留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响

吴磊 吕生华 李泽雄 李尧 刘雷鹏

吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响[J]. 复合材料学报, 2022, 40(0): 1-12
Lei WU, Shenghua LV, Zexiong LI, Yao LI, Leipeng LIU. Dispersion behavior of ultra-low dosage graphene oxide and its effect on structure and performances of cement-based materials[J]. Acta Materiae Compositae Sinica.
Citation: Lei WU, Shenghua LV, Zexiong LI, Yao LI, Leipeng LIU. Dispersion behavior of ultra-low dosage graphene oxide and its effect on structure and performances of cement-based materials[J]. Acta Materiae Compositae Sinica.

超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响

基金项目: 陕西省区域创新能力引导计划项目(2021 QFY04-04);国家自然科学基金面上项目(21276152)
详细信息
    通讯作者:

    吕生华,博士,教授,博士生导师,研究方向为氧化石墨烯材料、高分子材料  E-mail: lvsh@sust.edu.cn

  • 中图分类号: TU528

Dispersion behavior of ultra-low dosage graphene oxide and its effect on structure and performances of cement-based materials

  • 摘要: 研究了氧化石墨烯(GO)纳米片层在水相及分散剂作用下的存在状态及分散行为,发现GO在水泥基材料中存在掺量大、成本高及应用效果不稳定不显著的主要原因是GO纳米片层容易团聚导致其在水泥基体中散不均匀。为此制备了两性聚羧酸分散剂(APC)及与GO的复合物(APC-GO),研究发现GO在APC-GO复合物中不再以团簇式聚集态存在,而是主要吸附在APC多支链分子上并呈现多支链状的分散状态,通过掺入APC-GO复合物引入与水泥质量比为0.0003%的超低掺量GO能够显著提高水泥基材料的力学性能和耐久性,SEM显示掺入APC-GO的水泥基材料具有规整致密的微观结构形貌,说明了GO在水泥基体中能够均匀分散及其对水泥水化产物形貌和结构的具有规整性的调控效果,研究结果对于GO在水泥基材料中的应用具有指导意义。

     

  • 图  1  聚羧酸减水剂(PC)及两性聚羧酸减水剂(APC)的制备反应及分子结构示意

    Figure  1.  Schematic diagram of preparation and structure of polycarboxylate superplasticizer (PC) and amphoteric polycarboxylate superplasticizer (APC)

    图  2  氧化石墨烯(GO)(a)及APC(b)的FTIR图谱

    Figure  2.  FTIR spectra of graphene oxide (GO) (a) and APC (b)

    图  3  GO的粒径分布

    Figure  3.  Particle size distribution of GO

    图  4  GO分散液的AFM和TEM形貌:(a)、(d)GO分散液;(b)、(e)PC-GO复合物;(c)、(f)APC-GO复合物

    Figure  4.  AFM and TEM morphology of GO: (a),(d)GO dispersion; (b),(e)PC-GO composite; (c),(f) APC-GO composite

    图  5  GO在分散液中存在状态的形貌:(a)0.06 wt%;(b)0.006 wt%;(c)0.001 wt%;(d)0.0003 wt%;(e)0.0001 wt%;(f)0.00001 wt%

    Figure  5.  Morphologies of GO in dispersions: (a) 0.06 wt%; (b) 0.006 wt%; (c) 0.001 wt%; (d) 0.003 wt%; (e)0.0001 wt%; (f) 0.00001 wt%

    图  6  GO在分散剂中的存在状态的SEM形貌:(a)~(c)在PC溶液中;(d)~(f) 在APC溶液中

    Figure  6.  SEM morphologies of GO in dispersant solutions: (a)-(c) In PC solution; (d)-(f) In APC solution

    图  7  APC-GO复合分散液内GO的分散行为:(a) GO纳米片层聚集体;(b) GO纳米片层被APC分子吸附;(c) GO纳米片层吸附在APC上的多支链形貌存在状态

    Figure  7.  Dispersion behavior of GO in APC-GO composite dispersion solution: (a) GO nanosheets aggregates; (b) GO nanosheets is adsorbing by APC molecules; (c) The existence state of multi-chain morphology of GO absorbed on APC

    图  8  龄期28 d的不同水泥基试样的XRD谱图

    Figure  8.  XRD spectra of different cementitious specimens with an age of 28 days

    图  9  龄期为28 d水泥基材料的强度:(a)净浆抗压强度;(b)净浆抗折强度;(c)砂浆抗压强度;(d)砂浆抗折强度

    Figure  9.  Strength of cement-based materials at 28 d: (a) Paste compressive strength;(b)Paste flexural strength; (c) Mortar compressive strength;(b)Mortar flexural strength

    图  10  龄期28 d的水泥基材料SEM微观结构形貌:(a)PC空白净浆样;(b)PC-GO净浆样;(c)APC-GO净浆样;(d)空白砂浆样;(e)PC-GO砂浆样;(f)APC-GO砂浆样

    Figure  10.  SEM morphologies of microstructures of cement-based materials at 28 days: (a) PC blank paste samples; (b) PC-GO paste; (c) APC-GO paste sample; (d) PC blank mortar;(e) PC-GO mortar; (f) APC-GO mortar

    图  11  水泥基材料的抗水渗透性

    Figure  11.  Water permeability resistance of cement-based materials

    图  12  水泥基材料的抗干缩性能

    Figure  12.  Anti-drying shrinkage performances of cement-based materials

    表  1  水泥的化学成分(wt%)和烧失量(LOI)(%)

    Table  1.   Chemical composition of cement (wt%) and its loss of ignition(LOI) (%)

    CaOSiO2Al2O3MgOK2OFe2O3SO3OtherLOI
    60.2523.125.611.350.494.520.563.590.51
    下载: 导出CSV

    表  2  图5和图6中层状物的化学组成(at%)

    Table  2.   Chemical composition of sheets in fig.5 and fig.6 (at%)

    Component
    COSiNaNOther
    EDS158.3726.356.380.6808.22
    EDS257.6226.085.630.8609.81
    EDS355.4325.627.620.67010.66
    EDS459.6827.696.630.6505.35
    EDS555.3128.656.620.8108.61
    EDS658.5727.396.630.7506.66
    EDS762.3829.234.380.652.321.04
    EDS861.5628.594.410.592.682.17
    EDS92.688.6286.850.8401.01
    下载: 导出CSV
  • [1] CHEN Y, LI X, DONG B, et al. High-temperature properties of cement paste with graphene oxide agglomerates[J]. Construction and Building Materials,2022,320:126286. doi: 10.1016/j.conbuildmat.2021.126286
    [2] 李欣, 罗素蓉. 氧化石墨烯增强水泥复合材料的断裂性能[J]. 复合材料学报, 2021, 38(2):612-621.

    LI Xin, LUO Surong. Fracture properties of graphene oxide reinforced cement composites[J]. Acta Materiae Compositae Sinica,2021,38(2):612-621(in Chinese).
    [3] 彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.

    PENG Hui, GE Yaping, YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2132-2139(in Chinese).
    [4] LUO S R, LI X, LIN W Y, et al. Effect of graphene oxide dispersion method on properties of cement-based materials[J]. B Chin. Ceram Soc,2020,39(3):677-84.
    [5] QIN W, GUODONG Q, DAFU Z, et al. Influence of the molecular structure of a polycarboxylate superplasticizer on the dispersion of graphene oxide in cement pore solutions and cement-based composites[J]. Construction and Building Materials,2021,272:121969. doi: 10.1016/j.conbuildmat.2020.121969
    [6] 魏致强, 王远贵, 齐孟, 等. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10):10042-10047. doi: 10.11896/cldb.20040258

    WEI Zhiqiang, WANG Yuangui, QI Meng et al. The Synergistic Effect of Gallic Acid and Polycarboxylic Water-reducer on Aqueous GO Dispersion and the Enhanced Mechanical Properties of Cement Mortar Composites[J]. Materials Reports,2021,35(10):10042-10047(in Chinese). doi: 10.11896/cldb.20040258
    [7] 徐亦冬, 王瑶. 氧化石墨烯对水泥基复合材料徐变的调控机制[J/OL]. 复合材料学报: 1-7[2022-04-09].

    XU Yidong, WANG Yao. Control mechanism of graphene oxide on creep of cement-based composites[J]. Acta Materiae Compositae Sinica. 1-7[2022-04-09](in Chinese).
    [8] 李东波, 苏梦龙, 芦苇, 等. 复掺氧化石墨烯与矿渣粉的水泥基材料力学性能研究[J]. 应用力学学报, 2021, 38(3):877-885.

    LI Dongbo, SU Menglong, LU Wei, et al. Study on mechanical properties of cement-based materials mixed with graphene oxide and slag powder[J]. Chinese Journal of Applied Mechanics,2021,38(3):877-885(in Chinese).
    [9] SABZIPARVAR A M, HOSSEINI E, CHINIFORUSH V, et al. Barriers to achieving highly dispersed graphene oxide in cementitious composites: An experimental and computational study[J]. Construction and Building Materials,2019,199:269-278. doi: 10.1016/j.conbuildmat.2018.12.030
    [10] ZHAO L, GUO X, LIU Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon,2018,127:255-269. doi: 10.1016/j.carbon.2017.11.016
    [11] YAN X, ZHENG D, YANG H, et al. Study of optimizing graphene oxide dispersion and properties of the resulting cement mortars[J]. Construction and Building Materials,2020,257:119477. doi: 10.1016/j.conbuildmat.2020.119477
    [12] ZHAO L, GUO X, LIU Y, et al. Hydration kinetics, pore structure, 3 D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites[J]. Construction and Building Materials,2018,190:150-163. doi: 10.1016/j.conbuildmat.2018.09.105
    [13] SHENG K, LI D, YUAN X. Methyl orange assisted dispersion of graphene oxide in the alkaline environment for improving mechanical properties and fluidity of ordinary Portland cement composites[J]. Journal of Building Engineering,2021,43:103166. doi: 10.1016/j.jobe.2021.103166
    [14] AMINI K, GHASEMI A, AMIRI S S, et al. The synergic effects of metakaolin and polycarboxylate-ether on dispersion of graphene oxide in cementitious environments and macro-level properties of graphene oxide modified cement composites[J]. Construction and Building Materials,2021,270:121462. doi: 10.1016/j.conbuildmat.2020.121462
    [15] LIU H, YU Y, LIU H, et al. Hybrid effects of nano-silica and graphene oxide on mechanical properties and hydration products of oil well cement[J]. Construction and Building Materials,2018,191:311-319. doi: 10.1016/j.conbuildmat.2018.10.029
    [16] LI X, LU Z, CHUAH S, et al. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste[J]. Composites Part A:Applied Science and Manufacturing,2017,100:1-8. doi: 10.1016/j.compositesa.2017.05.002
    [17] MUNGSE H P, GUPTA K, SINGH R, et al. Alkylated graphene oxide and reduced graphene oxide: grafting density, dispersion stability to enhancement of lubrication properties[J]. Journal of colloid and interface science,2019,541:150-162. doi: 10.1016/j.jcis.2019.01.064
    [18] RAHMANI S, SHARIF A, HABIBNEJAD KORAYEM A. Dispersion stability of chitosan grafted graphene oxide nanosheets in cementitious environments and their effects on the fluidity of cement mortar nanocomposites[J]. Journal of Applied Polymer Science,2021:52095.
    [19] YANG S, JIA W, WANG Y, et al. Hydroxylated graphene: a promising reinforcing nanofiller for nanoengineered cement composites[J]. ACS omega,2021,6(45):30465-30477. doi: 10.1021/acsomega.1c03844
    [20] ZHANG X, ZHOU S, ZHOU H, et al. The effect of the modification of graphene oxide with γ-aminopropyltriethoxysilane (KH550) on the properties and hydration of cement[J]. Construction and Building Materials,2022,322:126497. doi: 10.1016/j.conbuildmat.2022.126497
    [21] WANG M, YAO H. Comparison study on the adsorption behavior of chemically functionalized graphene oxide and graphene oxide on cement[J]. Materials,2020,13(15):3274. doi: 10.3390/ma13153274
    [22] NGUYEN H D, ZHANG Q, SAGOE-CRENTSIL K, et al. Graphene oxide-coated sand for improving performance of cement composites[J]. Cement and Concrete Composites,2021,124:104279. doi: 10.1016/j.cemconcomp.2021.104279
    [23] 袁小亚, 曾俊杰, 高军, 等. 氧化石墨烯与石墨烯复掺对水泥砂浆性能影响研究[J]. 重庆交通大学学报, 2019, 38(9):45-50.

    YUAN Xiaoya, ZENG Junjie, GAO Jun, et al. Effect of addition of graphene oxide and graphene on properties of cement mortar[J]. Journal of Chongqing Jiaotong University,2019,38(9):45-50(in Chinese).
    [24] 王琴, 齐国栋, 王悦, 等. 氧化石墨烯在水泥基复合材料中应用的研究进展[J]. 新型炭材料, 2021, 36(4):729-750. doi: 10.1016/S1872-5805(21)60071-9

    WANG Qin, QI Guodong, WANG Yue, et al. Research progress on the effect of graphene oxide on the properties of cement-based composites[J]. New Carbon Materials,2021,36(4):729-750(in Chinese). doi: 10.1016/S1872-5805(21)60071-9
    [25] LV S, MA Y, QIU C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials,2013,49:121-127. doi: 10.1016/j.conbuildmat.2013.08.022
    [26] YAO X, SHAMSAEI E, SAGOE-CRENTSIL K, et al. The interaction of graphene oxide with cement mortar: implications on reinforcing mechanisms[J]. Journal of Materials Science,2022:1-11.
    [27] 吕生华, 孙婷, 刘晶晶, 等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及机制[J]. 复合材料学报, 2014, 31(3):644-652.

    LV Shenghua, SUN Ting, LIU Jingjing, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(3):644-652(in Chinese).
    [28] GLASS D E, GALVAN V, PRAKASH G K S. Reassessing the necessity of the drying step in hummer's method for graphene oxide synthesis[J]. Electroanalysis,2021,33(11):2323-2334. doi: 10.1002/elan.202100188
    [29] GB/T 50082—2009. Standard test method for long-term performance and durability of ordinary concrete. The State Standard of the People's Republic of China.
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 录用日期:  2022-06-10
  • 修回日期:  2022-05-22
  • 网络出版日期:  2022-06-29

目录

    /

    返回文章
    返回