留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性γ-Fe2O3/玉米秸秆淀粉的制备及其对废水中U(VI)吸附性能

范甲 胡世琴 魏柏 杨金辉 曾倩 杨芳婷

范甲, 胡世琴, 魏柏, 等. 磁性γ-Fe2O3/玉米秸秆淀粉的制备及其对废水中U(VI)吸附性能[J]. 复合材料学报, 2021, 39(0): 1-10
引用本文: 范甲, 胡世琴, 魏柏, 等. 磁性γ-Fe2O3/玉米秸秆淀粉的制备及其对废水中U(VI)吸附性能[J]. 复合材料学报, 2021, 39(0): 1-10
Jia FAN, Shiqin HU, Bai WEI, Jinhui YANG, Qian ZENG, Fangting YANG. Preparation of magnetic γ-Fe2O3/corn stalk starch and its adsorption performance for U(VI) in wastewater[J]. Acta Materiae Compositae Sinica.
Citation: Jia FAN, Shiqin HU, Bai WEI, Jinhui YANG, Qian ZENG, Fangting YANG. Preparation of magnetic γ-Fe2O3/corn stalk starch and its adsorption performance for U(VI) in wastewater[J]. Acta Materiae Compositae Sinica.

磁性γ-Fe2O3/玉米秸秆淀粉的制备及其对废水中U(VI)吸附性能

基金项目: 国家级大学生创新创业训练项目(S202010555024)
详细信息
    通讯作者:

    杨金辉,硕士,教授,硕士生导师,研究方向为水处理材料 E-mail :842893915@qq.com

  • 中图分类号: TQ424 文献标志码:A

Preparation of magnetic γ-Fe2O3/corn stalk starch and its adsorption performance for U(VI) in wastewater

  • 摘要: 随着核能发展,放射性核素铀通过各种途径流入环境,对人类的身体健康构成潜在威胁。以废弃玉米秸秆为原料自制玉米秸秆淀粉(CSS),采用共沉淀法将磁性γ-Fe2O3包裹在玉米秸秆淀粉表面合成磁性γ-Fe2O3/CSS,并用于溶液中U(VI)的吸附。考察初始pH值、投加量、时间、初始浓度、温度和共存离子等因素对γ-Fe2O3/CSS吸附U(VI)性能的影响,并加以分析。采用SEM、FTIR、XPS对吸附前后的磁性γ-Fe2O3/CSS进行表征分析,深入研究其对吸附U(VI)的技术机理。结果表明:在适宜条件下,γ-Fe2O3/CSS对U(VI)的最大吸附量达到214.1 mg/g。准二级动力学模型更准确地描述其吸附过程即以化学吸附为主。磁性γ-Fe2O3/CSS对U(VI)吸附符合Langmuir模型和Freundlich模型。吸附机理主要为U(VI)与γ-Fe2O3/CSS的羟基、羧基发生络合反应与离子交换作用。通过4次吸附解吸实验表明,U(VI)吸附率仍在78.60%以上,说明磁性γ-Fe2O3/CSS具有一定的再生能力。

     

  • 图  1  磁性γ-Fe2O3/玉米秸秆淀粉(CSS)材料构筑示意图

    Figure  1.  Schematic diagram of the construction of magnetic γ-Fe2O3/corn stalk starch (CSS) materials

    图  2  γ-Fe2O3/CSS吸附U(VI)前(a)和吸附U(Ⅵ)后(b)的 SEM 图

    Figure  2.  SEM images of γ-Fe2O3/CSS before (a) and after (b) adsorption of U(VI)

    图  3  γ-Fe2O3/CSS吸附U(Ⅵ)前和后的FT-IR谱图

    Figure  3.  FT-IR spectra of γ-Fe2O3/CSS before and after the adsorption of U(Ⅵ)

    图  4  γ-Fe2O3/CSS吸附U(VI)前后的XPS全谱图 (a)、 U4f (b)、Fe2p (c)和O1s (d)精细谱图

    Figure  4.  XPS full spectra of γ-Fe2O3/CSS before and after adsorption of U(Ⅵ) (a), fine spectrum of U4f (b), Fe2p (c) and O1s (d)

    图  5  pH对γ-Fe2O3/CSS吸附性能的影响

    Figure  5.  The effect of pH on the adsorption performance of γ-Fe2O3/CSS

    图  6  γ-Fe2O3/CSS投加量对吸附性能的影响

    Figure  6.  The effect of dosage on the adsorption performance of γ-Fe2O3/CSS

    图  7  时间(a)对γ-Fe2O3/CSS吸附U(VI)影响和准一级(b)、准二级(c)动力学拟合曲线

    Figure  7.  The influence of γ-Fe2O3/CSS time (a) on the adsorption of U(VI) and the kinetic fitting curve of quasi-first-order (b) and quasi-second-order (c)

    图  8  初始浓度(a)对γ-Fe2O3/CSS吸附U(VI)的影响及Freundlich(b)、Langmuir(c)等温线拟合曲线

    Figure  8.  The effect of initial concentration (a) on the adsorption of U(VI) by γ-Fe2O3/CSS and the fitting curve of Freundlich(b) and Langmuir(c) isotherms

    图  9  温度对γ-Fe2O3/CSS吸附性能的影响

    Figure  9.  The effect of temperature on the adsorption performance of γ-Fe2O3/CSS

    图  10  共存离子对γ-Fe2O3/CSS吸附性能的影响

    Figure  10.  The effect of coexisting ions on the adsorption performance of γ-Fe2O3/CSS

    图  11  γ-Fe2O3/CSS的再生性能

    Figure  11.  Regenerative performance of γ-Fe2O3/CSS

    表  1  γ-Fe2O3/CSS对U(VI)吸附动力学参数

    Table  1.   Adsorption kinetics parameter of U(VI) by γ-Fe2O3/CSS

    Adsorbentqe(experiment)/mg·g−1Quasi-first order dynamics modelQuasi-two-stage dynamics model
    K1/min−1qe(Calculation)/mg·g−1R2K2/min−1qe(Calculation)/mg·g−1R2
    γ-Fe2O3/CSS74.760.04196.150.95180.024175.020.9999
    Notes: qe—Equilibrium adsorption capacity to U(VI),mg·g−1K1—Adsorption rate constant of quasi-first order model,min−1­K2—Adsorption rate constant of quasi- two-stage model,min−1­R2—Correlation coefficient.
    下载: 导出CSV

    表  2  γ-Fe2O3/CSS对U(VI)的吸附等温线拟合参数

    Table  2.   Adsorption isotherm parameter of U(VI) by γ-Fe2O3/CSS

    FreundichLangmiur
    KF1/nR2qm/(mg·g−1)KLR2
    116.70.2380.9866214.11.990.9818
    Notes: KFAdsorption equilibrium constant of Freundlich model;KLAdsorption equilibrium constant of Langmuir model;1/n—Empirical parameters related to adsorption strength;qm—Maximum adsorption capacity of γ-Fe2O3/CSS to U(VI).
    下载: 导出CSV
  • [1] 杨军, 张恩昊, 郭志恒, 等. 全球核能科技前沿综述[J]. 科技导报, 2020, 38(20):35-49. doi: 10.3981/j.issn.1000-7857.2020.20.010

    YANG Jun, ZHANG Enhao, GUO Zhiheng, et al. Recent progress of frontier nuclear energy science and technology[J]. Science & Technology Review,2020,38(20):35-49(in Chinese). doi: 10.3981/j.issn.1000-7857.2020.20.010
    [2] WU Y H, PANG H W, YAO W, et al. Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(Ⅵ): batch experiments and spectroscopy study[J]. Science Bulletin,2018,63(13):831-839. doi: 10.1016/j.scib.2018.05.021
    [3] YU S J, WANG J, SONG S, et al. One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater[J]. Science China (Chemistry),2017,60(3):415-422. doi: 10.1007/s11426-016-0420-8
    [4] 庞宏伟, 唐昊, 王佳琦, 等. 三元水滑石负载的硫化纳米零价铁对铀的高效去除与机理研究[J]. 无机材料学报, 2020, 35(3):381-389.

    PANG Hongwei, TANG Hao, WANG Jiaqi, et al. Ternary layered double hydroxide supported sulfide NZVI: efficient U(Ⅵ) elimination and mechanism[J]. Journal of Inorganic Materials,2020,35(3):381-389(in Chinese).
    [5] LI J, WANG X X, ZHAO G X, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews,2018,47(7):2322-2356. doi: 10.1039/C7CS00543A
    [6] 刘玥, 吴忆涵, 庞宏伟, 等. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6):831-846.

    LIU Yue, WU Yihan, PANG Hongwei, et al. Study on the removal of water pollutants by graphite phase carbon nitride materials[J]. Progress in Chemistry,2019,31(6):831-846(in Chinese).
    [7] BASELGA-CERVERA B, ROMERO-LOPEZ J, GARCIA-BALBOA C, et al. Improvement of the uranium sequestration ability of a chlamydomonas sp (chlsp strain) isolated from extreme uranium mine tailings through selection for potential bioremediation application[J]. Frontiers in Microbiology,2018,9(MAR):523.
    [8] 蒋丽, 高慧慧, 曹茹雅, 等. 三维大孔g-C3N4吸附和光催化还原U(Ⅵ)性能研究[J]. 无机材料学报, 2020, 35(3):359-366.

    JIANG Li, GAO Huihui, CAO Ruya, et al. Construction of novel three dimensionally macroporous g-C3N4 for efficient adsorption/photocatalytic reduction of U(VI)[J]. Journal of Inorganic Materials,2020,35(3):359-366(in Chinese).
    [9] 彭国文, 肖方竹, 丁德馨, 等. 新型功能化吸附剂G-PA-SBA-15对U(VI)的吸附机理[J]. 中国有色金属学报, 2015, 25(11):3237-3244.

    PENG Guowen, XIAO Fangzhu, DNG De Xin, et al. Adsorption mechanisms of uranium (VI) from aqueous solution by G-PA-SBA-15[J]. The Chinese Journal of Nonferrous Metals,2015,25(11):3237-3244(in Chinese).
    [10] 谢新玲, 熊海武, 童张法, 等. 5种改性淀粉吸附Cu2+性能及动力学研究[J]. 功能材料, 2017, 48(2):2009-2012+2019. doi: 10.3969/j.issn.1001-9731.2017.02.003

    XIE Xinling, XIONG Haiwu, TONG Zhangfa, et al. Adsorption properties and kinetic study of Cu2+ removal using five kinds of modified starches[J]. Journal of Functional Materials,2017,48(2):2009-2012+2019(in Chinese). doi: 10.3969/j.issn.1001-9731.2017.02.003
    [11] 汪秀丽, 张玉荣, 王玉忠. 淀粉基高分子材料的研究进展[J]. 高分子学报, 2011(1):24-37.

    WANG Xiuli, ZHANG Yurong, WANG Yuzhong. Recent progress in starch-based polymeric materials[J]. Acta Polymerica Sinica,2011(1):24-37(in Chinese).
    [12] SU X X, HU J L, ZHANG J, et al. Investigating the adsorption behavior and mechanisms of insoluble Humic acid/starch composite microspheres for metal ions from water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,610:125672.
    [13] 邹皓, 谢水波, 刘迎九, 等. 回生淀粉吸附U(Ⅵ)的特性及机理分析[J]. 科学技术与工程, 2017, 17(13):97-101. doi: 10.3969/j.issn.1671-1815.2017.13.018

    ZOU Hao, XIE Shuibo, LIU Yingjiu, et al. Adsorption behavior and mechanism of uranium (Ⅵ) absorbed by retrograde starch[J]. Science Technology and Engineering,2017,17(13):97-101(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.13.018
    [14] 王星, 朱春山, 张弘, 等. 磁性淀粉微球对水中Cr(Ⅵ)的吸附性能研究[J]. 河南工业大学学报(自然科学版), 2013, 34(6):43-50.

    WANG Xing, ZHU Chunshan, ZHANG Hong, et al. Adsorption behavior of magnetic starch microspheres on hexavalent chromium in wastewater[J]. Journal of Henan University of Technology(Natural Science Edition),2013,34(6):43-50(in Chinese).
    [15] 阳鹏飞, 黎杰鑫, 朱春霞. 磁性纳米材料处理含铀废水的研究进展[J]. 化工进展, 2020, 39(1):206-215.

    YANG Pengfei, LI Jiexin, ZHU Chunxia. Research progress in treating uranium containing wastewater with magnetic materials[J]. Chemical Industry and Engineering Progress,2020,39(1):206-215(in Chinese).
    [16] 於照惠, 戴仲然, 尤青, 等. 纳米赤铁矿吸附剂吸附低浓度U(VI)的行为与机理[J]. 南华大学学报(自然科学版), 2019, 33(3):1-7.

    YU Zhaohui, DAI Zhongran, YOU Qing, et al. Adsorption behavior and mechanism of U(Ⅵ) by nano hematite from low concentration wastewater[J]. Journal of University of South China (Science and Technology),2019,33(3):1-7(in Chinese).
    [17] 静远. 玉米秸秆制淀粉[J]. 资源开发与保护, 1988(04):81.

    JING Yuan. Preparation of starch from corn stover[J]. Resource Development & Market,1988(04):81(in Chinese).
    [18] 袁土贵. 纳米零价铁处理含铀废水的研究[D]. 广州大学, 2013.

    YUAN Tugui. Removal of uranium from aqueous solution using zero-valent iron nanoparticles [D]. Guangzhou University, 2013(in Chinese).
    [19] 谭洪卓, 谭斌, 刘明, 等. 甘薯粉丝生产中多糖胶与甘薯淀粉相互作用机理[J]. 食品科学, 2008(5):49-55. doi: 10.3321/j.issn:1002-6630.2008.05.002

    TAN Hongzhuo, TAN Bin, LIU Ming, et al. Mechanism of interaction between polysaccharide gums and sweet potato starch in production of its noodles[J]. Food Science,2008(5):49-55(in Chinese). doi: 10.3321/j.issn:1002-6630.2008.05.002
    [20] 雷增江, 杨金辉, 戴漾泓, 等. 铝污泥对废水中铀(Ⅵ)的吸附机理研究[J]. 应用化工, 2020, 49(3):572-577. doi: 10.3969/j.issn.1671-3206.2020.03.009

    LEI Zengjiang, YANG Jinhui, DAI Yanghong, et al. Study on the adsorption mechanism of uranium (Ⅵ) in wastewater by aluminum sludge[J]. Applied Chemical Industry,2020,49(3):572-577(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.03.009
    [21] 李妍, 崔维建, 赵城彬, 等. 玉米淀粉-玉木耳多糖复配体系理化及结构性质[J]. 食品科学, 2021, 42(4):58-64.

    LI Yan, CUI Weijian, ZHAO Chengbin, et al. Physicochemical and structural properties of corn starch-auricularia cornea ehrenb. polysaccharide blends[J]. Food Science,2021,42(4):58-64(in Chinese).
    [22] 黄文富, 梁宁, 蔡锦源. 玉米淀粉-丙烯酸接枝共聚物的制备及其吸水性能研究[J]. 化工技术与开发, 2019, 48(12):12-16.

    HUANG Wenfu, LIANG Ning, CAI Jinyuan. Preparation and water absorption of corn starch acrylic acid graft copolymer[J]. Technology & Development of Chemical Industry,2019,48(12):12-16(in Chinese).
    [23] 王立东, 肖志刚. 气流粉碎对玉米淀粉结构及理化性质的影响[J]. 农业工程学报, 2016, 32(24):276-281. doi: 10.11975/j.issn.1002-6819.2016.24.037

    WANG Lidong, XIAO Zhigang. Effect of jet-milling on structure and physicochemical properties of maize starch[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(24):276-281(in Chinese). doi: 10.11975/j.issn.1002-6819.2016.24.037
    [24] 王泽敏, 刘勇, 戢明, 等. γ-Fe2O3纳米粉末的光谱吸收特性研究[J]. 功能材料, 2006(2):284-286+291. doi: 10.3321/j.issn:1001-9731.2006.02.035

    WANG Zemin, LIU Yong, JI Ming, et al. Spectrum absorption studies of γ-Fe2O3 nanoparticles[J]. Journal of Functional Materials,2006(2):284-286+291(in Chinese). doi: 10.3321/j.issn:1001-9731.2006.02.035
    [25] 莫官海, 农海杜, 胡青, 等. 硝酸改性污泥基生物炭除U(Ⅵ)效果及机理分析[J]. 精细化工, 2021, 38(2):395-403.

    MO Guanhai, NONG Haidu, HU Qing, et al. U(Ⅵ) removal efficiency and mechanism by acidified sewage sludge-derived biochar[J]. Fine Chemicals,2021,38(2):395-403(in Chinese).
    [26] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science,2008,254(8):2441-2449. doi: 10.1016/j.apsusc.2007.09.063
    [27] 王佳琦, 庞宏伟, 唐昊, 等. 碳热还原法制备的碳载零价铁对水中U(Ⅵ)的去除研究[J]. 无机材料学报, 2020, 35(03):373-380.

    WANG Jiaqi, PANG Hongwei, TANG Hao, et al. Carbothermic synthesis of carbon-supported zero-valent iron material for removal of U(VI) from aqueous solution[J]. Journal of Inorganic Materials,2020,35(03):373-380(in Chinese).
    [28] 高翔, 谢水波, 刘迎久, 等. 壳聚糖-生物炭复合材料对U(Ⅵ)的吸附性能试验研究[J]. 原子能科学技术, 2019, 53(8):1350-1358.

    GAO Xiang, XIE Shuibo, LIU Yingjiu, et al. Experimental investigation on adsorption of U (Ⅵ) by chitosan-biochar composite[J]. Atomic Energy Science and Technology,2019,53(8):1350-1358(in Chinese).
    [29] BELGACEM A, REBIAI R, HADOUN H, et al. The removal of uranium (Ⅵ) from aqueous solutions onto activated carbon developed from grinded used tire[J]. Environmental Science and Pollution Research,2014,21(1):684-694. doi: 10.1007/s11356-013-1940-2
    [30] 刘学, 李小燕, 陈玉洁, 等. 石墨负载纳米零价铁去除溶液中U(Ⅵ)[J]. 中国有色金属学报, 2020, 30(8):1967-1973.

    LIU Xue, LI Xiaoyan, CHEN Yujie, et al. Removal of U(Ⅵ) in aqueous solution by graphite loading nano-zero-valent iron[J]. The Chinese Journal of Nonferrous Metals,2020,30(8):1967-1973(in Chinese).
    [31] Yu S J, LIU Y, AI Y J, et al. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions[J]. Environmental Pollution,2018,242(PT-A):1-11.
    [32] 王慧. 氧化石墨烯及其功能化改性材料富集水中重金属离子机理研究[D]. 湖南大学, 2016.

    WANG Hui. Application of graphene oxide and its functional composites for enrichment of heavy metal ions from aqueous solution[D]. Hunan University, 2016(in Chinese).
    [33] 彭国文, 丁德馨, 胡南, 等. 化学修饰啤酒酵母菌对铀的吸附特性[J]. 化工学报, 2011, 62(11):3201-3206. doi: 10.3969/j.issn.0438-1157.2011.11.032

    PENG Guowen, DING Dexin, HU Nan, et al. Adsorption characteristics of uranium by Saccharomyces cerevisiae by chemical modification[J]. CIESC Journal,2011,62(11):3201-3206(in Chinese). doi: 10.3969/j.issn.0438-1157.2011.11.032
    [34] 彭国文. 新型功能化吸附剂的制备及其吸附铀的试验研究[D]. 中南大学, 2014.

    PENG Guowen. Construction of novel functional adsorbents and application of wastewater treatment in uranium mining and hydrometallurgy[D]. Central South University, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 录用日期:  2021-11-13
  • 修回日期:  2021-10-29
  • 网络出版日期:  2021-12-07

目录

    /

    返回文章
    返回