Formation mechanism of multi-plastic regions in concrete flexural members with graded GFRP bars
-
摘要:
传统钢筋混凝土受弯构件在一个荷载峰值处往往仅产生一个塑性铰,这造成了一个严重的问题,即塑性铰区域的性能得到了充分的发挥,而塑性铰以外的区域没有进入塑性状态,抗震性能很少得到利用,表现为局部发生了严重的破坏,其它区域基本完好。这个问题浪费了材料的性能,严重限制和削弱了构件的抗震能力。本文提出在一个荷载峰值处构建多个塑性区的理念,其实质是沿着构件长度方向形成抗震功能梯度。本文的创新性和亮点体现在如下几个方面:1. 提出了一种多塑性区混凝土受弯构件的构建方案,并进行了试验验证。2. 证实了多塑性区优良的抗震力学效果。3. 揭示了多塑性区形成的机制:1) 受弯构件抗弯承载能力梯级分布和外力弯矩梯度分布相适配是多塑性区形成的决定条件;2) 各塑性区的塑性发展程度和构件的破坏模式具有可调控性;3) 线弹性的GFRP筋是多塑性区形成和调控的关键。本文的理念和核心内容还未见于报道,具有显著的创新性和重要的应用价值。 多塑性区形成机制(曲率单位:10-4mm-1,弯矩单位:kN·m) Abstract: In order to enhance the seismic capacity of concrete flexural members, a graded reinforcement scheme with the glass fiber reinforced plastic (GFRP) bars and the steel bars was developed to make a graded distribution of bearing capacity that matches the external force distribution, and then multiple-plastic regions were formed. Five concrete flexural members with different graded reinforcement parameters were designed, and the comparison parameters included the height of the grades, the type of bars, the reinforcement ratios and the construction methods. Through the pushover experiment, the formation and mechanical effects of multi-plastic regions were studied, and the formation mechanism of multi-plastic regions was analyzed in details. The results show that the reasonable graded reinforcement scheme can form multi-plastic regions in the concrete flexural member. The number and development degree of plastic regions significantly affect the seismic behaviours of members. The formation condition of the multi-plastic regions is that the external moment is between the sectional yield moment and ultimate moment in several grades. The development level of each plastic region can be effectively controlled by adjusting the length and reinforcement of the grades, and the failure position and failure mode of the member can be designed. A great increment provided by GFRP bars with line elasticity properties on the bending bearing capacity after yielding is a key factor for the formation and regulation of multi-plastic regions. -
表 1 各试件梯级配筋详细参数
Table 1. Parameters of each specimen's graded reinforcement
Specimen Grade Length of each
grade /mmDetails of reinforcement Reinforcement ratio Steel bars GFRP bars A 1 0-700 4$ \phi $16 Steel bars +4$ \phi $14 GFRP bars 1.29% 0.99% 2 700-2700 4$ \phi $16 Steel bars 1.29% - B 1 0-1000 4$ \phi $16 Steel bars +4$ \phi $14 GFRP bars 1.29% 0.99% 2 1000-2700 4$ \phi $16 Steel bars 1.29% - C 1 0-500 4$ \phi $16 Steel bars +10$ \phi $10 GFRP bars 1.29% 1.26% 2 500-760 4$ \phi $16 Steel bars +6$ \phi $10 GFRP bars 1.29% 0.75% 3 760-2700 4$ \phi $16 Steel bars 1.29% - D 1 0-650 4$ \phi $14 GFRP bars +10$ \phi $10 GFRP bars - 2.24% 2 650-1400 4$ \phi $14 GFRP bars +6$ \phi $10 GFRP bars - 1.74% 3 1400-2700 4$ \phi $14 GFRP bars - 0.99% E 1 0-500 4$ \phi $16 Steel bars +10$ \phi $10 GFRP bars +3$ \phi $10 Steel bars(embed) 1.54% 1.16% 2 500-1000 4$ \phi $16 Steel bars +6$ \phi $10 GFRP bars +1$ \phi $10 Steel bars(embed) 1.31% 0.70% 3 1000-2700 4$ \phi $16 Steel bars 1.19% - 表 2 GFRP筋和钢筋的力学性能
Table 2. Mechanical properties of GFRP and steel bars
Type Elastic
modulus/GPaStrength/MPa Yield Tensile $ \phi $14 GFRP bar 35.89 - 520.93 $ \phi $10 GFRP bar 30.92 - 620.83 $ \phi $16 steel bar 202.95 446.67 614.42 $ \phi $10 steel bar 191.08 471.19 575.34 表 3 梯级GFRP筋混凝土受弯试件各梯级段的变形及试件破坏模式
Table 3. Deformation of each grade and failure mode of concrete flexural specimens with graded GFRP bars
Specimen Grade Rotation/rad Top displacement of
the member produced by
each grade /mmPlastic development
degree of each gradeFailure mode A 1 0.0455 118.1 Full development 2 0.0472 83.9 Ultimate failure Ductile failure B 1 0.0396 100.5 Ultimate failure GFRP bars fracture 2 0.0097 9.5 Undeveloped C 1 0.0554 141.7 Ultimate failure GFRP bars fracture 2 0.0109 23.1 Partial development 3 0.0143 26.0 Slight development D 1 0.0598 149.25 Ultimate failure GFRP bars fracture 2 0.0400 67.77 Partial development 3 0.0613 33.0 Full development E 1 0.0477 120.5 Partial development 2 0.0464 83.9 Ultimate failure Interface debonding 3 0.0256 27.0 Partial development -
[1] S Pareek, Y Suzuki, Y Araki, et al. Plastic hinge relocation in reinforced concrete beams using Cu-Al-Mn SMA bars[J]. Engineering Structures,2018,175:765-775. doi: 10.1016/j.engstruct.2018.08.072 [2] ZHANG Yuye, Dias-da-Costa D. Seismic Vulnerability of multi-span continuous girder bridges with steel fibre reinforced concrete columns[J]. Engineering Structures,2017,150:451-464. doi: 10.1016/j.engstruct.2017.07.053 [3] 张于晔, 魏红一, 袁万城. 钢纤维混凝土局部增强桥墩抗震性能试验研究[J]. 振动与冲击, 2012, 31(21):102-107.ZHANG Yuye, WEI Hongyi, YUAN Wancheng. Tests for Aseismic behavior of bridge piers with local steel fiber reinforced concrete[J]. Journal of Vibration and Shock,2012,31(21):102-107(in Chinese). [4] CHO Chang-Geun, KIM Yun-Yong, FEO Luciano, et al. Cyclic responses of reinforced concrete composite columns strengthened in the plastic hinge region by HPFRC mortar[J]. Composite Structures,2012,94(7):2246-2253. doi: 10.1016/j.compstruct.2012.01.025 [5] GUAN Dongzhi, CHEN Zixuan, LIU Jiabin, et al. Seismic performance of precast concrete columns with prefabricated UHPC jackets in plastic hinge zone[J]. Engineering Structures,2021,245:112776. doi: 10.1016/j.engstruct.2021.112776 [6] 梁兴文, 康力, 车佳玲, 等. 局部采用纤维增强混凝土柱的抗震性能试验与分析[J]. 工程力学, 2013, 30(9):243-250. doi: 10.6052/j.issn.1000-4750.2012.06.0394LIANG Xingwen, KANG Li, CHE Jialing, et al. Experiments and analyses of seismic behavior of columns with fiber-reinforced concrete in bottom region[J]. Engineering Mechanics,2013,30(9):243-250(in Chinese). doi: 10.6052/j.issn.1000-4750.2012.06.0394 [7] 梁兴文, 康力, 邓明科, 等. 塑性铰区采用纤维增强混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2014, 35(2):63-70.LIANG Xingwen, KANG Li, DENG Mingke, et al. Experimental investigation on seismic behavior of columns with fiber-reinforced concrete in potential plastic region[J]. Journal of Building Structures,2014,35(2):63-70(in Chinese). [8] 邓明科, 代龙, 何斌斌, 等. 塑性铰区采用高延性混凝土梁变形性能研究[J]. 工程力学, 2021, 38(1):52-63.DENG Mingke, DAI Long, HE Binbin, et al. An investigation of deformation behavior of beams with high ductile concrete in potential plastic region[J]. Engineering Mechanics,2021,38(1):52-63(in Chinese). [9] XU Li, PAN Jinlong, CAI Jingming. Seismic performance of precast RC and RC/ECC composite columns with grouted sleeve connections[J]. Engineering Structures,2019,188:104-110. doi: 10.1016/j.engstruct.2019.03.022 [10] XU Yan, JIA Yunfan, TONG Ziliang, et al. Cyclic loading test for concrete bridge columns integrated with ECC segment at the plastic zone[J]. Engineering Structures,2021,246:112985. doi: 10.1016/j.engstruct.2021.112985 [11] YUAN Fang, CHEN Mengcheng, PAN Jinlong. Experimental study on seismic behaviours of hybrid FRP–steel-reinforced ECC–concrete composite columns[J]. Composites Part B:Engineering,2019,176:107272. doi: 10.1016/j.compositesb.2019.107272 [12] 袁方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8):55-65.YUAN Fang, ZHAO Xiuyuan. Seismic behaviors of hybrid FRP-steel reinforced ECC-concrete composite columns[J]. Engineering Mechanics,2021,38(8):55-65(in Chinese). [13] ZHANG Yangxi, DENG Mingke, LI Tong, et al. Strengthening of flexure-dominate RC columns with ECC jackets: Experiment and analysis[J]. Engineering Structures,2021,231:111809. doi: 10.1016/j.engstruct.2020.111809 [14] 徐梁晋, 王义博, 张志刚, 等. 预制ECC管混凝土桥墩拟静力试验研究[J]. 工程力学, 2021, 38(5):229-238.XU Liangjin, WANG Yibo, ZHANG Zhigang, et al. Quasi-static test study on precast ECC concrete-filled tubular bridge piers[J]. Engineering Mechanics,2021,38(5):229-238(in Chinese). [15] 贾毅, 赵人达, 廖平, 等. PP-ECC用于墩底塑性铰区域的抗震性能试验[J]. 中国公路学报, 2019, 32(7):100-111.JIA Yi, ZHAO Renda, LIAO Ping, et al. Experimental investigation on seismic behavior of bridge piers with polypropylene-engineered cementitious composite in plastic hinge regions[J]. China Journal of Highway and Transport,2019,32(7):100-111(in Chinese). [16] 贾毅. 塑性铰区采用PP-ECC的桥墩模型抗震性能研究[D]. 成都: 西南交通大学, 2019.JIA Yi. Research on seismic behavior of bridge pier model with polypropylene-engineered cementitious composite in plastic hinge regions[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese). [17] ZHANG Rui, MENG Qingli, SHUI Qingjun, et al. Cyclic response of RC composite bridge columns with precast PP-ECC jackets in the region of plastic hinges[J]. Composite Structures,2019,221:110844. doi: 10.1016/j.compstruct.2019.04.016 [18] 杨红, 陈进可, 陈银松. 填充墙对空间框架非线性地震反应特征的影响[J]. 四川大学学报(工程科学版), 2012, 44(5):38-46.YANG Hong, CHENG Jingke, CHEN Yinsong. Effects of infill walls on nonlinear seismic response characteristics of spatial frames[J]. Journal of Sichuan University (Engineering Science Edition),2012,44(5):38-46(in Chinese). [19] DENG Jiangdong, MA Zhongguo John, LIU Airong, et al. Seismic performance of composite column with double plastic hinges[J]. Composite Structures,2017,182:435-446. doi: 10.1016/j.compstruct.2017.09.024 [20] CHOU Chung-Che, CHANG Hao-Jan, JOSHUA T. Hewes. Two-plastic-hinge and two dimensional finite element models for post-tensioned precast concrete segmental bridge columns[J]. Engineering Structures,2013,46:205-217. doi: 10.1016/j.engstruct.2012.07.009 [21] PANAGIOTOU marios, RESTREPO José I. Dual-plastic hinge design concept for reducing higher-mode effects on high-rise cantilever wall buildings[J]. Earthquake Engineering & Structural Dynamics,2009,38(12):1359-1380. [22] BEIRAGHI Hamid, KHEYRODDIN Ali, KAFI Mohammad Ali. Energy dissipation of tall core-wall structures with multi-plastic hinges subjected to forward directivity near-fault and far-fault earthquakes[J]. The Structural Design of Tall and Special Buildings,2016,25(15):801-820. doi: 10.1002/tal.1284 [23] 梁兴文, 王照耀, 于婧, 等. 钢筋混凝土剪力墙结构多塑性铰区合理布置研究[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(2):169-175.LIANG Xingwen, WANG Zhaoyao, YU Jing, et al. Research on a reasonable arrangement of multi-plastic hinge region in RC shear wall structure[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition),2018,50(2):169-175(in Chinese). [24] KHANMOHAMMADI Mohammad, SAMADZ- ADEGAN Nima. Improving seismic behaviour of core walls of dual structural systems using multi-plastic hinges[J]. Bulletin of Earthquake Engineering,2019,17(3):1575-1602. doi: 10.1007/s10518-018-0514-6 [25] 郝庆多, 王言磊, 欧进萍, 等. 玻璃纤维增强复合材料筋肋参数优化试验研究[J]. 复合材料学报, 2008, 25(1):119-126. doi: 10.3321/j.issn:1000-3851.2008.01.021HAO Qingduo, WANG Yanlei, OU Jinping, et al. Experimental study on optimization of rib geometries for glass fiber reinforced composite rebars[J]. Acta Materiae Compositae Sinica,2008,25(1):119-126(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.021 [26] 徐可, 陆春华, 宣广宇, 等. 混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算[J]. 复合材料学报, 2020, 37(9):2348-2357.XU Ke, LU Chunhua, XUAN Guangyu, et al. Experimental and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars[J]. Acta Materiae Compositae Sinica,2020,37(9):2348-2357(in Chinese). [27] 许家婧, 朱鹏, 屈文俊. 钢筋-GFRP 筋增强混凝土梁的疲劳力学性能[J]. 复合材料学报, 2022, 39(5):2318-2328.XU Jiajing, ZHU Peng, QU Wenjun. Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(5):2318-2328(in Chinese). [28] 赵秋红, 刘凯, 王菲, 等. GFRP筋橡胶集料混凝土梁受弯性能[J]. 复合材料学报, 2021, 38(5):1611-1622. doi: 10.13801/j.cnki.fhclxb.20201106.002ZHAO Qiuhong, LIU Kai, WANG Fei, et al. Analyses on flexural behavior of GFRP-reinforced crumb rubber concrete beams[J]. Acta Materiae Compositae Sinica,2021,38(5):1611-1622(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201106.002 [29] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011-2010 [S]. 北京: 中国建筑工业出版社, 2022.Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Code for seismic design of building: GB 50011-2010[S]. Beijing: China Architecture & Building Press, 2022(in Chinese). [30] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB 50608−2020[S]. 北京: 中国计划出版社, 2020.Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Technical code for infrastructure application of FRP composites: GB 50608−2020[S]. Beijing: China Planning Press, 2020(in Chinese). [31] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for test method of concrete physical and mechanical properties: GB/T 50081-2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [32] 中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1-2021[S]. 北京: 中国建筑工业出版社, 2021.State Administration for Market Regulation of the People’s Republic of China. Metallic material tensile testing Part 1: Method of test at room temperature: GB/T 228.1-2021[S]. Beijing: China Architecture & Building Press, 2021(in Chinese). [33] 中华人民共和国国家质量监督检验检疫总局. 定向纤维增强聚合物基复合材料 拉伸性能试验方法: GB/T 3354-2014[S]. 北京: 中国建筑工业出版社, 2014.State Administration for Market Regulation of the People’s Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354-2014[S]. Beijing: China Architecture & Building Press, 2014(in Chinese). [34] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3):36-46. doi: 10.6052/j.issn.1000-4750.2016.03.0192FENG Peng, QIANG Han-lin, YE Lie-ping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics,2017,34(3):36-46(in Chinese). doi: 10.6052/j.issn.1000-4750.2016.03.0192 -

计量
- 文章访问数: 110
- HTML全文浏览量: 95
- 被引次数: 0