Modified basalt/hydrogel composite coating study on the influence of flame retardancy of wood
-
摘要: 以加入了次磷酸铝(AHP)的聚乙烯醇(PVA)/壳聚糖(CS)作为水凝胶基质,经NaOH预处理、KH550接枝改性和植酸金属化合物共沉淀后的玄武岩(BS)作为阻燃填料,制备了BS-PA-Al、BS-PA-Ni和BS-PA-Zn水凝胶阻燃涂层材料。将三种涂层涂覆到木材表面后,分别对其进行了热重测试、锥形量热测试和垂直燃烧实验,分析改性玄武岩/水凝胶复合涂层对木材阻燃和力学性能的影响。结果表明:由于可燃气体的稀释和炭层致密性的增加,BS-PA-Al、BS-PA-Ni和BS-PA-Zn阻燃涂层对木材的阻燃性能有显著地提升;其中,BS-PA-Ni的阻燃性能和机械性能达到最佳,其UL-94测试达V-0级;且相较于空白组木材,残炭率增加至27.3%,其pHRR、THR和TSP分别降低64.2%、32.7%和51.3%;此外,当涂层厚度为300 μm时,其BS-PA-Ni的力学性能(抗拉强度)增加至80.4%,水凝胶在木材上的附着强度达到3.4 MPa。Abstract: BS-PA-Al, BS-PA-Ni and BS-PA-Zn hydrogel flame retardant coating materials were prepared respectively using polyvinyl alcohol (PVA)/chitosan (CS) including aluminum hypophosphite (AHP) as hydrogel matrix, and employing basalt (BS) after NaOH pretreatment, KH550 grafting modification and phytic acid co-precipitation act as flame retardant filler. The effects of modified basalt/hydrogel composite coating on flame retarding and mechanical properties of wood were analyzed by thermogravimetric test, cone calorimetric test and vertical combustion test after coating on wood surface respectively. The results show that, due to the dilution of combustible gas and the increase of carbon layer density, the flame retardant properties of BS-PA-Al, BS-PA-Ni and BS-PA-Zn hydrogel flame retardant coated wood have been significantly improved. Among them, the flame retardant properties and mechanical properties of BS-PA-Ni have reached the best, and its UL-94 test has reached V-0 level. The residual carbon rate increased to 27.3%, while the pHRR, THR and TSP decreased by 64.2%, 32.7% and 51.3%, respectively. In addition, when the thickness of the coating is 300 μm, the mechanical properties (tensile strength) of BS-PA-Ni enhanced to 80.4%, and the adhesion strength of the hydrogel on the wood reaches 3.4 MPa.
-
Key words:
- hydrogel coating /
- flame retardant /
- basalt /
- aluminum hypophosphite /
- wood
-
图 2 样品的SEM图:BS(a);NaOH蚀刻后的BS(b);BS-PA-Al(c);BS-PA-Al的和EDX能谱图(d);BS-PA-Ni(e);BS-PA-Ni的EDX能谱图(f);BS-PA-Zn(g);BS-PA-Zn的EDX能谱图(h)
Figure 2. SEM of modified basalt: unmodified basalt (a); NaOH etched basalt (b); Aluminum phytate modified basalt (c); Aluminum phytate modified basalt and element distribution (d); Nickel phytate modified basalt (e); Nickel phytate modified basalt and element distribution (f); Zinc phytate modified basalt (g); Zinc phytate modified basalt and element distribution (h);
表 1 水凝胶阻燃涂料配方
Table 1. Hydrogel flame retardant coating formula
Sample Hydrogel/wt% AHP/wt% Modified BS/wt% Control 100 0 0 BS-PA-Al 90 3 7 BS-PA-Ni 90 3 7 BS-PA-Zn 90 3 7 Note: Hydrogel—The amount of hydrogel in the composite coating; AHP—The amount of aluminum hypophosphite in the composite coating; Modified BS—The amount of modified basalt in the composite coating. 表 2 复合涂料的主要热重分析数据
Table 2. Main TGA data of composite coatings
Sample T10%/°C T50%/°C Residue/% Control 164.36 327.91 3.12 BS-PA-Al 129.07 339.87 22.4 BS-PA-Ni 123.64 382.43 27.3 BS-PA-Zn 116.88 351.55 20.8 Notes: T10%—Temperatureat5% mass loss; T50%—Temperature at5% mass loss; Residue—Residual carbon content. 表 3 水凝胶阻燃涂料锥形量热主要数据
Table 3. Hydrogel flame retardant CCT main data
Sample TTI/s pHRR/
(kW·m−2)THR/
(MJ·m−2)TSP/
m2Pure wood 12 572.90 44.17 1.99 Control 47 294.50 35.80 2.91 BS-PA-Al 22 210.51 33.51 0.89 BS-PA-Ni 27 205.38 29.74 0.97 BS-PA-Zn 21 240.68 35.44 1.37 BS-PA-Ni (dry) 17 397.90 39.14 3.16 Notes: TTI—The time to ignition of wood; pHRR—Peak heat release rate; THR—Total heat release; TSP—Total smoke release. 表 4 水凝胶阻燃涂料的垂直燃烧数据
Table 4. Vertical combustion data of hydrogel flame retardant coating
Sample T1/s T2/s UL-94 Dripping or not Pure wood / / NR Yes Control 2 21 V-1 No BS-PA-Al 0 0 V-0 No BS-PA-Ni 0 0 V-0 No BS-PA-Zn 3 13 V-1 No Notes: T1—The first fire of wood; T2—The second fire of wood; UL-94—UL-94 combustion rating of wood; Dripping or not—Whether the coating drips during wood burning. -
[1] YAN L, XU Z S, DENG N. Synthesis of organophosphate-functionalized graphene oxide for enhancing the flame retardancy and smoke suppression properties of transparent fire-retardant coatings[J]. Polymer Degradation and Stability, 2020, 172: 109064. doi: 10.1016/j.polymdegradstab.2019.109064 [2] BERGLUND L A, BURGERT I. Bioinspired Wood Nanotechnology for Functional Materials[J]. Advanced Materials, 2018, 30(19): 1704285. doi: 10.1002/adma.201704285 [3] WIMMERS G. Wood: a construction material for tall buildings[J]. Nature Reviews Materials, 2017, 2(12): 17051. doi: 10.1038/natrevmats.2017.51 [4] LI S, WANG X H, XU M J, et al. Effect of a biomass based waterborne fire retardant coating on the flame retardancy for wood[J]. Polymers for Advanced Technologies, 2021, 32(12): 4805-4814. doi: 10.1002/pat.5472 [5] XIE H L, LAI X J, LI H Q, et al. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities[J]. Chemical Engineering Journal, 2019, 369: 8-17. doi: 10.1016/j.cej.2019.03.045 [6] 韦嘉盛, 戴磊, 贺瓶. 基于纤维素及其衍生物的凝胶材料设计[J]. 复合材料学报, 2022, 39(7): 3084-3103.WEI J S, DAI L, HE P. Design of gel materials with cellulose and its derivatives[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3084-3103 (in Chinese). [7] CUI X F, ZHENG W J, ZOU W, et al. Water-retaining, tough and self-healing hydrogels and their uses as fire-resistant materials[J]. Polymer Chemistry, 2019, 10(37): 5151-5158. doi: 10.1039/C9PY01015G [8] CHEN X X, LIU J H, KURNIAWAN A, et al. Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic-organic nanostructures[J]. Soft Matter, 2021, 17(43): 9819-9841. doi: 10.1039/D1SM00975C [9] ZHANG L, HUANG Y B, SUN P, et al. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings[J]. Soft Matter, 2021, 17(20): 5231-5239. doi: 10.1039/D1SM00435B [10] ZHAO X J, LIANG Z W, HUANG Y B, et al. Influence of phytic acid on flame retardancy and adhesion performance enhancement of poly (vinyl alcohol) hydrogel coating to wood substrate[J]. Progress In Organic Coatings, 2021, 161: 106453. doi: 10.1016/j.porgcoat.2021.106453 [11] WANG Q Y, GUO J H, XU D F, et al. Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties[J]. Cellulose, 2015, 22(6): 3799-3810. doi: 10.1007/s10570-015-0758-0 [12] CHEN Q, CUI X F, ZHENG W J, et al. Hydrogels containing modified ammonium polyphosphate for fireproof materials[J]. Journal of Applied Polymer Science, 2021, 138(39): e51007. doi: 10.1002/app.51007 [13] ZHAO P P, GUO C G, LI L P. Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites[J]. Construction and Building Materials, 2018, 170: 193-199. doi: 10.1016/j.conbuildmat.2018.03.074 [14] YUAN B H, BAO C L, GUO Y Q, et al. Preparation and Characterization of Flame-Retardant Aluminum Hypophosphite/Poly(Vinyl Alcohol) Composite[J]. Industrial & Engineering Chemistry Research, 2012, 51(43): 14065-14075. [15] LIU X D, SUN J, ZHANG S, et al. Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane[J]. Polymer Degradation And Stability, 2019, 160: 168-176. doi: 10.1016/j.polymdegradstab.2018.12.019 [16] WEN P Y, WANG D, LIU J J, et al. Organically modified montmorillonite as a synergist for intumescent flame retardant against the flammable polypropylene[J]. Polymers for Advanced Technologies, 2017, 28(6): 679-685. doi: 10.1002/pat.3967 [17] LI Y, JIANG J C, CHEN Z Q, et al. Preparation and characterization of microencapsulated aluminum hypophosphite and its performance on the thermal, flame retardancy, and mechanical properties of epoxy resin[J]. Polymer Composites, 2021, 42(4): 1818-1834. doi: 10.1002/pc.25937 [18] ZHANG Z H, LI X J, MA Z Y, et al. A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid[J]. Dalton Transactions, 2020, 49(32): 11226-11237. doi: 10.1039/D0DT02019B [19] YANG W, JIA Z J, CHEN Y N, et al. Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: thermal degradation, flame retardancy and mechanical properties[J]. RSC Advances, 2015, 5(128): 105869-10579. doi: 10.1039/C5RA18606D [20] NOVITSKII A G, EFREMOV M V. Technological aspects of the suitability of rocks from different deposits for the production of continuous basalt fiber[J]. Glass and Ceramics, 2013, 69(11-12): 409-412. doi: 10.1007/s10717-013-9491-z [21] HE P, WANG J X, LU F Y, et al. Synergistic effect of polyaniline grafted basalt plates for enhanced corrosion protective performance of epoxy coatings[J]. Progress In Organic Coatings, 2017, 110: 1-9. doi: 10.1016/j.porgcoat.2017.05.001 [22] 张招崇, MAHONEY J J, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部熔融的证据[J]. 岩石学报, 2006, (6): 1538-1552. doi: 10.3321/j.issn:1000-0569.2006.06.012ZHANG Z C, MAHONEY J J, Wang F S, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China: evidence for a plume-head origin[J]. Acta Petrologica Sinica, 2006, (6): 1538-1552 (in Chinese). doi: 10.3321/j.issn:1000-0569.2006.06.012 [23] 国家标准化管理委员会. 塑料—燃烧性能的测定—水平法和垂直法: GB/T 2408-2008 [S]. 北京: 中国标准出版社, 2008.Standardization administration. Plastics - Determination of burning characteristics - Horizontal and vertical test: GB/T 2408-2008[S]. Bei Jing: Standards Press of China, 2008 (in Chinese). [24] ZHANG L, HUANG Y B, SUN P, et al. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings[J]. Soft Matter, 2021, 20(17): 5231-5239. [25] ZHENG H P, LIU L, MENG F D, et al. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. Journal of Materials Science & Technology, 2021, 84: 86-96. [26] SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016, 506: 60-70. doi: 10.1016/j.memsci.2016.01.053 [27] GAO X, ZHAO C C, LU H F, et al. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions[J]. Electrochim Acta, 2014, 150: 188-196. doi: 10.1016/j.electacta.2014.09.160 [28] ZIEGLER-BOROWSKA M, CHELMINIAK D, KACZMAREK H, et al. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite[J]. Journal of Thermal Analysis And Calorimetry, 2016, 124(3): 1267-1280. doi: 10.1007/s10973-016-5260-x [29] ZHANG Z H, MA Z Y, LENG Q, et al. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions[J]. International Journal of Biological Macromolecules, 2019, 140: 303-310. doi: 10.1016/j.ijbiomac.2019.08.049 [30] 罗吉. 植酸金属盐的制备及其协效IFR阻燃PLA的研究[D]. 上海: 华东理工大学, 2021.LUO J. Preparation of Phytic Acid Metal Salt and Synergistic Effect with IFR for the Flame Retartant Performance Control of PLA[D]. Shang Hai: East China University of Science and Technology, 2021(in Chinese).
计量
- 文章访问数: 101
- HTML全文浏览量: 61
- 被引次数: 0