留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响

易玉华 赵欣苗

易玉华, 赵欣苗. 酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响[J]. 复合材料学报, 2023, 41(0): 1-8
引用本文: 易玉华, 赵欣苗. 酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响[J]. 复合材料学报, 2023, 41(0): 1-8
Yuhua YI, Xinmiao ZHAO. Modification of phenolic resin and its effect on adhesive properties of polyurethane/metal[J]. Acta Materiae Compositae Sinica.
Citation: Yuhua YI, Xinmiao ZHAO. Modification of phenolic resin and its effect on adhesive properties of polyurethane/metal[J]. Acta Materiae Compositae Sinica.

酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响

基金项目: 广州市科技计划项目(202102080477)
详细信息
    通讯作者:

    易玉华,硕士,高级工程师,硕士生导师,研究方向为橡塑改性及其复合材料 E-mail: mmyhyi@scut.edu.cn

  • 中图分类号: TB332

Modification of phenolic resin and its effect on adhesive properties of polyurethane/metal

Funds: Science and Technology Program of Guangzhou (202102080477)
  • 摘要: Chemlok218是聚氨酯(PU)/金属复合结构材料的常用粘接剂,为了获得较好的粘接强度,Chemlok218涂层表面温度通常需要在90℃以上,这在实际工业生产中很难实现,影响了其使用的便捷性。为了探究Chemlok218在较低温度下应用的可能性,使用高活性的PU改性剂,对Chenmlok218中的主要成分酚醛树脂(PF)进行改性,制备出与PU相容性更好、表面能更高的PF@NCO层,作为Chemlok218与PU的过渡层。PF@NCO中的高活性异氰酸酯基团(NCO),一部分与Chemlok218中酚醛树脂的羟基发生反应,生成氨基甲酸酯基团,与Chemlok218之间形成牢固的粘接界面;另一部分与PU中的亚氨基反应,形成极性较高的脲基,通过化学键的方式,保障了与面胶PU间的牢固结合。Chemlock218与PU改性剂与的质量比为80:20时,PF@NCO-20的剥离强度可达23.4 kN/m-1,较Chemlok218提高了58.1%,并且试样剥离平稳,无粘接薄弱点或缺陷,为解决室温下的PU/金属的粘接问题提供借鉴。PU/金属粘接机制示意图不同PU改性剂含量的PU/金属剥离界面图片

     

  • 图  1  聚氨酯(PU)/钢材粘接样条的制备示意图

    Figure  1.  Schematic diagram of the preparation of polyurethane (PU)/steel bonded specimens

    图  2  Chemlok218、Chemlok218-A及酚醛树脂(PF)@NCO的红外光谱图

    Figure  2.  FTIR diagrams of Chemlok218, Chemlok218-A and phenolic resin (PF)@NCO samples

    图  3  TDI与酚羟基的反应式

    Figure  3.  Reaction Formula of TDI with Phenolic hydroxyl groups

    图  4  TDI与MOCA生成脲基的反应式

    Figure  4.  Reaction Formula for the formation of Urea Group between TDI and MOCA

    图  5  Chemlok218和Chemlok218-A的TG和DTG曲线

    Figure  5.  TG and DTG curves of Chemlok218 and Chemlok218-A

    图  6  (a)、(c): Chemlok218与PU预聚体的接触角;(b)、(d)PF@NCO与PU预聚体的接触角

    Figure  6.  (a), (c): Contact angle of Chemlok218 with PU prepolymer; (b), (d): contact angle of PF@NCO with PU prepolymer

    图  7  不 同PU改性剂含量的PF@NCO剥离分析图:(a)剥离曲线(b)剥离强度柱状图

    Figure  7.  Peeling analysis diagrams of different PU modifier content PF@NCO T-shaped peeling curve:(a) peeling curves; (b) peel strength bar chart

    图  8  不同PU改性剂含量的PU/金属剥离界面图片

    Figure  8.  Peeling interface pictures of PU/metal with different PU modifier content

    图  9  PU/金属粘接机制示意图

    Figure  9.  Schematic diagram of PU/metal bonding mechanism

    表  1  Chemlok218和PF@NCO的接触角与表面能

    Table  1.   Contact angle and surface energy of Chemlok218 and PF@NCO

    SampleContact Angle θ/(°)Surface Free Energy/ (mJ·m−2)
    WaterEthylene Glycolγd Sγp Sγ S
    Chemlock21870.1(1.2)60.7(1.1) 5.112.918.0
    PF@NCO73.7(0.9)55.0(1.4)13.920.234.1
    Notes: γ S, γd S and γp S are surface energy, non-polar part of surface energy and polar part of surface energy respectively. The data in parentheses refers to the standard deviation.
    下载: 导出CSV
  • [1] NIKOUKALAM M T, SIDERIS P. Resilient Bridge Rocking Columns with Polyurethane Damage-Resistant End Segments and Replaceable Energy-Dissipating Links[J]. Journal of Bridge Engineering,2017,22(10):04017064. doi: 10.1061/(ASCE)BE.1943-5592.0001069
    [2] VIJAYAKUMAR K R, JAYASEELAN J, ETHIRAJ N, et al. Investigation on aluminium/mild steel plates bonded polyurethane sheets to control vibration[J]. Kancheepuram, INDIA,2020:5860-5867.
    [3] 易玉华, 陈智兴, 周鑫. 混合扩链剂对聚氨酯弹性体氢键和阻尼性能的影响[J]. 湖南大学学报(自然科学版), 2021:1-6.

    YI Y H, CHEN Z X, ZHOU X. Effect of Mixed Chain Extender on Hydrogen Bond and Damping Properties of Polyurethane Elastomer[J]. Journal of Hunan University(Natural Sciences),2021:1-6(in Chinese).
    [4] 郭睿, 李秀环, 何观伟, 等. HDI-BPA酚醛树脂的合成及应用性能[J]. 精细化工, 2019, 36(12):2503-2511.

    GUO R, LI X H, HE G W, et al. Synthesis and Application Properties of HDI-BPA Phenolic Resin[J]. Fine Chemicals,2019,36(12):2503-2511(in Chinese).
    [5] ABDULLAHI T, AHMAD N, WAHIT M U, et al. Adhesive Bonding of Thermoplastic Polyurethane with Metallic Wire[J]. Univ Teknologi Malaysia, Johor Bahru, MALAYSIA,2016:4045-4049.
    [6] 张海, 易玉华, 马铁军. 聚氨酯-橡胶复合轮胎的制造方法, CN100415477 C [P]. 2008-09-03.

    ZHANG H, YI Y H, MA T J. Manufacturing method of polyurethane-rubber composite tires: CN100415477 C [P]. 2008-09-03. (in Chinese)
    [7] SHEIKHY H, SHAHIDZADEH M, RAMEZANZADEH B, et al. Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive[J]. Journal of Industrial and Engineering Chemistry,2013,19(6):1949-1955. doi: 10.1016/j.jiec.2013.03.008
    [8] 罗筱烈, 刘瑾, 胡克良, 等. MDI与TDI封端聚酯预聚物和扩链剂间反应速率的研究[J]. 高等学校化学学报, 1995, 16(5):799+801-803. doi: 10.3321/j.issn:0251-0790.1995.05.027

    LUO X L, LIU J, HU K L, et al. The study on the chain extension reaction of MDI and TDI terminated prepolymers with extenders[J]. Chemical Journal of Chinese Univertities,1995,16(5):799+801-803(in Chinese). doi: 10.3321/j.issn:0251-0790.1995.05.027
    [9] ZHANG Z Y, WANG W L, KORPACZ A N, et al. Binary Liquid Mixture Contact-Angle Measurements for Precise Estimation of Surface Free Energy[J]. Langmuir,2019,35(38):12317-12325. doi: 10.1021/acs.langmuir.9b01252
    [10] RYTLEWSKI P, ZENKIEWICZ M. Effects of Laser Irradiation on Surface Properties of Poly(ethylene terephthalate)[J]. Journal of Adhesion Science and Technology,2010,24(4):685-697. doi: 10.1163/016942409X12517106974741
    [11] 中国国家标准化管理委员会. 硫化橡胶与金属粘接180°剥离试验: GB/T 15254-2014[S]. 北京: 中国标准出版社 2014.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized—Determination of adhesion to metal—180° peel test methods: GB/T 15254-2014[S]. Beijing: China Standards Press 2014. (in Chinese)
    [12] 牛永安, 王超, 陈泽明, 等. 一种高耐热酚醛树脂的合成及表征[J]. 中国胶粘剂, 2008(1):8-11. doi: 10.3969/j.issn.1004-2849.2008.01.003

    NIU Y A, WANG C, CHEN Z M, et al. Synthesis and characterize a new type highly- heat- resistant phenolic resin[J]. China Adhesives,2008(1):8-11(in Chinese). doi: 10.3969/j.issn.1004-2849.2008.01.003
    [13] OHTSUKA K, MATSUMOTO A, KIMURA H. Preparation and Cured Properties of Diallyl Phthalate Resin Modified with Epoxy Resin and Allyl Ester Compound Having Carboxylic Acid[J]. Journal of Applied Polymer Science,2010,116(2):913-919.
    [14] KOTB Y, CAGNARD A, HOUSTON K R, et al. What makes epoxy-phenolic coatings on metals ubiquitous: Surface energetics and molecular adhesion characteristics[J]. Journal of Colloid and Interface Science,2022,608:634-643. doi: 10.1016/j.jcis.2021.09.091
    [15] LIU X M, WU Y Q, SHMULSKY R, et al. Developing a Renewable Hybrid Resin System. Part I: Characterization of Co-Polymers of Isocyanate with Different Molecular Weights of Phenolic Resins[J]. Bioresources,2016,11(2):5299-5311.
    [16] KALAMI S, AREFMANESH M, MASTER E, et al. Replacing 100% of phenol in phenolic adhesive formulations with lignin[J]. Journal of Applied Polymer Science,2017,134(30):520-528.
    [17] LIN Y M, YAN R Y, ZHANG Y, et al. Synthesis of biobased polyphenols for preparing phenolic polyurethanes with self-healing properties[J]. Polymer Testing,2022,112:107644. doi: 10.1016/j.polymertesting.2022.107644
    [18] FUENSANTA M, MARTN-MARTNEZ J M. Influence of the hard segments content on the structure, viscoelastic and adhesion properties of thermoplastic polyurethane pressure sensitive adhesives[J]. Journal of Adhesion Science and Technology,2020,34(24):2652-2671. doi: 10.1080/01694243.2020.1780774
    [19] RIMDUSIT S, SUDJIDJUNE M, JUBSILP C, et al. Enhanced Film Forming Ability of Benzoxazine- Urethane Hybrid Polymer Network by Sequential Cure Method[J]. Journal of Applied Polymer Science,2014,131(13):40502.
    [20] ARSHAD N, ZIA K M, JABEEN F, et al. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish[J]. International Journal of Biological Macromolecules,2018,111:485-492. doi: 10.1016/j.ijbiomac.2018.01.032
    [21] DOMINGUEZ J C, OLIET M, ALONSO M V, et al. Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin[J]. Industrial Crops and Products,2013,42:308-314. doi: 10.1016/j.indcrop.2012.06.004
    [22] 柳云钊, 师建军, 王筠, 等. PICA中的酚醛树脂热分解机制[J]. 宇航材料工艺, 2016, 46(6):68-73+78.

    LIU Y Z, SHI J J, WANG Y, et al. Pyrolysis Mechanism of PICA Phenolics[J]. Aerospace Materials & Technology,2016,46(6):68-73+78(in Chinese).
    [23] ZOU X, CHEN K, YAO H N, et al. Chemical Reaction and Bonding Mechanism at the Polymer-Metal Interface[J]. ACS Appl. Mater. Interfaces,2022,14(23):27383-27396. doi: 10.1021/acsami.2c04971
    [24] LIU J Y, ZHANG Q D, ZHANG B Y, et al. The Bonding Mechanism of the Micro-Interface of Polymer Coated Steel[J]. Polymers,2020,12(12):3052. doi: 10.3390/polym12123052
    [25] ZHANG L, JI C, WANG X, et al. Strengthening and converse strengthening effects of polyurea layer on polyurea-steel composite structure subjected to combined actions of blast and fragments[J]. Thin-Walled Structures,2022,178:109527. doi: 10.1016/j.tws.2022.109527
    [26] ARUNKUMAR T, RAMACHANDRAN S. Investigation of Morphological and Mechanical Features of Polyurea[J]. Appl. Mech. Mater. (Switzerland),2015,766-767:606-611. doi: 10.4028/www.scientific.net/AMM.766-767.606
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-02-09
  • 录用日期:  2023-02-10
  • 网络出版日期:  2023-03-02

目录

    /

    返回文章
    返回