Modification of phenolic resin and its effect on adhesive properties of polyurethane/metal
-
摘要:
Chemlok218是聚氨酯(PU)/金属复合结构材料的常用粘接剂,为了获得较好的粘接强度,Chemlok218涂层表面温度通常需要在90℃以上,这在实际工业生产中很难实现,影响了其使用的便捷性。为了探究Chemlok218在较低温度下应用的可能性,使用高活性的PU改性剂,对Chenmlok218中的主要成分酚醛树脂(PF)进行改性,制备出与PU相容性更好、表面能更高的PF@NCO层,作为Chemlok218与PU的过渡层。PF@NCO中的高活性异氰酸酯基团(NCO),一部分与Chemlok218中酚醛树脂的羟基发生反应,生成氨基甲酸酯基团,与Chemlok218之间形成牢固的粘接界面;另一部分与PU中的亚氨基反应,形成极性较高的脲基,通过化学键的方式,保障了与面胶PU间的牢固结合。Chemlock218与PU改性剂与的质量比为80:20时,PF@NCO-20的剥离强度可达23.4 kN/m-1,较Chemlok218提高了58.1%,并且试样剥离平稳,无粘接薄弱点或缺陷,为解决室温下的PU/金属的粘接问题提供借鉴。 PU/金属粘接机制示意图 不同PU改性剂含量的PU/金属剥离界面图片 Abstract: To solve the problem of poor bonding effect of polyurethane (PU)/metal at room temperature when Chemlok218 was used as adhesive, a highly active PU modifier was used to modify phenolic resin (PF) in Chemlok218 to form a PF@NCO transition layer between Chemlok218 coating and PU. FTIR and TG analysis showed that the NCO group in PU modifier reacted with the hydroxyl group of PF to form carbamate group, and the surface energy of PF@NCO could be improved. The compatibility with PU had increased. When the mass ratio of Chemlok218 to PU modifier is 80∶20, the peel strength of PF@NCO-20 reaches 23.4 kN·m−1, which is 58.1% higher than that of pure Chemlok218, and the whole PU/metal bonding sample had no bonding weaknesses and defects. The purpose of this paper is to provide a reference for solving the problem of bonding strength of PU/metal at room temperature.-
Key words:
- Modification /
- Phenolic Resin /
- Polyurethane /
- Metal Bonding /
- Bonding Property /
- Chemlok218
-
表 1 Chemlok218和PF@NCO的接触角与表面能
Table 1. Contact angle and surface energy of Chemlok218 and PF@NCO
Sample Contact Angle θ/(°) Surface Free Energy/ (mJ·m−2) Water Ethylene Glycol γd S γp S γ S Chemlock218 70.1(1.2) 60.7(1.1) 5.1 12.9 18.0 PF@NCO 73.7(0.9) 55.0(1.4) 13.9 20.2 34.1 Notes: γ S, γd S and γp S are surface energy, non-polar part of surface energy and polar part of surface energy respectively. The data in parentheses refers to the standard deviation. -
[1] NIKOUKALAM M T, SIDERIS P. Resilient Bridge Rocking Columns with Polyurethane Damage-Resistant End Segments and Replaceable Energy-Dissipating Links[J]. Journal of Bridge Engineering,2017,22(10):04017064. doi: 10.1061/(ASCE)BE.1943-5592.0001069 [2] VIJAYAKUMAR K R, JAYASEELAN J, ETHIRAJ N, et al. Investigation on aluminium/mild steel plates bonded polyurethane sheets to control vibration[J]. Kancheepuram, INDIA,2020:5860-5867. [3] 易玉华, 陈智兴, 周鑫. 混合扩链剂对聚氨酯弹性体氢键和阻尼性能的影响[J]. 湖南大学学报(自然科学版), 2021:1-6.YI Y H, CHEN Z X, ZHOU X. Effect of Mixed Chain Extender on Hydrogen Bond and Damping Properties of Polyurethane Elastomer[J]. Journal of Hunan University(Natural Sciences),2021:1-6(in Chinese). [4] 郭睿, 李秀环, 何观伟, 等. HDI-BPA酚醛树脂的合成及应用性能[J]. 精细化工, 2019, 36(12):2503-2511.GUO R, LI X H, HE G W, et al. Synthesis and Application Properties of HDI-BPA Phenolic Resin[J]. Fine Chemicals,2019,36(12):2503-2511(in Chinese). [5] ABDULLAHI T, AHMAD N, WAHIT M U, et al. Adhesive Bonding of Thermoplastic Polyurethane with Metallic Wire[J]. Univ Teknologi Malaysia, Johor Bahru, MALAYSIA,2016:4045-4049. [6] 张海, 易玉华, 马铁军. 聚氨酯-橡胶复合轮胎的制造方法, CN100415477 C [P]. 2008-09-03.ZHANG H, YI Y H, MA T J. Manufacturing method of polyurethane-rubber composite tires: CN100415477 C [P]. 2008-09-03. (in Chinese) [7] SHEIKHY H, SHAHIDZADEH M, RAMEZANZADEH B, et al. Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive[J]. Journal of Industrial and Engineering Chemistry,2013,19(6):1949-1955. doi: 10.1016/j.jiec.2013.03.008 [8] 罗筱烈, 刘瑾, 胡克良, 等. MDI与TDI封端聚酯预聚物和扩链剂间反应速率的研究[J]. 高等学校化学学报, 1995, 16(5):799+801-803. doi: 10.3321/j.issn:0251-0790.1995.05.027LUO X L, LIU J, HU K L, et al. The study on the chain extension reaction of MDI and TDI terminated prepolymers with extenders[J]. Chemical Journal of Chinese Univertities,1995,16(5):799+801-803(in Chinese). doi: 10.3321/j.issn:0251-0790.1995.05.027 [9] ZHANG Z Y, WANG W L, KORPACZ A N, et al. Binary Liquid Mixture Contact-Angle Measurements for Precise Estimation of Surface Free Energy[J]. Langmuir,2019,35(38):12317-12325. doi: 10.1021/acs.langmuir.9b01252 [10] RYTLEWSKI P, ZENKIEWICZ M. Effects of Laser Irradiation on Surface Properties of Poly(ethylene terephthalate)[J]. Journal of Adhesion Science and Technology,2010,24(4):685-697. doi: 10.1163/016942409X12517106974741 [11] 中国国家标准化管理委员会. 硫化橡胶与金属粘接180°剥离试验: GB/T 15254-2014[S]. 北京: 中国标准出版社 2014.Standardization Administration of the People’s Republic of China. Rubber, vulcanized—Determination of adhesion to metal—180° peel test methods: GB/T 15254-2014[S]. Beijing: China Standards Press 2014. (in Chinese) [12] 牛永安, 王超, 陈泽明, 等. 一种高耐热酚醛树脂的合成及表征[J]. 中国胶粘剂, 2008(1):8-11. doi: 10.3969/j.issn.1004-2849.2008.01.003NIU Y A, WANG C, CHEN Z M, et al. Synthesis and characterize a new type highly- heat- resistant phenolic resin[J]. China Adhesives,2008(1):8-11(in Chinese). doi: 10.3969/j.issn.1004-2849.2008.01.003 [13] OHTSUKA K, MATSUMOTO A, KIMURA H. Preparation and Cured Properties of Diallyl Phthalate Resin Modified with Epoxy Resin and Allyl Ester Compound Having Carboxylic Acid[J]. Journal of Applied Polymer Science,2010,116(2):913-919. [14] KOTB Y, CAGNARD A, HOUSTON K R, et al. What makes epoxy-phenolic coatings on metals ubiquitous: Surface energetics and molecular adhesion characteristics[J]. Journal of Colloid and Interface Science,2022,608:634-643. doi: 10.1016/j.jcis.2021.09.091 [15] LIU X M, WU Y Q, SHMULSKY R, et al. Developing a Renewable Hybrid Resin System. Part I: Characterization of Co-Polymers of Isocyanate with Different Molecular Weights of Phenolic Resins[J]. Bioresources,2016,11(2):5299-5311. [16] KALAMI S, AREFMANESH M, MASTER E, et al. Replacing 100% of phenol in phenolic adhesive formulations with lignin[J]. Journal of Applied Polymer Science,2017,134(30):520-528. [17] LIN Y M, YAN R Y, ZHANG Y, et al. Synthesis of biobased polyphenols for preparing phenolic polyurethanes with self-healing properties[J]. Polymer Testing,2022,112:107644. doi: 10.1016/j.polymertesting.2022.107644 [18] FUENSANTA M, MARTN-MARTNEZ J M. Influence of the hard segments content on the structure, viscoelastic and adhesion properties of thermoplastic polyurethane pressure sensitive adhesives[J]. Journal of Adhesion Science and Technology,2020,34(24):2652-2671. doi: 10.1080/01694243.2020.1780774 [19] RIMDUSIT S, SUDJIDJUNE M, JUBSILP C, et al. Enhanced Film Forming Ability of Benzoxazine- Urethane Hybrid Polymer Network by Sequential Cure Method[J]. Journal of Applied Polymer Science,2014,131(13):40502. [20] ARSHAD N, ZIA K M, JABEEN F, et al. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish[J]. International Journal of Biological Macromolecules,2018,111:485-492. doi: 10.1016/j.ijbiomac.2018.01.032 [21] DOMINGUEZ J C, OLIET M, ALONSO M V, et al. Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin[J]. Industrial Crops and Products,2013,42:308-314. doi: 10.1016/j.indcrop.2012.06.004 [22] 柳云钊, 师建军, 王筠, 等. PICA中的酚醛树脂热分解机制[J]. 宇航材料工艺, 2016, 46(6):68-73+78.LIU Y Z, SHI J J, WANG Y, et al. Pyrolysis Mechanism of PICA Phenolics[J]. Aerospace Materials & Technology,2016,46(6):68-73+78(in Chinese). [23] ZOU X, CHEN K, YAO H N, et al. Chemical Reaction and Bonding Mechanism at the Polymer-Metal Interface[J]. ACS Appl. Mater. Interfaces,2022,14(23):27383-27396. doi: 10.1021/acsami.2c04971 [24] LIU J Y, ZHANG Q D, ZHANG B Y, et al. The Bonding Mechanism of the Micro-Interface of Polymer Coated Steel[J]. Polymers,2020,12(12):3052. doi: 10.3390/polym12123052 [25] ZHANG L, JI C, WANG X, et al. Strengthening and converse strengthening effects of polyurea layer on polyurea-steel composite structure subjected to combined actions of blast and fragments[J]. Thin-Walled Structures,2022,178:109527. doi: 10.1016/j.tws.2022.109527 [26] ARUNKUMAR T, RAMACHANDRAN S. Investigation of Morphological and Mechanical Features of Polyurea[J]. Appl. Mech. Mater. (Switzerland),2015,766-767:606-611. doi: 10.4028/www.scientific.net/AMM.766-767.606 -

计量
- 文章访问数: 90
- HTML全文浏览量: 58
- 被引次数: 0