留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高吸水性树脂与纤维对自燃煤矸石混凝土干燥收缩的影响

刘世 田建华 魏述超 戎晓健 李冬

刘世, 田建华, 魏述超, 等. 高吸水性树脂与纤维对自燃煤矸石混凝土干燥收缩的影响[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 刘世, 田建华, 魏述超, 等. 高吸水性树脂与纤维对自燃煤矸石混凝土干燥收缩的影响[J]. 复合材料学报, 2024, 42(0): 1-17.
LIU Shi, TIAN Jianhua, WEI Shuchao, et al. Effect of super absorbent polymers and fiber on drying shrinkage of spontaneous combustion coal gangue concrete[J]. Acta Materiae Compositae Sinica.
Citation: LIU Shi, TIAN Jianhua, WEI Shuchao, et al. Effect of super absorbent polymers and fiber on drying shrinkage of spontaneous combustion coal gangue concrete[J]. Acta Materiae Compositae Sinica.

高吸水性树脂与纤维对自燃煤矸石混凝土干燥收缩的影响

基金项目: 辽宁省教育厅基本科研项目(LJKQZ20222268;JYTMS20230817);新疆煤炭资源绿色开采教育部重点实验室开放基金(KLXGY-KB2416)
详细信息
    通讯作者:

    李冬, 博士, 副教授, 硕士生导师, 研究方向为纤维水泥基复合材料 E-mail: lidong8998@163.com

  • 中图分类号: TU528

Effect of super absorbent polymers and fiber on drying shrinkage of spontaneous combustion coal gangue concrete

Funds: Basic Research Project of Education Department of Liaoning Province (LJKQZ20222268; JYTMS20230817); Key Laboratory of Green Coal Mining of Xinjiang, Ministry of Education (KLXGY-KB2416)
  • 摘要: 为了探究有效降低自燃煤矸石混凝土收缩的方法,以高吸水性树脂(Super Absorbent Polymers,SAP)和聚丙烯(Polypropylene,PP)纤维掺量为变量,设计了7组自燃煤矸石混凝土试件,开展了自燃煤矸石混凝土干燥收缩试验和基体内部湿度测试试验。探究了SAP与PP纤维对基体收缩性能的影响规律,揭示了基体干燥收缩应变与内部相对湿度之间的变化规律,建立了自燃煤矸石混凝土收缩预测模型。结果表明:SAP和PP纤维的加入均能显著降低自燃煤矸石混凝土的干燥收缩,随着SAP掺量的增加,基体收缩应变先减小后增大;随着PP纤维掺量的增加,基体收缩应变逐渐减小。90d龄期时,SAP掺量为0.2%时对自燃煤矸石混凝土的减缩效果最好,与基准混凝土相比,其试件收缩应变降低了31.3%。SAP与PP纤维的加入可以抑制基体内部湿度的衰减,基体收缩应变与内部相对湿度呈线性变化;通过引入自燃煤矸石骨料影响系数对法国建筑行业规范AFREM中提出的收缩预测模型进行了修正,修正后模型的预测结果与试验结果吻合度较高,可用于自燃煤矸石骨料混凝土干燥收缩的计算。

     

  • 图  1  形状特征

    Figure  1.  Shape characteristics

    图  2  干燥收缩试验

    Figure  2.  Drying shrinkage test

    图  3  内部相对湿度试验

    Figure  3.  Internal relative humidity test

    图  4  不同类型自燃煤矸石混凝土抗压强度

    Figure  4.  Compressive strength of different types of spontaneous combustion coal gangue concrete

    图  5  不同高吸水性树脂(SAP)掺量的基体干燥收缩应变随龄期的发展规律

    Figure  5.  Development law of drying shrinkage strain of matrix with different super absorbent polymers(SAP) content

    图  6  SAP内养护作用机制[35]

    Figure  6.  Internal curing mechanism of SAP[35]

    图  7  掺入聚丙烯(PP)纤维的基体干燥收缩应变随龄期的变化规律

    Figure  7.  Variation of drying shrinkage of the polypropylene (PP) fibers reinforced matrix under different curing time

    图  8  归一化的基体干燥收缩应变曲线:(a) SAP;(b) PP

    Figure  8.  Normalized drying shrinkage strain curve of the matrix:(a) SAP; (b) PP

    图  9  SAP和PP纤维对基体干燥收缩应变的影响

    Figure  9.  Effect of SAP and PP fibers on drying shrinkage of the matrix

    图  10  不同掺量SAP和PP纤维的基体收缩应变变化率:(a) 28 d;(b) 90 d

    Figure  10.  Variation of drying shrinkage strain of the matrix with different SAP and PP fibers dosage: (a) 28 d; (b) 90 d

    图  11  不同SAP掺量对基体内部湿度的影响

    Figure  11.  Influence of SAP content on internal humidity of the matrix

    图  12  不同掺量PP纤维对基体内部湿度的影响

    Figure  12.  Effect of PP fibers dosage on internal humidity of the matrix

    图  13  自燃煤矸石混凝土内部湿度衰减率:(a)SAP;(b)PP

    Figure  13.  Decay rate of the internal humidity of different samples: (a)SAP; (b)PP

    图  14  基体干燥收缩应变与内部相对湿度的关系: (a) NC; (b) 0.1%SAP/NC; (c) 0.2%SAP/NC; (d) 0.3%SAP/NC; (e) 0.05%PP/NC;(f) 0.1%PP/NC; (g) 0.15%PP/NC

    Figure  14.  Relation between dry shrinkage strain and internal relative humidity of the matrix: (a) NC; (b) 0.1%SAP/NC; (c) 0.2%SAP/NC; (d) 0.3%SAP/NC;(e) 0.05%PP/NC; (f) 0.1%PP/NC; (g) 0.15%PP/NC

    图  15  干燥收缩试验结果与现有混凝土收缩预测模型的对比:(a) SAP;(b) PP

    Figure  15.  Comparison of drying shrinkage test results with existing predicted values: (a)SAP; (b)PP

    图  16  自燃煤矸石骨料影响系数GA与SAP掺量间的关系

    Figure  16.  Relationship between the influence coefficient GA and SAP content

    图  17  SAP内养护效果时间影响系数α、β和干燥收缩时间影响系数δ与龄期的关系:(a) α;(b) β;(c) δ

    Figure  17.  Relationship between influence coefficients α, β, δ and curing time with SAP: (a) α; (b) β; (c) δ

    图  18  自燃煤矸石混凝土干燥收缩试验值与修正后模型计算值的对比

    Figure  18.  Comparison of drying shrinkage of the matrix between the test values and predicted values

    图  19  自燃煤矸石骨料影响系数GB与PP纤维掺量间的关系

    Figure  19.  Relationship between the influence coefficient GB and the content of PP fibers

    图  20  PP纤维减缩效果时间影响系数ρ、干燥收缩时间影响系数Φ与干燥龄期的关系:(a) ρ;(b) Φ

    Figure  20.  Relationship between the time effect coefficient ρ, the drying shrinkage time effect coefficient Φ and the drying age influence of PP fibers: (a) ρ; (b) Φ

    图  21  自燃煤矸石混凝土干燥收缩试验值与修正后模型计算值比较

    Figure  21.  Comparison between the test value and the predicted value of drying shrinkage of the fiber reinforced matrix

    图  22  文献中煤矸石混凝土干燥收缩试验值与修正后模型计算值的对比

    Figure  22.  Comparison between the test value and the predicted value of drying shrinkage of the coal gangue concrete reinforced matrix

    表  1  自燃煤矸石基本物理性质

    Table  1.   Basic physical properties of spontaneous combustion coal gangue

    Type Apparent density/
    (g·cm−3)
    Packing density/
    (g·cm−3)
    Crush value/% Water content/% 24 hWater
    absorption rate/%
    Spontaneous combustion coal gangue 2.63 1.04 19.4 0.44 8.64
    下载: 导出CSV

    表  2  PP纤维基本物理性质

    Table  2.   Basic physical properties of PP fibers

    Type Density/(g·cm−3) Tensile strength/MPa Elastic modulus/GPa Length/mm
    PP fibers 0.91 568 4.35 19
    下载: 导出CSV

    表  3  混凝土试件组分配合比(kg/m−3)

    Table  3.   Mix proportions of concrete specimens (kg/m−3)

    ItemCementFly ashWaterSandCoarse aggregateWater reducerSAPPP fiberInternal conservation water
    NC32080152750104040.00.000
    0.1%SAP/NC32080152750104040.40.0010
    0.2%SAP/NC32080152750104040.80.0020
    0.3%SAP/NC32080152750104041.20.0030
    0.05%PP/NC32080152750104040.00.460
    0.1%PP/NC32080152750104040.00.910
    0.15%PP/NC32080152750104040.01.370
    Notes: In the specimens of spontaneous combustion coal gangue concrete with super absorbent polymers (SAP)or polypropylene (PP)fibers, a%SAP/NC—SAP volume fraction in the matrix is a%, b%PP/NC—PP fibers volume fraction in the matrix is b%. The dosage of SAP and PP of item NC is 0.
    下载: 导出CSV

    表  4  混凝土干燥收缩模型对比分析

    Table  4.   Comparative analysis of drying shrinkage models of concrete

    Model Drying shrinkage limit/εcd,0 Drying shrinkage development function/βds(t) Consideration factor
    Calculation formula Calculation formula
    AFREM $K\left( {{f_{{\text{cu}}}}} \right)A\left( {{f_{{\text{cu}}}},{R_{\text{H}}}} \right) \times {10^{ - 6}}$ $ \dfrac{{t - {t_{\text{s}}}}}{{{\beta _{\text{s}}}{{\left( {{{{A_{\text{c}}}} / u}} \right)}^2} + \left( {t - {t_{\text{s}}}} \right)}} $ Drying age, ambient humidity, specimen size, concrete strength, water cement ratio
    fib $160 + 10{\beta _{{\text{sc}}}}\left( {9 - {{{f_{{\text{cu}}}}}/ {{f_{{\text{cu0}}}}}}} \right) \times {10^{ - 6}}$ $ {\left( {\dfrac{{t - {t_{\text{s}}}}}{{350{{\left( {{h/ {{h_0}}}} \right)}^2} + \left( {t - {t_{\text{s}}}} \right)}}} \right)^{{1/ 2}}} $ Drying age, ambient humidity, cement type, strength, specimen size
    ACI209.2 R $ 780{{\gamma }_{\text{cp}}}{{\gamma }_{\text{ } \lambda \text{ }}}{{\gamma }_{\text{h}}}{{\gamma }_{\text{s}}}{{\gamma }_{\text{ } \psi \text{ }}}{{\gamma }_{\text{ } \alpha \text{ }}}{{\gamma }_{\text{c}}}\times {{10}^{-6}} $ $ \dfrac{{{{\left( {t - {t_{\text{s}}}} \right)}^\alpha }}}{{f + {{\left( {t - {t_{\text{s}}}} \right)}^\alpha }}} $ Drying age, curing conditions, ambient humidity, specimen size, gas content, slump, sand strain, cement dosage
    EC2 $ 0.85\left[ \begin{gathered} 220 + 110{\alpha _{{\text{ds1}}}} \\ \exp \left( { - {\alpha _{{\text{ds2}}}}{\raise0.7 ex\hbox{${{f_{{\text{cu}}}}}$} \mathord{\left/ {\vphantom {{{f_{{\text{cu}}}}} {{f_{{\text{cu0}}}}}}}\right.} \lower0.7 ex\hbox{${{f_{{\text{cu0}}}}}$}}} \right) \\ \end{gathered} \right]{\beta _{{\text{RH}}}} \times {10^{ - 6}} $ $\dfrac{{t - {t_{\text{s}}}}}{{\left( {t - {t_{\text{s}}}} \right) + 0.04\sqrt {{{\left( {{{2{A_{\text{c}}}} \mathord{\left/ {\vphantom {{2{A_{\text{c}}}} u}} \right. } u}} \right)}^3}} }}$ Concrete strength, cement type, environment, ambient humidity, drying age, specimen size
    Notes: K(fcu)−the strength of concrete related to the diffusion of internal moistureconstant; A(fcu,RH)—the shrinkage of concrete when the internal humidity decreases due to the self-drying and moisture diffusion process; βs—correlation coefficient of mineral admixtures; Ac—section area(mm2); u—section perimeter(mm); t—the considered age of the concrete (d); ts—the age of the concrete at the begineering of drying shrinkage(d); βsc—influence coefficient of cement variety; fcu—compressive strength of concrete at 28 d (MPa); fcu0—the average compressive strength of concrete(MPa); h—the effective dimensions of the cross-section(mm); h0—the constant value(mm); γcp—correction factor for maintenance conditions; γλ—correction factor for ambient relative humidity; γh—correction factor for component dimensions; γs—correction factor for collapse; γψ—correction factor for sand rate; γα—correction factor for gas content; γc—correction factor for cement content; α—a constant value depending on the shape and size of the specimen; f— a constant value about curing time(d); αds1, αds2—influence coefficients depending on the type of cement; βRH— influence coefficient depending on the relative humidity of the ambient atmosphere.
    下载: 导出CSV
  • [1] 石起振, 张耀祖, 佘宇豪. 自燃煤矸石集料混凝土体积稳定性与耐久性研究进展[J]. 新型建筑材料, 2023, 50(9): 16-21+36. doi: 10.3969/j.issn.1001-702X.2023.09.004

    SHI Qizhen, ZHANG Yaozu, SHE Yuhao. Research progress on volumetric stability and durability of spontaneously combusted coal gangue aggregate concrete[J]. New Building Materials, 2023, 50(9): 16-21+36(in Chinese). doi: 10.3969/j.issn.1001-702X.2023.09.004
    [2] 皇民, 赵玉如, 蔺世豪, 等. 全级配煤矸石混凝土导热性能试验与分析[J]. 科学技术与工程, 2021, 21(3): 1144-1149.

    HUANG Min, ZHAO Yuru, LIN Shihao, et al. Test and analysis of thermal conductivity of fully graded coal gangueconcrete[J]. Science Technology and Engineering, 2021, 21(3): 1144-1149(in Chinese).
    [3] MA H Q, ZHU H G, WU C, et al. Effect of shrinkage reducing admixture on drying shrinkage and durability of alkali-activated coal gangue-slag material[J]. Construction and Building Materials, 2021, 270: 121372-. doi: 10.1016/j.conbuildmat.2020.121372
    [4] WU K Y, LUO S R, ZHENG J L, et al. Influence of carbonation treatment on the properties of multiple interface transition zones and recycled aggregate concrete[J]. Cement and Concrete Composites, 2022, 104402.
    [5] 刘世, 田建华, 朱喜朋, 等. 玄武岩纤维对煤矸石陶粒混凝土抗冻性的影响[J]. 低温工程, 2024, (1): 72-80. doi: 10.3969/j.issn.1000-6516.2024.01.010

    LIU Shi, TIAN Jianhua, ZHU Xipeng, et al. Effect of basalt fiber on frost resistance of coal gangue ceramide concrete[J]. Cryogenic Engineering, 2024, (1): 72-80(in Chinese). doi: 10.3969/j.issn.1000-6516.2024.01.010
    [6] 葛洁雅, 朱红光, 李宗徽, 等. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(S2): 218-223.

    GE Jieya, ZHU Hongguang, LI Zonghui, et al. Study on mechanical and durability of coal gangue coarse aggregate and ground polymer concrete[J]. Materials Review, 2021, 35(S2): 218-223(in Chinese).
    [7] 周梅, 赵华民, 王然, 等. 掺合料对自燃煤矸石砂轻混凝土抗渗和抗冻影响[J]. 硅酸盐通报, 2015, 34(1): 131-137.

    ZHOU Mei, ZHAO Huamin, WANG Ran, et al. Effect of admixture on impermeability and frost resistance of light concrete with spontaneous combustion coal gangue sand[J]. Bulletin of Silicate, 2015, 34(1): 131-137(in Chinese).
    [8] 白国良, 刘瀚卿, 王建文, 等. 基于骨料特性差异的煤矸石混凝土干燥收缩模型[J]. 土木工程学报, 2023, 56(11): 27-42.

    BAI Guoliang, LIU Hanqing, WANG Jianwen, et al. Drying shrinkage model of coal gangue concrete based on aggregate characteristics difference[J]. Journal of Civil Engineering, 2023, 56(11): 27-42(in Chinese).
    [9] 崔正龙, 郝敬力, 陈龙, 等. 自燃煤矸石混凝土强度及干燥收缩裂缝试验研究[J]. 非金属矿, 2015, 38(6): 76-78. doi: 10.3969/j.issn.1000-8098.2015.06.023

    CUI Zhenglong, HAO Jingli, CHEN Long, et al. Experimental study on strength and dry shrinkage crack of spontaneous combustion coal gangue concrete[J]. Non-metallic Mines, 2015, 38(6): 76-78(in Chinese). doi: 10.3969/j.issn.1000-8098.2015.06.023
    [10] 李永靖, 曹爽, 邢洋, 等. 煤矸石骨料混凝土的干燥收缩性能试验研究[J]. 混凝土, 2016, (11): 95-97. doi: 10.3969/j.issn.1002-3550.2016.11.025

    LI Yongjing, CAO Shuang, XING Yang, et al. Experimental study on drying shrinkage performance of coal gangue aggregate concrete[J]. Concrete, 2016, (11): 95-97(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.11.025
    [11] 孔祥明, 张珍林. 高吸水树脂对高强混凝土早期减缩效果及机理研究[J]. 建筑材料学报, 2014, 17(4): 559-565+571. doi: 10.3969/j.issn.1007-9629.2014.04.001

    KONG Xiangming, ZHANG Zhenlin. Study on the effect and mechanism of high water absorbent resin on early shrinkage of high strength concrete[J]. Journal of Building Materials, 2014, 17(4): 559-565+571 (in Chinese). doi: 10.3969/j.issn.1007-9629.2014.04.001
    [12] 林东野. SAP再生混凝土阻裂抗收缩性能研究[D]. 沈阳: 沈阳建筑大学, 2021.

    LIN Dongye. Study on crack resistance and shrinkage resistance of SAP recycled concrete [D]. Shenyang: Shenyang Jianzhu University, 2021(in Chinese).
    [13] 孙浩洋, 张秀芝, 陶文宏, 等. 碱激发泡沫混凝土干燥收缩影响因素及其抑制方法研究进展[J]. 复合材料学报, 2024, 41(2): 609-624.

    SUN Haoyang, ZHANG Xiuzhi, TAO Wenhong, et al. Research progress on influencing factors and inhibition methods of drying shrinkage of alkali-activated foam concrete[J]. Journal of Composite Materials, 2024, 41(2): 609-624(in Chinese).
    [14] 于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8): 2737-2746.

    YU Bentian, CHEN Yanfei, WANG Huan, et al. Shrinkage and cracking inhibition test of high-strength machine-made sand concrete with large content and high adsorption stone powder[J]. Journal of Composite Materials, 2021, 38(8): 2737-2746(in Chinese).
    [15] LIU K, LONG Y, CHEN L, et al. Mechanisms of autogenous shrinkage for Ultra-High Performance Concrete (UHPC) prepared with pre-wet porous fine aggregate (PFA)[J]. Journal of Building Engineering, 2022, 54: 104622. doi: 10.1016/j.jobe.2022.104622
    [16] TUTKUN B, BARLAY E S, YALÇINKAYA Ç, et al. Effect of internal curing on shrinkage and cracking potential under autogenous and drying conditions[J]. Construction and Building Materials, 2023, 409: 134078. doi: 10.1016/j.conbuildmat.2023.134078
    [17] 韩宇栋, 张君, 王振波. 预吸水轻骨料对高强混凝土早期收缩的影响[J]. 硅酸盐学报, 2013, 41(8): 1070-1078. doi: 10.7521/j.issn.0454-5648.2013.08.08

    HAN Yudong, ZHANG Jun, WANG Zhenbo. Effect of pre-absorbent lightweight aggregate on early shrinkage of high-strength concrete[J]. Chinese Journal of Ceramics, 2013, 41(8): 1070-1078(in Chinese). doi: 10.7521/j.issn.0454-5648.2013.08.08
    [18] SHEN D, WEN C, ZHU P, et al. Influence of Barchip fiber on early-age autogenous shrinkage of high strength concrete[J]. Construction and Building Materials, 2020, 256: 119223. doi: 10.1016/j.conbuildmat.2020.119223
    [19] INOZEMTCEV A, KOROLEV E, DUONG T Q. Lightweight concrete for 3D-printing with internal curing agent for Portland cement hydration[J]. Magazine of Civil Engineering, 2022, 109(1): 10915.
    [20] KUDYAKOV A I, STESHENKO A B. Shrinkage deformation of cement foam concrete[J]. IOP Conference Series: Materials Science and Engineering, 2015, 71: 012019. doi: 10.1088/1757-899X/71/1/012019
    [21] MAMUN M, BINDIGANAVILE V. Sulphate resistance of fibre reinforced cement-based foams[J]. Construction and Building Materials, 2011, 25(8): 3427-3442. doi: 10.1016/j.conbuildmat.2011.03.034
    [22] 詹炳根, 郭建雷, 林兴胜. 玻璃纤维增强泡沫混凝土性能试验研究[J]. 合肥工业大学学报: 自然科学版, 2009, 32(2): 226-229.

    ZHANBinggen, GUO Jianlei, LIN Xingsheng. Properties of foamed concrete with fiber glass reinforcement[J]. Journal of Hefei University of Technology(Natural Science), 2009, 32(2): 226-229(in Chinese).
    [23] YAO Y, ZHU Y, YANG Y Z. Incorporation superabsorbent polymer (SAP) particles as controlling pre-existing flaws to improve the performance of engineered cementitious composites (ECC)[J]. Construction and Building Materials, 2012, 28(1): 139-145. doi: 10.1016/j.conbuildmat.2011.08.032
    [24] KIM IS, CHOI SY, CHOI Y S, et al. Effect of Internal Pores Formed by a Super absorbent polymer on durability and drying shrinkage of concrete specimens[J]. Materials, 2021, 14(18): 5199-5199. doi: 10.3390/ma14185199
    [25] GONG J Q, ZENG W, ZHANG W J. Influence of shrinkage-reducing agent and polypropylene fiber on shrinkage of ceramsite concrete[J]. Construction and Building Materials, 2018, 159: 155-163. doi: 10.1016/j.conbuildmat.2017.10.064
    [26] KARAHAN O, ATIS C D. The durability properties of polypropylene fiber reinforced fly ash concrete[J]. Materials and Design, 2011, 32(2): 1044-1049. doi: 10.1016/j.matdes.2010.07.011
    [27] 周梅, 浦倍超, 徐秒, 等. 附加水及预湿时间对自燃煤矸石砂轻混凝土性能影响[J]. 硅酸盐通报, 2013, 32(12): 2421-2426.

    ZHOU Mei, PU Beichao, XU Miao, et al. Effect of additional water and pre-wetting time on performance of light concrete with coal gangue sand from spontaneous combustion[J]. Bulletin of Silicate, 2013, 32(12): 2421-2426(in Chinese).
    [28] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082−2009[S]. 北京: 中国建筑工业出版社, 2009

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082−2009[S]. Beijing: China State Engineering and Construction Press, 2009(in Chinese).
    [29] 黄嘉钰, 刘元珍, 王朝旭, 等. 保温混凝土内部湿度与干燥收缩预测模型[J]. 复合材料学报, 2022, 39(10): 4788-4800.

    HUANG Jiayu, LIU Yuanzhen, WANG Zhaoxu, et al. Prediction model of internal humidity and drying shrinkage of insulated concrete[J]. Journal of Composite Materials, 2022, 39(10): 4788-4800(in Chinese).
    [30] ZHONG P H, WYRZYKOWSKI M, TOROPOVS N, et al. Internal curing with super absorbent polymers of different chemical structures[J]. Cement and Concrete Research, 2019, 123: 105789. doi: 10.1016/j.cemconres.2019.105789
    [31] 李丹丹, 惠存, 王文迪, 等. 纤维增强流动性再生混凝土强度和收缩性能试验研究[J]. 混凝土与水泥制品, 2019, (3): 5-59.

    LIDandan, HUI Cun, WANG Wendi, et al. Experimental study on strength and shrinkage performance of fiber reinforced flow recycled concrete[J]. Concrete and Cement Products, 2019, (3): 5-59(in Chinese).
    [32] 吕兴栋, 刘战鳌, 董芸. 内养护材料高吸水树脂(SAP)和陶粒对混凝土性能影响的对比研究[J]. 硅酸盐通报, 2019, 38(1): 246-252.

    LV Xingdong, LIU Zhanao, DONG Yun. Comparative study on the influence of internal curing material SAP and ceramite on the performance of concrete[J]. Bulletin of Silicate, 2019, 38(1): 246-252(in Chinese).
    [33] LIU J H, SHI C J, MA X W, et al. An overview on the effect of internal curing on shrinkage of high performance cement-based materials[J]. Construction and Building Materials, 2017, 146: 702-712. doi: 10.1016/j.conbuildmat.2017.04.154
    [34] 陈德鹏, 钱春香, 高桂波, 等. 高吸水树脂对混凝土收缩开裂的改善作用及其机理[J]. 功能材料, 2007, (3): 475-478. doi: 10.3321/j.issn:1001-9731.2007.03.039

    CHEN Depeng, QIAN Chunxiang, GAO Guibo, et al. Effect of hyper absorbent resin on shrinkage cracking of concrete and its mechanism[J]. Functional Materials, 2007, (3): 475-478(in Chinese). doi: 10.3321/j.issn:1001-9731.2007.03.039
    [35] BENTZ D P, WEISS W J. Internal curing: a 2010 state-of-the-art review[M]. Gaithersburg: US Department of Commerce, National Institute of Standards and Technology, 2011: 3.
    [36] 王宝. 聚丙烯粗纤维混凝土性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WANG Bao. Experimental study on performance of polypropylene crude fiber concrete [D]. Harbin: Harbin Institute of Technology, 2015(in Chinese) .
    [37] HSIE M, TU C, SONG P S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete[J]. Materials Science and Engineering: A, 2008, 494(1-2): 153-157. doi: 10.1016/j.msea.2008.05.037
    [38] 薛志超, 李林. 聚丙烯纤维对路用混凝土强度及收缩性能的影响[J]. 建筑材料学报, 2011, 14(1): 132-135. doi: 10.3969/j.issn.1007-9629.2011.01.026

    XUE Zhichao, LI Lin. Effect of polypropylene fiber on strength and shrinkage properties of road concrete[J]. Journal of Building Materials, 2011, 14(1): 132-135(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.01.026
    [39] ZHANG H, WANG Y Y, LEHUMAN D E, et al. Time-dependent drying shrinkage model for concrete with coarse ang fine recycled aggregate[J]. Cement and Concrete Composites, 2020, 105; 103426.
    [40] 肖黾. 减缩剂与高吸水树脂对高性能混凝土收缩性能的影响研究[D]. 湖南: 湖南大学, 2016.

    XIAO Mian. Study on the influence of reducing agent and high absorbent resin on shrinkage performance of high performance concrete [D]. Hunan: Hunan University, 2016(in Chinese)
    [41] SHEN D J, WANG M L, CHEN Ying, et al. Prediction model for relative humidity of early-age internally cured concrete with pre-wetted lightweight aggregates[J]. Construction and Building Materials, 2017, 144: 717-727. doi: 10.1016/j.conbuildmat.2017.03.088
    [42] LE R, DE LARRARD F, PONS G. The AFREM code type model for creep and shrinkag of high-performance concrete[C]//Proceedings of the 4th International Symposium on Utilization of High-strength/Highperformance Concrete. Paris: Proceedings, 1996, 1: 387-396.
    [43] Fib model code for concrete structures 2010[S]. London: International Federation for Structural Concrete, 2013.
    [44] Guide for modeling and calculating shrinkage and creep in hardened concrete [S]. Farmington Hills: American Concrete Institute, 2008, 209: 76.
    [45] BSEN1992-1-1: 2004 Eurocode2: Design of concrete structrues -Part1-1: General rules and rules for buildings [S]. London: British Stardands Institution, 2004, 1(1): 230.
    [46] 肖雯雯. 考虑龄期影响的钢管高性能混凝土长期性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008.

    XIAO Wenwen. Study on long-term performance of steel tubular high performance concrete considering age effect [D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
    [47] 张欢, 王玉银, 耿悦, 等. 考虑基体混凝土抗压强度影响的再生粗(细)骨料混凝土干燥收缩模型[J]. 建筑结构学报, 2020, 41(12): 156-164.

    ZHANG Huan, WANG Yuyin, GENG Yue, et al. Drying shrinkage model of reclaimed coarse (fine) aggregate concrete considering the influence of compressive strength of matrix concrete[J]. Journal of Building Structures, 2020, 41(12): 156-164(in Chinese).
    [48] 黄嘉钰. 骨料掺量和改性对再生保温混凝土干燥收缩性能影响的研究[D]. 太原: 太原理工大学, 2022.

    HUANG Jiayu. Study on effect of aggregate content and modification on dry shrinkage performance of recycled thermal insulation concrete [D]. Taiyuan: Taiyuan University of Technology, 2022(in Chinese).
    [49] MENG F S. Study on effects of admixture and shrinkage models on high-performance concrete[J]. Advanced Materials Research, 2011, 168: 1073-1076.
    [50] 杜伟良. 高延性混凝土早期收缩性能及收缩模型研究[D]. 西安: 西安建筑科技大学, 2016.

    DU Weiliang. Studyon early shrinkage performance and shrinkage model of high ductility concrete [D]. Xi’an: Xi’an University of Architecture and Technology, 2016(in Chinese).
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-07-05
  • 录用日期:  2024-07-18
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回