留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温环境对胶螺混合连接复合材料结构失效行为的影响

卢弈先 曹东风 胡海晓 蔡伟 王伟伦 郑凯东 冀运东 李书欣

卢弈先, 曹东风, 胡海晓, 等. 高温环境对胶螺混合连接复合材料结构失效行为的影响[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 卢弈先, 曹东风, 胡海晓, 等. 高温环境对胶螺混合连接复合材料结构失效行为的影响[J]. 复合材料学报, 2024, 42(0): 1-14.
LU Yixian, CAO Dongfeng, HU Haixiao, et al. Effect of elevated temperature on failure behavior of hybrid bolted-bonded joints in composite structures[J]. Acta Materiae Compositae Sinica.
Citation: LU Yixian, CAO Dongfeng, HU Haixiao, et al. Effect of elevated temperature on failure behavior of hybrid bolted-bonded joints in composite structures[J]. Acta Materiae Compositae Sinica.

高温环境对胶螺混合连接复合材料结构失效行为的影响

基金项目: 国家自然科学基金(52273080;12302481;12172265);湖北省自然科学基金(202310223);2023年湖北省重大攻关项目(JD2023BAA028)
详细信息
    通讯作者:

    曹东风,博士,副研究员,博士生导师,研究方向为先进复合材料计算力学 E-mail:cao_dongf@whut.edu.cn

    胡海晓,博士,副教授,硕士生导师,研究方向为复合材料材料-工艺-结构一体化应用 E-mail:yiming9008@126.com

  • 中图分类号: TB332

Effect of elevated temperature on failure behavior of hybrid bolted-bonded joints in composite structures

Funds: National Natural Science Foundation of China (52273080; 12302481; 12172265); Natural Science Foundation of Hubei Province (20231j0223); Major research projects in Hubei Province in 2023 (JD2023BAA028)
  • 摘要: 采用试验与仿真相结合的方法,对高温环境下GFRP平纹编织层合板-铝合金双钉单搭接胶螺混合连接结构的载荷传递机制和失效模式展开探究。试验方面,开展了80℃高温环境下胶螺混合连接结构的拉伸破坏试验,并与室温胶螺混合连接、高温纯螺栓连接和室温纯螺栓连接三组工况进行对比分析;借助3D-DIC和SEM等手段对结构的宏观和微观的失效特征进行表征。数值仿真方面,构建了基于LaRC失效准则的复合材料渐进损伤失效模型,插入内聚力单元用于对胶粘剂的模拟。结果表明,胶螺混合连接在常温和高温时的极限载荷比纯螺栓连接分别提高了9.2%和4.0%,但高温环境会使胶螺混合连接试样的极限载荷值下降17.8%;胶螺混合连接在加载前期可以缓解应力集中现象,但温度载荷导致粘合剂提前失效后表面出现明显的应力集中,最终失效除了常温环境中发生的静截面拉伸破坏,还发生了由于轴承效应导致的挤压破坏,此时失效模式与纯螺栓连接一致;构建的数值仿真模型可以准确预测结构的失效模式和演化过程,对胶螺混合连接结构的载荷传递机制和失效规律进行解析。

     

  • 图  1  试样尺寸

    Figure  1.  Specimen dimensions

    图  2  固化温度和压力时程曲线

    Figure  2.  Curing temperature and pressure curves

    图  3  胶螺混合连接试样制造过程

    Figure  3.  Manufacturing processes of hybrid bonded-bolted

    图  4  试验及表征设备:(a)试样图片;(b) 试验装置与夹具;(c) 扫描电镜设备

    Figure  4.  Testing and characterization equipment: (a) Specimens; (b) Test equipment and loading fixtures; (c) SEM equipment

    图  5  复合材料-金属混合连接结构有限元模型

    Figure  5.  Numerical calculation model of composite-metal hybrid structures

    图  6  胶螺混合连接结构在不同温度下的载荷-位移曲线

    Figure  6.  Load-displacement curves of hybrid bolted-bonded joints at different temperatures

    图  7  相同温度下不同连接方式的载荷-位移曲线:(a) RT-25℃; (b) ET-80℃

    Figure  7.  Load-displacement curves for different joint type at the same temperature: (a) RT-25℃; (b) ET-80℃

    图  8  不同工况下拉伸破坏后试样的失效模式:(a) 平纹编织GFRP复合材料; (b) 胶粘剂

    Figure  8.  Failure modes of specimens after tensile failure under different working conditions: (a) plain weave GFRP composite; (b) adhesive

    图  9  试样失效区域SEM观察位置示意图

    Figure  9.  Failure planes definition and location of the SEM pictures on the samples

    图  10  失效后HBB-ET试样A截面SEM损伤观察

    Figure  10.  Damage observation of SEM in HBB-ET specimen A-plane section after failure

    图  11  HBB-RT和HBB-ET试样B截面SEM损伤对比: (a) HBB-RT;(b) HBB-ET

    Figure  11.  Comparison of SEM damage in B-plane section between HBB-RT and HBB-ET: (a) HBB-RT; (b) HBB-ET

    图  12  失效后HBB-ET试样B截面SEM损伤观察

    Figure  12.  Damage observation of SEM in HBB-ET specimen B-plane section after failure

    图  13  夹持端、自由端以及两板重叠区域示意图

    Figure  13.  Grip side, free side, overlap region

    图  14  HBB-RT和HBB-ET试样轴向表面应变分布(FL: 失效载荷):(a) 加载过程; (b) 失效前后

    Figure  14.  Axial surface strain distributions of HBB-RT and HBB-ET (FL: Failure load): (a) Loading process; (b) Before and after failure

    图  15  不同工况下试验与仿真载荷-位移曲线对比图:(a) HBB-RT;(b) HBB-ET

    Figure  15.  Comparison of load-displacement curves of experiments and simulation under different working conditions: (a) HBB-RT; (b) HBB-ET

    图  16  HBB-RT试样试验与仿真失效模式对比图

    Figure  16.  Comparison of failure modes of experiments and simulation

    图  17  胶螺混合连接结构数值模型胶粘剂失效过程

    Figure  17.  Hybrid bolted-bonded joints numerical model adhesive failure process

    表  1  拉伸试验工况统计表

    Table  1.   Statistical table of tensile test conditions

    No.Specimen
    Group
    Testing
    Temperature/℃
    Joint
    types
    1HBB-ET80HBB
    2HBB-RT25HBB
    3OB-ET80OB
    4OB-RT25OB
    Notes: HBB-Hybrid bolted-bonded; OB-Only bolted; ET-Elevated temperature; RT-Room temperature.
    下载: 导出CSV

    表  2  铝合金2024-T4及ML30Cr-MaSiA结构钢螺栓的材料参数

    Table  2.   Mechanical properties of aluminum 2024-T4 and ML30Cr-MaSiA steel bolt

    Property Aluminum 2024-T4 Bolt (Steel)
    Temperature/℃ 25 80 25 80
    Density/(g·cm−3) 2.78 7.85
    Young modulus/GPa 73.1 68.0 210.3 204.0
    Poisson’s ratio 0.33 0.30
    Yield strength/MPa 385.0 355.0 940.0 895.0
    Ultimate strength/MPa 483.0 453.0 1090.0 1040.0
    CTE/×10−6/℃ 20.08 9.96
    Note: CTE-Coefficient of thermal expansion.
    下载: 导出CSV

    表  3  ACTECH®1203/EW301F/38平纹编织GFRP复合材料及DP-490胶粘剂的材料参数

    Table  3.   Mechanical properties of ACTECH®1203/EW301F/38 plain weave GFRP composite and DP-490 adhesive

    Properties at 25℃ Properties at 80℃
    GFRP solid
    element
    Density/(g·cm−3) 1.52
    Module/GPa E11=E22=24.5, E33=5.8,
    G12=3.1, G13=G23=2.3
    E11=E22=23.2, E33=5.3,
    G12=2.9, G13=G23=2.1
    Strength/MPa XT=YT=464.0,
    XC= YC=456.0,
    S=55.1
    XT=YT=392.0,
    XC= YC=328.0,
    S=37.8
    Poison radio v12=0.12, v13=v23=0.09
    CTE/×10−6/℃ α1=α2=12.6, α3=1
    Adhesive
    cohesive
    element
    Density/(g·cm−3) 1.52
    Strength/MPa tn=14.6, ts=tt=27.5 tn=7.4, ts=tt=12.5
    Fracture energy/(N·mm−1) GIC=0.325, GIIC=1.922 GIC=0.149, GIIC=0.209
    Note: E−Elastic modulus; v −Poisson’s ratio; G−Shear modulus; 1−Direction of fiber; 2−Direction of matrix; 3−Thickness direction of layer; XT−Longitudinal tensile strength; XC−Longitudinal compressive strength; YT−Transverse tensile strength; YC−Transverse compressive strength; S−In-plane shear strength; tn−Normal strength of cohesive; ts, tt−Tangential strength of cohesive; GIC, GIIC −Critical value of strain energy release rate.
    下载: 导出CSV
  • [1] 蔡启阳, 赵琪. 环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响[J]. 复合材料学报, 2021, 38(12): 4228-4238.

    CAI Qiyang, ZHAO Qi. Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4228-4238(in Chinese).
    [2] LI X, TAN Z, WANG L, et al. Experimental investigations of bolted, adhesively bonded and hybrid bolted/bonded single-lap joints in composite laminates[J]. Materials Today Communications, 2020, 24: 101244. doi: 10.1016/j.mtcomm.2020.101244
    [3] 曹跃杰, 魏凌峰, 张铭豪, 等. 薄层复合材料螺栓连接结构渐进失效机制试验研究[J]. 航空学报, 2021, 42(12): 311-326.

    CAO Yuejie, WEI Lingfeng, ZHANG Minghao, et al. Experimental study on progressive failure mechanism of thin-laminate bolted joints[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 311-326(in Chinese).
    [4] 何柏灵, 葛东云, 莫与明, 等. T800碳纤维增强复合材料双剪单钉连接的拉伸试验及强度估算[J]. 复合材料学报, 2016, 33(7): 1540-1552.

    HE Bailing, GE Dongyun, MO Yuming, et al. Tensile tests and strength estimation for double-lap single-bolt joints in T800 carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1540-1552(in Chinese).
    [5] JIANG Z, WAN S, FANG Z, et al. Static and fatigue behaviours of a bolted GFRP/steel double lap joint[J]. Thin-Walled Structures, 2021, 158: 107170. doi: 10.1016/j.tws.2020.107170
    [6] 刘志明, 许昶. 碳纤维增强环氧树脂复合材料与铝板胶螺混合连接接头失效仿真[J]. 复合材料学报, 2019, 36(10): 2308-2315.

    LIU Zhiming, XU Chang. Failure simulation of carbon fiber reinforced epoxy resin composite-aluminum bonded-bolted hybrid joint[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2308-2315(in Chinese).
    [7] 刘礼平, 段科好, 徐卓, 等. 碳纤维增强树脂基复合材料层合板胶螺混合连接失效机制[J]. 复合材料学报, 2023, 40(1): 590-600.

    LIU Liping, DUAN Kehao, XU Zhuo, et al. Failure mechanism of carbon fiber reinforced polymer bonded-bolted hybrid connection[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 590-600(in Chinese).
    [8] 唐玉玲, 任煜赫, 张峻霞, 等. 胶层对复合材料多螺栓连接力学性能及钉载分配的影响[J]. 复合材料学报, 2023, 40(6): 3601-3612.

    TANG Yuling, REN Yuhe, ZHANG Junxia, et al. Effect of the adhesive layer on mechanical properties and load distribution in multi-bolt composite joints[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3601-3612(in Chinese).
    [9] TURVEY G J, SANA A. Pultruded GFRP double-lap single-bolt tension joints-Temperature effects on mean and characteristic failure stresses and knock-down factors[J]. Composite Structures, 2016, 153: 624-631. doi: 10.1016/j.compstruct.2016.06.016
    [10] XUE C, YU M, YANG B, et al. Experimental and numerical study on tensile properties of bolted GFRP joints at high and low temperatures[J]. Composite Structures, 2022, 293: 115743. doi: 10.1016/j.compstruct.2022.115743
    [11] SASIKUMAR A, GUERRERO J M, QUINTANAS-COROMINAS A, et al. Numerical study to understand thermo-mechanical effects on a composite-aluminium hybrid bolted joint[J]. Composite Structures, 2021, 275: 114396. doi: 10.1016/j.compstruct.2021.114396
    [12] 张娇蕊, 山美娟, 黄伟, 等. 湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响[J]. 复合材料学报, 2021, 38(7): 2224-2233.

    ZHANG Jiaorui, SHAN Meijuan, HUANG Wei, et al. Effects of hygrothermal environment on quasi-static failure of CFRP composite-aluminum alloy bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2224-2233(in Chinese).
    [13] HU J, MI S, YANG Z, et al. An experimental investigation on bearing behavior and failure mechanism of bolted composite interference-fit joints under thermal effects[J]. Engineering Failure Analysis, 2022, 131: 105830. doi: 10.1016/j.engfailanal.2021.105830
    [14] SHAN M, ZHANG R, GONG Y, et al. Revealing the coupled effects of hygrothermal environment and geometrical parameters on the failure of double-lap, single-bolt composite joints[J]. Journal of Materials Research and Technology, 2023, 24: 8282-8295. doi: 10.1016/j.jmrt.2023.05.071
    [15] 王东, 董传瑞, 朱红民, 等. 温度对金属-复合材料混合多螺栓连接力学性能的影响[J]. 复合材料学报: 1-9[2024-03-06]. https://doi.org/10.13801/j.cnki.fhclxb.20231017.003.

    WANG Dong, DONG Chuanrui, ZHU Hongmin, et al. Effect of temperature on mechanical properties of metal-composite hybrid multi-bolt joint[J]. Acta Materiae Compositae Sinica, 1-9 [2024-03-06]. https://doi.org/10.13801/j.cnki.fhclxb.20231017.003 (in Chinese).
    [16] BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42. doi: 10.1016/j.ijadhadh.2016.10.010
    [17] BANEA M D, DE SOUSA F S M, DA SILVA L F M, et al. Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive[J]. Journal of Adhesion Science and Technology, 2011, 25(18): 2461-2474. doi: 10.1163/016942411X580144
    [18] BANEA M D, DA SILVA L F M, CAMPILHO R D S G. Effect of temperature on the shear strength of aluminium single lap bonded joints for high temperature applications[J]. Journal of Adhesion Science and Technology, 2014, 28(14-15): 1367-1381. doi: 10.1080/01694243.2012.697388
    [19] BANEA M D, DA SILVA L F M. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications, 2010, 224(L2): 51-62.
    [20] HIZAM R M, MENALO A C, KARUNASENA W, et al. Joint Strength of Single-Bolted Pultruded GFRP Square Hollow Sections with Mechanical Inserts under Elevated Temperatures[J]. Journal of Composites for Construction, 2020, 24(1): 04019056. doi: 10.1061/(ASCE)CC.1943-5614.0000984
    [21] ZHANG H, SONG Z, ZHANG L, et al. Effects of hygrothermal ageing and temperature on the mechanical behavior of aluminum-CFRP hybrid (riveted/bonded) joints[J]. International Journal of Adhesion and Adhesives, 2023, 121: 103299. doi: 10.1016/j.ijadhadh.2022.103299
    [22] ULUS H. An experimental assessment of hybrid bolted/bonded basalt fiber reinforced polymer composite joints' temperature-dependent mechanical performances by static and dynamic mechanical analyses[J]. International Journal of Adhesion and Adhesives, 2022, 114: 103120. doi: 10.1016/j.ijadhadh.2022.103120
    [23] 张永杰, 孙秦. 复合材料层合板预紧螺栓连接应力分析[J]. 机械科学与技术, 2009, 28(7): 867-870. doi: 10.3321/j.issn:1003-8728.2009.07.006

    ZHANG Yongjie, SUN Qin. Stress Analysis of Composite Laminate Connected by Preloaded Bolt[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(7): 867-870(in Chinese). doi: 10.3321/j.issn:1003-8728.2009.07.006
    [24] ASTM D3039/D3039M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: [S]. West Conshohocken, PA: ASTM International, 2017.
    [25] ASTM D6641/D6641M-16: Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture: [S]. West Conshohocken, PA: ASTM International, 2016.
    [26] ASTM D3518/D3518M-18: Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate: [S]. West Conshohocken, PA: ASTM International, 2018.
    [27] ASTM D5528/D5528M-13: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: [S]. West Conshohocken, PA: ASTM International, 2013.
    [28] ASTM D7905/D7905M-19: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: [S]. West Conshohocken, PA: ASTM International, 2019.
    [29] PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(1): 63-73. doi: 10.1016/j.compositesa.2005.04.016
    [30] WANG X, WANG Y, JI Y, et al. Modeling Progressive Damage and Failure of Single-Lap ThinPly-Laminated Composite-Bolted Joint Using LaRC Failure Criterion[J]. Materials, 2022, 15(22): 8123. doi: 10.3390/ma15228123
    [31] LIU D, CAO D, HU H, et al. Numerical study on failure behavior of open-hole composite laminates based on LaRC criterion and extended finite element method[J]. Journal of Mechanical Science and Technology, 2021, 35: 1037-1047. doi: 10.1007/s12206-021-0217-9
    [32] CAO D, DUAN Q, HU H, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements[J]. Composite Structures, 2018, 192: 300-309. doi: 10.1016/j.compstruct.2018.02.072
    [33] CAO D, HU H, DUAN Q, et al. Experimental and three-dimensional numerical investigation of matrix cracking and delamination interaction with edge effect of curved composite laminates[J]. Composite Structures, 2019, 225: 111154. doi: 10.1016/j.compstruct.2019.111154
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-02-18
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-04-03

目录

    /

    返回文章
    返回