. doi: 10.1016/j.conbuildmat.2023.132068
    [12] 苏骏, 黄福, 王淞波, 等. 低温作用下改性骨料-钢纤维再生混凝土弯曲性能试验[J]. 复合材料学报, 2024, 41(2): 884-897.

    SU Jun, HUANG Fu, WANG Songbo, et al. Test on the bending performance of modified aggregate-steel fiber regenerated concrete under low temperature action[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 884-897 (in Chinese).
    [13] LIANG T, HUO M, YU L, et al. Life cycle assessment-based decision-making for thermal remediation of contaminated soil in a regional perspective[J]. Journal of Cleaner Production, 2023, 392: 136260. doi: 10.1016/j.jclepro.2023.136260
    [14] 苏骏, 钟子龙, 蔡雅琼, 等. 基于地聚物骨料的高延性纤维增强水泥基复合材料力学性能与拉伸本构模型[J]. 复合材料学报, 2024, 1-18

    Su Jun, Zhong Zilong, Cai Yaqiong, et al. Mechanical properties and tensile constitutive model of highly flexible fiber-reinforced cement-based composite based on ground polymer aggregate[J]. Acta Materiae Compositae Sinica, 2024, 1-18 (in Chinese).
    [15] 水泥胶砂强度检验方法(ISO 法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Test method for strength of cement cement (ISO method): GB/T 17671-2021[S]. Beijing: China Standards Press, 2021 (in Chinese).
    [16] DU J, ZHANG T, CHEN P, et al. Phase separation of recycled concrete powder during grinding and consequent influences on its hydration behaviors in cement paste[J]. Cement and Concrete Composites, 2023, 142: 105203. doi: 10.1016/j.cemconcomp.2023.105203
    [17] 刘泽军, 赵柳, 李艳等. 不同长径比聚乙烯醇(PVA)/高延性纤维增强水泥基复合材料(ECC)动态压缩性能[J]. 复合材料学报, 2023, 40(12): 6859-6870.

    LIU Zejun, ZHAO Liu, LI Yan, et al. Dynamic compression properties of polyvinyl alcohol (PVA) /reinforced reinforced composite (ECC)[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6859-6870 (in Chinese).
    [18] HERRING A, KING P L, SAADATFAR M, et al. 3D microstructure controls on mineral carbonation[J]. Journal of CO2 Utilization, 2021, 47: 101494. doi: 10.1016/j.jcou.2021.101494
    [19] 许建疆, 郭军林, 甘丹等. 粉煤灰微珠-沙漠砂陶粒混凝土力学性能试验[J]. 复合材料学报, 2024, 41(1): 348-360.

    XU Jianjiang, GUO Junlin, GAN Dan, et al. Mechanical properties test of fly ash beads-desert sand ceramrit concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 348-360 (in Chinese).
    [20] ABDELLATIEF M, ABD ELRAHMAN M, ELGENDY G, et al. Response surface methodology-based modelling and optimization of sustainable UHPC containing ultrafine fly ash and metakaolin[J]. Construction and Building Materials, 2023, 388: 131696. doi: 10.1016/j.conbuildmat.2023.131696
    [21] JING Y, JIANG Y, CHEN B, et al. Influence of steel slag powder on the characteristics of magnesium phosphate cement[J]. Journal of Building Engineering, 2023, 77: 107454. doi: 10.1016/j.jobe.2023.107454
    [22] PALACIOS M, SANZ-Pont D, MOHAMED A K, et al. Heating cement to slow down its hydration: the unexpected role of PCE interpolymer bridge formation[J]. Cement and Concrete Research, 2022, 156: 106765. doi: 10.1016/j.cemconres.2022.106765
    [23] SHELOTE K M, BALA A, GUPTA S. An overview of mechanical, permeability, and thermal properties of silica fume concrete using bibliographic survey and building information modelling[J]. Construction and Building Materials, 2023, 385: 131489. doi: 10.1016/j.conbuildmat.2023.131489
    [24] LI H, KANG X, LI S, et al. Characterization and mechanism study of sulfate saline soil solidification in seasonal frozen regions using ternary solid waste-cement synergy[J]. Construction and Building Materials, 2024, 427: 136263. doi: 10.1016/j.conbuildmat.2024.136263
    [25] GUO X, LI Y, SHI H, et al. Carbon reduction in cement industry-An indigenized questionnaire on environmental impacts and key parameters of life cycle assessment (LCA) in China[J]. Journal of Cleaner Production, 2023, 426: 139022. doi: 10.1016/j.jclepro.2023.139022
    [26] 朱红兵, 付正昊, 王烨, 等. 界面剂对全轻陶粒混凝土与普通混凝土粘结界面力学性能的影响[J]. 复合材料学报, 2024, 1-17

    ZHU Hongbing, FU Zhenghao, WANG Ye, et al. Effects of interfacial agents on mechanical properties of interface between fully light ceramsite concrete and ordinary concrete[J]. Acta Materiae Compositae Sinica, 2024, 1-17 (in Chinese).
    [27] ZHANG X, LI H, WANG H, et al. Properties of RCA stabilized with alkali-activated steel slag based materials in pavement base: Laboratory tests, field application and carbon emissions[J]. Construction and Building Materials, 2024, 411: 134547. doi: 10.1016/j.conbuildmat.2023.134547
    [28] YAN P, MA Z, LI H, et al. Laboratory tests, field application and carbon footprint assessment of cement-stabilized pure coal solid wastes as pavement base materials[J]. Construction and Building Materials, 2023, 366: 130265. doi: 10.1016/j.conbuildmat.2022.130265
    [29] 朱翔琛, 张云升, 刘志勇, 等. 基于核磁共振技术的硫酸盐冻融下机制骨料混凝土孔结构演变规律研究[J]. 复合材料学报, 2024, 1-14.

    ZHU Xiangchen, ZHANG Yunsheng, LIU Zhiyong, et al. Study on the evolution of aggregate concrete hole under sulfate freeze-thaw based on nuclear magnetic resonance technology[J]. Acta Materiae Compositae Sinica, 2024, 1-14 (in Chinese).
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-03-21
  • 录用日期:  2024-04-17
  • 网络出版日期:  2024-05-23

目录

    /

    返回文章
    返回