留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响

易玉华 赵欣苗

易玉华, 赵欣苗. 酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响[J]. 复合材料学报, 2023, 40(12): 6610-6618. doi: 10.13801/j.cnki.fhclxb.20230222.009
引用本文: 易玉华, 赵欣苗. 酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响[J]. 复合材料学报, 2023, 40(12): 6610-6618. doi: 10.13801/j.cnki.fhclxb.20230222.009
YI Yuhua, ZHAO Xinmiao. Modification of phenolic resin and its effect on adhesive properties of polyurethane/metal[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6610-6618. doi: 10.13801/j.cnki.fhclxb.20230222.009
Citation: YI Yuhua, ZHAO Xinmiao. Modification of phenolic resin and its effect on adhesive properties of polyurethane/metal[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6610-6618. doi: 10.13801/j.cnki.fhclxb.20230222.009

酚醛树脂的改性及其对聚氨酯/金属粘接性能的影响

doi: 10.13801/j.cnki.fhclxb.20230222.009
基金项目: 广州市科技计划项目(202102080477)
详细信息
    通讯作者:

    易玉华,硕士,高级工程师,硕士生导师,研究方向为橡塑改性及其复合材料 E-mail: mmyhyi@scut.edu.cn

  • 中图分类号: TB332

Modification of phenolic resin and its effect on adhesive properties of polyurethane/metal

Funds: Science and Technology Program of Guangzhou (202102080477)
  • 摘要: 为了解决Chemlok218为粘接剂时,室温下聚氨酯(PU)/金属粘接效果差的问题,采用一种高活性的PU改性剂,对Chemlok218中的酚醛树脂(PF)进行改性获得PF@NCO,在Chemlok218涂层与PU间形成一层过渡层, FTIR、TG分析表明:PU改性剂中NCO基团与PF中的羟基反应生成氨基甲酸酯基团。与Chemlok218涂层相比,PF@NCO过渡层表面能提高,与PU相容性增加。当Chemlok218与PU改性剂的质量比为80∶20时,PF@NCO-20的剥离强度达到23.4 kN·m−1,比纯Chemlok218提高了58.1%,整个PU/金属粘接试样无粘接薄弱点及缺陷。为解决室温下PU/金属的粘接强度问题提供借鉴。

     

  • 图  1  聚氨酯(PU)/钢材粘接样条的制备示意图

    Figure  1.  Schematic diagram of the preparation of polyurethane (PU)/steel bonded specimens

    图  2  Chemlok218、Chemlok218-A及PF@NCO的FTIR图谱

    Figure  2.  FTIR spectra of Chemlok218, Chemlok218-A and PF@NCO

    图  3  甲苯二异氰酸酯(TDI)与酚羟基的反应式

    Figure  3.  Reaction formula of toluene diisocyanate (TDI) with phenolic hydroxyl groups

    图  4  TDI与3, 3'-二氯-4, 4'-二氨基二苯甲烷(MOCA)生成脲基的反应式

    Figure  4.  Reaction formula for the formation of urea group between TDI and 3, 3'-dichloro-4, 4'-diaminodiphenylmethane (MOCA)

    图  5  Chemlok218和Chemlok218-A的TG (a) 和DTG (b) 曲线

    Figure  5.  TG (a) and DTG (b) curves of Chemlok218 and Chemlok218-A

    图  6  ((a), (c)) Chemlok218与PU预聚体的接触角;((b), (d)) PF@NCO与PU预聚体的接触角

    Figure  6.  ((a), (c)) Contact angle of Chemlok218 with PU prepolymer; ((b), (d)) Contact angle of PF@NCO with PU prepolymer

    图  7  不同PU改性剂含量的PF@NCO剥离分析图:(a) 剥离曲线;(b) 剥离强度柱状图

    Figure  7.  Peeling analysis diagrams of different PU modifier content PF@NCO peeling curve: (a) Peeling curves; (b) Peel strength bar chart

    图  8  不同PU改性剂含量的PU/金属剥离界面图片

    Figure  8.  Peeling interface pictures of PU/metal with different PU modifier content

    图  9  PU/金属粘接机制示意图

    Figure  9.  Schematic diagram of PU/metal bonding mechanism

    表  1  酚醛树脂(PF)@异氰酸酯基(NCO)的命名

    Table  1.   Naming of phenolic resin (PF)@ isocyanate group (NCO)

    Sample Mass ratio of Chemlok218 :PU
    PF@NCO-0 100∶0
    PF@NCO-10 90∶10
    PF@NCO-20 80∶20
    PF@NCO-30 70∶30
    PF@NCO-40 60∶40
    Note: PU—Polyurethane.
    下载: 导出CSV

    表  2  Chemlok218和PF@NCO的接触角与表面能

    Table  2.   Contact angle and surface energy of Chemlok218 and PF@NCO

    SampleContact angle θ/(°)Surface energy/(mJ·m−2)
    WaterEthylene glycolγS dγS pγS
    Chemlock21870.1(1.2)60.7(1.1) 5.112.918.0
    PF@NCO73.7(0.9)55.0(1.4)13.920.234.1
    Notes: γS, γS d and γS p—Surface energy, non-polar part of surface energy and polar part of surface energy respectively. The data in parentheses refers to the standard deviation.
    下载: 导出CSV
  • [1] NIKOUKALAM M T, SIDERIS P. Resilient bridge rocking columns with polyurethane damage-resistant end segments and replaceable energy-dissipating links[J]. Journal of Bridge Engineering,2017,22(10):04017064. doi: 10.1061/(ASCE)BE.1943-5592.0001069
    [2] VIJAYAKUMAR K R, JAYASEELAN J, ETHIRAJ N, et al. Investigation on aluminium/mild steel plates bonded polyurethane sheets to control vibration[J]. Materials Today: Proceedings,2020,45:5860-5867.
    [3] 易玉华, 陈智兴, 周鑫. 混合扩链剂对聚氨酯弹性体氢键和阻尼性能的影响[J]. 湖南大学学报(自然科学版), 2021, 49(12):142-147.

    YI Yuhua, CHEN Zhixing, ZHOU Xin. Effect of mixed chain extender on hydrogen bond and damping properties of polyurethane elastomer[J]. Journal of Hunan University (Natural Sciences),2021,49(12):142-147(in Chinese).
    [4] 郭睿, 李秀环, 何观伟, 等. HDI-BPA酚醛树脂的合成及应用性能[J]. 精细化工, 2019, 36(12):2503-2511.

    GUO Rui, LI Xiuhuan, HE Guanwei, et al. Synthesis and application properties of HDI-BPA phenolic resin[J]. Fine Chemicals,2019,36(12):2503-2511(in Chinese).
    [5] ABDULLAHI T, AHMAD N, WAHIT M U, et al. Adhesive bonding of thermoplastic polyurethane with metallic wire[J]. Advanced Science Letters,2016,24:4045-4049.
    [6] 张海, 易玉华, 马铁军. 聚氨酯-橡胶复合轮胎的制造方法, CN100415477 C[P]. 2008-09-03.

    ZHANG Hai, YI Yuhua, MA Tiejun. Manufacturing method of polyurethane-rubber composite tires: CN100415477 C[P]. 2008-09-03(in Chinese).
    [7] SHEIKHY H, SHAHIDZADEH M, RAMEZANZADEH B, et al. Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive[J]. Journal of Industrial and Engineering Chemistry,2013,19(6):1949-1955. doi: 10.1016/j.jiec.2013.03.008
    [8] 罗筱烈, 刘瑾, 胡克良, 等. MDI与TDI封端聚酯预聚物和扩链剂间反应速率的研究[J]. 高等学校化学学报, 1995, 16(5):799, 801-803. doi: 10.3321/j.issn:0251-0790.1995.05.027

    LUO Xiaolie, LIU Jin, HU Keliang, et al. The study on the chain extension reaction of MDI and TDI terminated prepolymers with extenders[J]. Chemical Journal of Chinese Univertities,1995,16(5):799, 801-803(in Chinese). doi: 10.3321/j.issn:0251-0790.1995.05.027
    [9] ZHANG Z Y, WANG W L, KORPACZ A N, et al. Binary liquid mixture contact-angle measurements for precise estimation of surface free energy[J]. Langmuir,2019,35(38):12317-12325. doi: 10.1021/acs.langmuir.9b01252
    [10] RYTLEWSKI P, ZENKIEWICZ M. Effects of laser irradiation on surface properties of poly(ethylene terephthalate)[J]. Journal of Adhesion Science and Technology,2010,24(4):685-697. doi: 10.1163/016942409X12517106974741
    [11] 中国国家标准化管理委员会. 硫化橡胶与金属粘接180°剥离试验: GB/T 15254—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Rubber, vulcanized—Determination of adhesion to metal—180° peel test methods: GB/T 15254—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [12] 牛永安, 王超, 陈泽明, 等. 一种高耐热酚醛树脂的合成及表征[J]. 中国胶粘剂, 2008, 17(1):8-11. doi: 10.3969/j.issn.1004-2849.2008.01.003

    NIU Yongan, WANG Chao, CHEN Zeming, et al. Synthesis and characterize a new type highly- heat- resistant phenolic resin[J]. China Adhesives,2008,17(1):8-11(in Chinese). doi: 10.3969/j.issn.1004-2849.2008.01.003
    [13] OHTSUKA K, MATSUMOTO A, KIMURA H. Preparation and cured properties of diallyl phthalate resin modified with epoxy resin and allyl ester compound having carboxylic acid[J]. Journal of Applied Polymer Science,2010,116(2):913-919.
    [14] KOTB Y, CAGNARD A, HOUSTON K R, et al. What makes epoxy-phenolic coatings on metals ubiquitous: Surface energetics and molecular adhesion characteristics[J]. Journal of Colloid and Interface Science,2022,608:634-643. doi: 10.1016/j.jcis.2021.09.091
    [15] LIU X M, WU Y Q, SHMULSKY R, et al. Developing a renewable hybrid resin system. Part I: Characterization of Co-polymers of isocyanate with different molecular weights of phenolic resins[J]. Bioresources,2016,11(2):5299-5311.
    [16] KALAMI S, AREFMANESH M, MASTER E, et al. Replacing 100% of phenol in phenolic adhesive formulations with lignin[J]. Journal of Applied Polymer Science,2017,134(30):520-528.
    [17] LIN Y M, YAN R Y, ZHANG Y, et al. Synthesis of biobased polyphenols for preparing phenolic polyurethanes with self-healing properties[J]. Polymer Testing,2022,112:107644. doi: 10.1016/j.polymertesting.2022.107644
    [18] FUENSANTA M, MARTN-MARTNEZ J M. Influence of the hard segments content on the structure, viscoelastic and adhesion properties of thermoplastic polyurethane pressure sensitive adhesives[J]. Journal of Adhesion Science and Technology,2020,34(24):2652-2671. doi: 10.1080/01694243.2020.1780774
    [19] RIMDUSIT S, SUDJIDJUNE M, JUBSILP C, et al. Enhanced film forming ability of benzoxazine-urethane hybrid polymer network by sequential cure method[J]. Journal of Applied Polymer Science,2014,131(13):40502.
    [20] ARSHAD N, ZIA K M, JABEEN F, et al. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish[J]. International Journal of Biological Macromolecules,2018,111:485-492. doi: 10.1016/j.ijbiomac.2018.01.032
    [21] DOMINGUEZ J C, OLIET M, ALONSO M V, et al. Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin[J]. Industrial Crops and Products,2013,42:308-314. doi: 10.1016/j.indcrop.2012.06.004
    [22] 柳云钊, 师建军, 王筠, 等. PICA中的酚醛树脂热分解机制[J]. 宇航材料工艺, 2016, 46(6):68-73, 78.

    LIU Yunzhao, SHI Jianjun, WANG Yun, et al. Pyrolysis mechanism of PICA phenolics[J]. Aerospace Materials & Technology,2016,46(6):68-73, 78(in Chinese).
    [23] ZOU X, CHEN K, YAO H N, et al. Chemical reaction and bonding mechanism at the polymer-metal interface[J]. ACS Applied Materials & Interfaces,2022,14(23):27383-27396. doi: 10.1021/acsami.2c04971
    [24] LIU J Y, ZHANG Q D, ZHANG B Y, et al. The bonding mechanism of the micro-interface of polymer coated steel[J]. Polymers,2020,12(12):3052. doi: 10.3390/polym12123052
    [25] ZHANG L, JI C, WANG X, et al. Strengthening and converse strengthening effects of polyurea layer on polyurea-steel composite structure subjected to combined actions of blast and fragments[J]. Thin-Walled Structures,2022,178:109527. doi: 10.1016/j.tws.2022.109527
    [26] ARUNKUMAR T, RAMACHANDRAN S. Investigation of morphological and mechanical features of polyurea[J]. Applied Mechanics & Materials,2015,766-767:606-611. doi: 10.4028/www.scientific.net/AMM.766-767.606
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  214
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-02-09
  • 录用日期:  2023-02-10
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回