留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于芯条胶粘弹性本构的芳纶纸蜂窝拉伸孔格形态研究

夏思禹 李岩 付昆昆 李朝蓬

夏思禹, 李岩, 付昆昆, 等. 基于芯条胶粘弹性本构的芳纶纸蜂窝拉伸孔格形态研究[J]. 复合材料学报, 2023, 42(0): 1-13.
引用本文: 夏思禹, 李岩, 付昆昆, 等. 基于芯条胶粘弹性本构的芳纶纸蜂窝拉伸孔格形态研究[J]. 复合材料学报, 2023, 42(0): 1-13.
XIA Siyu, LI Yan, FU Kunkun, et al. Study on Stretched Aramid Honeycomb cell Structure Based on the Viscoelastic Constitutive Model of Adhesive[J]. Acta Materiae Compositae Sinica.
Citation: XIA Siyu, LI Yan, FU Kunkun, et al. Study on Stretched Aramid Honeycomb cell Structure Based on the Viscoelastic Constitutive Model of Adhesive[J]. Acta Materiae Compositae Sinica.

基于芯条胶粘弹性本构的芳纶纸蜂窝拉伸孔格形态研究

基金项目: 国家重点研发计划(编号:2020YFB0311500)
详细信息
    通讯作者:

    李岩,博士,教授,博士生导师,研究方向为复合材料设计与制造 E-mail:liyan@tongji.edu.cn

  • 中图分类号: TB332

Study on Stretched Aramid Honeycomb cell Structure Based on the Viscoelastic Constitutive Model of Adhesive

Funds: National Key Research and Development Program of China (No.2020YFB0311500)
  • 摘要: 拉伸工艺是影响芳纶纸蜂窝孔格形态最关键的工序之一。本研究基于纳米压痕法确定了芯条胶粘弹性力学本构关系,建立了芳纶纸蜂窝双边拉伸工艺有限元模型。通过蜂窝拉伸-保载实验验证了该模型的有效性。研究发现,芯条胶的应力松弛行为导致了蜂窝两端孔格内切圆直径增大,使得蜂窝中部孔格内切圆直径减小。同时,在保载过程中纸-胶粘接处孔格粘结圆角半径减小导致蜂窝孔格内角减小。最后,基于该有限元模型探索了涂胶工艺参数对拉伸后蜂窝孔格尺寸的影响规律。研究表明涂胶宽度和涂胶厚度的增加会导致蜂窝孔格内切圆直径的减小,而蜂窝孔格内角仅受涂胶宽度的影响,随涂胶宽度的增加而增大。

     

  • 图  1  芳纶纸蜂窝拉伸-保载测试过程:(a)蜂窝拉伸过程;(b)保载中蜂窝内切圆直径测量过程

    Figure  1.  Stretching-Holding Test Process of Aramid Honeycomb:(a) Honeycomb stretching process; (b) In-process measurement of the diameter of the inscribed circle of the honeycomb during holding.

    图  2  有限元模型网格划分示意图

    Figure  2.  Demonstration of finite element model and meshing

    图  3  纳米压痕测试所获得的不同加载速率下J80芯条胶载荷-位移曲线

    Figure  3.  Load-Displacement curves of J80 adhesive at different loading rates obtained by nanoindentation

    图  4  不同加载速率下的拟合曲线:(a)2 mN/s;(b)1 mN/s;(c)0.5 mN/s

    Figure  4.  Fitting Curves Under Different Loading Rates: (a) 2 mN/s; (b) 1 mN/s; (c) 0.5 mN/s

    $ {h}^{2}\left(t\right) $-square of indentation depth; $ P\left(t\right) $- indentation load

    图  5  松弛模量拟合曲线

    Figure  5.  Fitting Curves of Relaxation Modulus

    $ E\left(t\right) $-relaxation modulus;t-time

    图  6  芳纶蜂窝拉伸成型过程中有限元仿真结果与实验结果对比:(a)拉伸开始;(b)拉伸中;(c)拉伸结束

    Figure  6.  Comparison between Simulation Model and Stretching Test Process: (a) Start of Stretching Test; (b) Middle of Stretching Test; (c) End of Stretching Test

    图  7  蜂窝孔格尺寸参数[32]

    Figure  7.  Parameters of Honeycomb Cell Size[32]

    $ {d}_{r} $-diameter of the incircle of honeycomb cell; $ {t}_{w} $-cell wall thickness; $ {t}_{a} $-adhesive thickness; $ {d}_{i} $-distance between opposite walls; $ {d}_{f} $-length of adhesive bondline; $ {R}_{c} $-radius at intersections; $ {R}_{f} $-fillet radius; $ {\theta }_{w} $-internal angle; $ {\theta }_{c} $-angle between inclined and horizontal wall

    图  8  仿真模型计算获得的保载过程$ \Delta \stackrel{-}{d} $尺寸变化与实验结果对比

    Figure  8.  Comparison of $ \Delta \stackrel{-}{d} $ change in Simulation Model and Stretching-Holding Test

    $ \Delta \stackrel{-}{d} $-change in diameter of the incircle of honeycomb cell during the holding process

    图  9  保载前后蜂窝孔格参数在蜂窝拉伸方向上的分布:(a)$ \delta d $;(b)$ {\theta }_{w} $

    Figure  9.  Distribution of Honeycomb cell Size Parameters in the Direction of Honeycomb Stretching before and after Holding: (a)$ \delta d $;(b)$ {\theta }_{w} $

    $ \delta d $- deviation from the standard value of the diameter of the incircle of a honeycomb cell; $ {\theta }_{w} $-internal angle

    图  10  保载前后蜂窝孔格粘结圆角对比 (a) 保载开始;(b)保载150 s

    Figure  10.  Comparison of Node Bond Adhesive Fillet Radius of Honeycomb Cell before and after Holding: (a) Start of Holding; (b) Holding 150 s

    $ {R}_{f1} $,$ {R}_{f2} $-fillet radius before and after holding

    图  11  不同涂胶宽度下的蜂窝孔格形态:(a)涂胶宽度2.55 mm;(b)涂胶宽度2.75 mm;(c)涂胶宽度2.95 mm

    Figure  11.  Mophology of Honeycomb Cell under Different Gluing Widths: (a) Gluing Width of 2.55 mm; (b) Gluing Width of 2.75 mm;(c) Gluing Width of 2.95 mm

    图  12  不同涂胶厚度下的蜂窝孔格形态:(a)涂胶厚度0.005 mm;(b)涂胶厚度0.01 mm;(c)涂胶厚度0.015 mm

    Figure  12.  Mophology of Honeycomb Cell under Different Gluing Thicknesses: (a) Gluing Thickness of 0.005 mm; (b) Gluing Thickness of 0.01 mm; (c) Gluing Thickness of 0.015 mm

    图  13  涂胶工艺参数对保载后$ \delta d $的影响:(a)涂胶宽度的影响;(b)涂胶厚度的影响

    Figure  13.  Effects of Gluing Process Parameters on δd after Holding:(a) Effects of Gluing Width; (b) Effects of Gluing Thickness

    $ \delta d $- deviation from the standard value of the diameter of the incircle of a honeycomb cell

    图  14  涂胶工艺参数对保载后$ {\theta }_{w} $的影响:(a)涂胶宽度的影响;(b)涂胶厚度的影响

    Figure  14.  Effects of Gluing Process Parameters on θw after Holding:(a) Effects of Gluing Width; (b) Effects of Gluing Thickness

    $ {\theta }_{w} $-internal angle

    表  1  有限元模型的材料参数

    Table  1.   Material Parameters of Finite Element Model

    Material Density/
    (g*cm−3)
    Modulus/
    GPa
    Poisson’s
    ratio
    Aramid paper 0.842 2.46 0.32
    Node bond adhesive 1.12×10−3 0.089 0.39
    下载: 导出CSV

    表  2  蠕变柔量相关参数

    Table  2.   Parameters Related to Creep Compliance

    Parameter$ {J}_{0}/\mathrm{M}\mathrm{P}{\mathrm{a}}^{-1} $$ {J}_{1}/\mathrm{M}\mathrm{P}{\mathrm{a}}^{-1} $$ {J}_{2}/\mathrm{M}\mathrm{P}{\mathrm{a}}^{-1} $$ {J}_{3}/\mathrm{M}\mathrm{P}{\mathrm{a}}^{-1} $$ {\tau }_{1}/\mathrm{s} $$ {\tau }_{2}/\mathrm{s} $$ {\tau }_{3}/\mathrm{s} $
    Value0.014160.060.042750.006558×10-46025000
    Notes: $ {J}_{0} $ is the initial creep compliance; $ {J}_{i} $ (i=1,2,3) is the creep compliance of the i-th Maxwell element; $ {\tau }_{i}(\mathrm{i}=\mathrm{1,2},3) $ is the relaxation time of the i-th Maxwell element.
    下载: 导出CSV

    表  3  $ h\left(t\right) $与$ P\left(t\right) $的关系参数

    Table  3.   Relationship Parameters between h(t) and P(t)

    Loading rate$ {v}_{0} $/(mN·s−1) $ {J}_{0}+{\displaystyle\sum }_{i=1}^{3}{J}_{i} $ $ {J}_{1}{v}_{0}{\tau }_{1} $ $ {J}_{2}{v}_{0}{\tau }_{2} $ $ {J}_{3}{v}_{0}{\tau }_{3} $ $ {v}_{0}{\tau }_{1} $ $ {v}_{0}{\tau }_{2} $ $ {v}_{0}{\tau }_{3} $
    2 $ 0.12346 $ 9.6×10−5 5.13 327.5 1.6×10−3 120 50000
    1 $ 0.12346 $ 4.8×10−5 2.565 163.75 8×10−4 60 25000
    0.5 $ 0.12346 $ 2.4×10−5 1.2825 81.875 4×10−4 30 12500
    下载: 导出CSV

    表  4  松弛模量拟合参数

    Table  4.   Fitting Parameters of Relaxation Modulus

    $ {E}_{\mathrm{\infty }} $(MPa)$ {E}_{1} $(MPa)$ {E}_{2} $(MPa)$ {E}_{3} $(MPa)$ {\tau }_{1} $(s)$ {\tau }_{2} $(s)$ {\tau }_{3} $(s)$ {R}^{2} $
    2.7569.683.7513.211235717500.99
    Notes: $ {E}_{\mathrm{\infty }} $ is the equilibrium relaxation modulus, $ {E}_{\mathrm{i}} $ (i=1,2,3) is the relaxation modulus of the spring in the i-th Maxwell element; $ {R}^{2} $ is the correlation coefficient.
    下载: 导出CSV

    表  5  芯条胶的三阶Prony级数参数

    Table  5.   Third-order Prony series parameters of node bond adhesive

    i$ {G}_{i} $$ {K}_{i} $$ {{\tau }_{i}}^{G} $
    10.7795012
    20.04190357
    30.147701750
    Notes: $ {G}_{i} $ is the shear modulus; $ {K}_{i} $ is the bulk modulus; $ {{\tau }_{i}}^{G} $ is the relaxation time of each component in the Prony series.
    下载: 导出CSV

    表  6  有限元模型AH-W与AH-T系列涂胶工艺参数

    Table  6.   Gluing Process Parameters of AH-W and AH-T finite element model series

    Gluing width/mmGluing thickness/mm
    AH-W2.552.550.01
    AH-W2.752.750.01
    AH-W2.952.950.01
    AH-T0.0052.750.005
    AH-T0.012.750.01
    AH-T0.0152.750.015
    下载: 导出CSV
  • [1] BITZER T N. Honeycomb technology: materials, design, manufacturing, applications and testing[M]. Springer Science & Business Media, 1997.
    [2] CRUPI V, EPASTO G, GUGLIELMINO E. Collapse mophologydes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering, 2012, 43: 6-15. doi: 10.1016/j.ijimpeng.2011.12.002
    [3] WANG Z, LI Z, XIONG W. Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet[J]. Composites Part B:Engineering, 2019, 164: 280-286. doi: 10.1016/j.compositesb.2018.10.077
    [4] CASTANIÉ B, BOUVET C, GINOT M. Review of composite sandwich structure in aeronautic applications[J]. Composites Part C:Open Access, 2020, 1: 100004. doi: 10.1016/j.jcomc.2020.100004
    [5] RAMNATH B V, ALAGARRAJA K, ELANCHEZHIAN C. Review on sandwich composite and their applications[J]. Materials Today:Proceedings, 2019, 16: 859-864. doi: 10.1016/j.matpr.2019.05.169
    [6] SIMONE A E, GIBSON L J. Efficient structural components using porous metals[J]. Materials Science and Engineering:A, 1997, 229(1-2): 55-62. doi: 10.1016/S0921-5093(96)10842-X
    [7] TORQUATO S, GIBIANSKY L V, SILVA M J, et al. Effective mechanical and transport properties of cellular solids[J]. International Journal of Mechanical Sciences, 1998, 40(1): 71-82. doi: 10.1016/S0020-7403(97)00031-3
    [8] HE M, HU W. A study on composite honeycomb sandwich panel structure[J]. Materials & Design, 2008, 29(3): 709-713.
    [9] GAO X, ZHANG M, HUANG Y, et al. Experimental and numerical investigation of thermoplastic honeycomb sandwich structures under bending loading[J]. Thin-Walled Structures, 2020, 155: 106961. doi: 10.1016/j.tws.2020.106961
    [10] 刘杰, 郝巍. 芳纶纸蜂窝外观缺陷分析[J]. 宇航材料工艺, 2018, 48(3): 90-93. doi: 10.12044/j.issn.1007-2330.2018.03.019

    LIU J, HAO W. Analysis of appearance defects of aramid paper honeycomb[J]. Aerospace Materials & Technology, 2018, 48(3): 90-93. (In Chinese doi: 10.12044/j.issn.1007-2330.2018.03.019
    [11] 郑付来. 芳纶纸蜂窝芯条胶与国产芳纶纸的匹配性研究[J]. 高科技纤维与应用, 2018, 43(5): 35-41. doi: 10.3969/j.issn.1007-9815.2018.05.005

    ZHENG F L. Study on the compatibility of aramid honeycomb strip adhesive and domestically produced aramid paper[J]. High Technology Fibers & Applications, 2018, 43(5): 35-41(in Chinese). doi: 10.3969/j.issn.1007-9815.2018.05.005
    [12] WANG Z, LI Z, ZHOU W, et al. On the influence of structural defects for honeycomb structure[J]. Composites Part B:Engineering, 2018, 142: 183-192. doi: 10.1016/j.compositesb.2018.01.015
    [13] YING F, ZHOU L, WANG L. Analysis of the structural performance and stretching process of the honeycomb paper core[J]. Journal of Advanced Manufacturing Systems, 2008, 7(01): 187-192. doi: 10.1142/S0219686708001346
    [14] 黄钧铭, 孙茂健, 朱敏英等. 蜂窝结构材料用国产芳纶纸性能分析[J]. 高科技纤维与应用, 2008, 33(6): 33-38. doi: 10.3969/j.issn.1007-9815.2008.06.007

    HUANG J, SUN M, ZHU M, et al. Performance analysis of domestically produced aramid paper for honeycomb structure materials[J]. Journal of Advanced Textile Science & Technology, 2008, 33(6): 33-38(in Chinese). doi: 10.3969/j.issn.1007-9815.2008.06.007
    [15] 王厚林, 王宜, 姚运振等. 芳纶纸蜂窝力学性能与纸张性能相关性的研究[J]. 功能材料, 2013, 44(3): 349-352. doi: 10.3969/j.issn.1001-9731.2013.03.011

    WANG H, WANG Y, YAO Y, et al. Study on the correlation between mechanical properties of aramid paper honeycomb and paper properties[J]. Functional Materials, 2013, 44(3): 349-352(in Chinese). doi: 10.3969/j.issn.1001-9731.2013.03.011
    [16] Handbook of adhesion technology[M]. Heidelberg: Springer, 2011.
    [17] BULA A, KOZŁOWSKI M, HULIMKA J, et al. Analysis of methyl methacrylate adhesive (MMA) relaxation with non-linear stress–strain dependence[J]. International Journal of Adhesion and Adhesives, 2019, 94: 40-46. doi: 10.1016/j.ijadhadh.2019.05.011
    [18] REZA A, SHISHESAZ M, NADERAN-TAHAN K. The effect of viscoelasticity on creep behavior of double-lap adhesively bonded joints[J]. Latin American Journal of Solids and Structures, 2014, 11: 35-50. doi: 10.1590/S1679-78252014000100003
    [19] SHISHESAZ M, REZA A. The effect of viscoelasticity of adhesives on shear stress distribution in a double-lap joint using analytical method[J]. Journal of adhesion science and technology, 2013, 27(20): 2233-2250. doi: 10.1080/01694243.2013.769085
    [20] WANG Y, SHANG L, ZHANG P, et al. Measurement of viscoelastic properties for polymers by nanoindentation[J]. Polymer Testing, 2020, 83: 106353. doi: 10.1016/j.polymertesting.2020.106353
    [21] CHRISTENSEN S F, MCKINLEY G H. Rheological modelling of the peeling of pressure-sensitive adhesives and other elastomers[J]. International journal of adhesion and adhesives, 1998, 18(5): 333-343. doi: 10.1016/S0143-7496(98)00015-3
    [22] HAMOODI-TABAR M, REZA A. Long-term shear stress distribution in adhesively bonded tubular joints under tensile load using the time-temperature superposition principle[J]. The Journal of Adhesion, 2021, 97(4): 328-345. doi: 10.1080/00218464.2019.1666367
    [23] GUNAWAN M, DAVILA L T, WONG E H, et al. Static and cyclic relaxation studies in nonconductive adhesives[J]. Thin solid films, 2004, 462: 419-426.
    [24] 尹久仁, 张平, 郭翠芳. 线黏弹性网格结构离散模型研究[J]. 湘潭大学自然科学学报, 2003, 25(4): 126-130. doi: 10.13715/j.cnki.nsjxu.2003.04.021

    YIN J R, ZHANG P, GUO C F. Discrete model of line-viscoelastic grid structure[J]. Journal of Xiangtan University(Natural Science), 2003, 25(4): 126-130(in Chinese). doi: 10.13715/j.cnki.nsjxu.2003.04.021
    [25] MAEDA K, OKAZAWA S, NISHIGUCHI K. Visco-rubber elastic model for pressure sensitive adhesive[C]//Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineering and Computer Scientists. 2010: 393-398.
    [26] 邓科涛, 吴晓. 粘弹性材料的几个材料函数的测定[J]. 强度与环境, 2002, 29(3): 58-63. doi: 10.3969/j.issn.1006-3919.2002.03.011

    DENG K T, WU X. Determination of several material functions of viscoelastic materials[J]. Strength and Environment, 2002, 29(3): 58-63(in Chinese). doi: 10.3969/j.issn.1006-3919.2002.03.011
    [27] SNEDDON I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile[J]. International journal of engineering science, 1965, 3(1): 47-57. doi: 10.1016/0020-7225(65)90019-4
    [28] CHENG Y T, CHENG C M. General relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles[J]. Applied Physics Letters, 2005, 87(11): 111914. doi: 10.1063/1.2048820
    [29] Polymer viscoelasticity: stress and strain in practice[M]. CRC Press, 1999.
    [30] HERNÁNDEZ-JIMÉNEZ A, HERNÁNDEZ-SANTIAGO J, MACIAS-GARCIA A, et al. Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model[J]. Polymer Testing, 2002, 21(3): 325-331. doi: 10.1016/S0142-9418(01)00092-7
    [31] XU Y, BHARGAVA P, ZEHNDER A. Time and temperature dependent mechanical behavior of HFPE-II-52 polyimide at high temperature[J]. Mechanics of Materials, 2016, 100: 86-95. doi: 10.1016/j.mechmat.2016.06.009
    [32] BALAWI S, ABOT J L. The Effect of Honeycomb Relative Density on its Effective Elastic Properties: A Theoretical and Experimental Study[C]//ASME International Mechanical Engineering Congress and Exposition. 2006, 47667: 93-104.
  • 加载中
计量
  • 文章访问数:  254
  • HTML全文浏览量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-17
  • 录用日期:  2023-09-29
  • 网络出版日期:  2023-11-03

目录

    /

    返回文章
    返回