留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性玄武岩/水凝胶复合涂层对木材阻燃性能的影响

王驰 刘静 张梦颖 袁光明 葛海林

王驰, 刘静, 张梦颖, 等. 改性玄武岩/水凝胶复合涂层对木材阻燃性能的影响[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 王驰, 刘静, 张梦颖, 等. 改性玄武岩/水凝胶复合涂层对木材阻燃性能的影响[J]. 复合材料学报, 2024, 42(0): 1-10.
WANG Chi, LIU Jing, ZHANG Mengying, et al. Modified basalt/hydrogel composite coating study on the influence of flame retardancy of wood[J]. Acta Materiae Compositae Sinica.
Citation: WANG Chi, LIU Jing, ZHANG Mengying, et al. Modified basalt/hydrogel composite coating study on the influence of flame retardancy of wood[J]. Acta Materiae Compositae Sinica.

改性玄武岩/水凝胶复合涂层对木材阻燃性能的影响

基金项目: 国家自然科学基金(32171708、31770606);国家重点研发计划项目(2019YFE0114600)
详细信息
    通讯作者:

    袁光明,博士,教授,博士生导师,研究方向为生物质复合材料、木材功能性改良, E-mail:ygm@csuft.edu.cn

  • 中图分类号: S785; TQ127.1+1; TB332

Modified basalt/hydrogel composite coating study on the influence of flame retardancy of wood

Funds: National Natural Science Foundation of China (No.32171708; No.31770606); National Key Research and Development Program of China (No.2019TFE0114600)
  • 摘要: 以加入了次磷酸铝(AHP)的聚乙烯醇(PVA)/壳聚糖(CS)作为水凝胶基质,经NaOH预处理、KH550接枝改性和植酸金属化合物共沉淀后的玄武岩(BS)作为阻燃填料,制备了BS-PA-Al、BS-PA-Ni和BS-PA-Zn水凝胶阻燃涂层材料。将三种涂层涂覆到木材表面后,分别对其进行了热重测试、锥形量热测试和垂直燃烧实验,分析改性玄武岩/水凝胶复合涂层对木材阻燃和力学性能的影响。结果表明:由于可燃气体的稀释和炭层致密性的增加,BS-PA-Al、BS-PA-Ni和BS-PA-Zn阻燃涂层对木材的阻燃性能有显著地提升;其中,BS-PA-Ni的阻燃性能和机械性能达到最佳,其UL-94测试达V-0级;且相较于空白组木材,残炭率增加至27.3%,其pHRR、THR和TSP分别降低64.2%、32.7%和51.3%;此外,当涂层厚度为300 μm时,其BS-PA-Ni的力学性能(抗拉强度)增加至80.4%,水凝胶在木材上的附着强度达到3.4 MPa。

     

  • 图  1  改性玄武岩的制备工艺

    Figure  1.  Preparation process of modified basalt

    图  2  样品的SEM图:BS(a);NaOH蚀刻后的BS(b);BS-PA-Al(c);BS-PA-Al的和EDX能谱图(d);BS-PA-Ni(e);BS-PA-Ni的EDX能谱图(f);BS-PA-Zn(g);BS-PA-Zn的EDX能谱图(h)

    Figure  2.  SEM of modified basalt: unmodified basalt (a); NaOH etched basalt (b); Aluminum phytate modified basalt (c); Aluminum phytate modified basalt and element distribution (d); Nickel phytate modified basalt (e); Nickel phytate modified basalt and element distribution (f); Zinc phytate modified basalt (g); Zinc phytate modified basalt and element distribution (h);

    图  3  改性玄武岩傅里叶红外光谱图

    Figure  3.  FTIR diagram of modified basalt

    图  4  水凝胶阻燃涂料热重曲线:热重曲线(a)和热重微分曲线(b)

    Figure  4.  Thermogravimetric curves of hydrogel flame retardant coating: TG (a) and DTG (b)

    图  5  水凝胶阻燃涂料的热释放速率(a)、热释放总量(b)、产烟速率(c)以及产烟总量(d)

    Figure  5.  HRR(a), THR(b), SPR(c) and TSP(d) of hydrogel flame retardant coating

    图  6  水凝胶阻燃涂料的力学性能:未涂覆和涂覆木材的抗拉强度(a)和涂层附着力测试图(b)

    Figure  6.  Mechanical properties of hydrogel flame retardant coating: Tensile strength (a) and coating adhesion test diagram (b) of uncoated and coated wood

    图  7  水凝胶阻燃涂料的阻燃机制

    Figure  7.  Hydrogel flame retardant coating flame retardant mechanism diagram

    表  1  水凝胶阻燃涂料配方

    Table  1.   Hydrogel flame retardant coating formula

    Sample Hydrogel/wt% AHP/wt% Modified BS/wt%
    Control 100 0 0
    BS-PA-Al 90 3 7
    BS-PA-Ni 90 3 7
    BS-PA-Zn 90 3 7
    Note: Hydrogel—The amount of hydrogel in the composite coating; AHP—The amount of aluminum hypophosphite in the composite coating; Modified BS—The amount of modified basalt in the composite coating.
    下载: 导出CSV

    表  2  复合涂料的主要热重分析数据

    Table  2.   Main TGA data of composite coatings

    Sample T10%/°C T50%/°C Residue/%
    Control 164.36 327.91 3.12
    BS-PA-Al 129.07 339.87 22.4
    BS-PA-Ni 123.64 382.43 27.3
    BS-PA-Zn 116.88 351.55 20.8
    Notes: T10%Temperatureat5% mass loss; T50%—Temperature at5% mass loss; Residue—Residual carbon content.
    下载: 导出CSV

    表  3  水凝胶阻燃涂料锥形量热主要数据

    Table  3.   Hydrogel flame retardant CCT main data

    Sample TTI/s pHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    TSP/
    m2
    Pure wood 12 572.90 44.17 1.99
    Control 47 294.50 35.80 2.91
    BS-PA-Al 22 210.51 33.51 0.89
    BS-PA-Ni 27 205.38 29.74 0.97
    BS-PA-Zn 21 240.68 35.44 1.37
    BS-PA-Ni (dry) 17 397.90 39.14 3.16
    Notes: TTIThe time to ignition of wood; pHRR—Peak heat release rate; THR—Total heat release; TSP—Total smoke release.
    下载: 导出CSV

    表  4  水凝胶阻燃涂料的垂直燃烧数据

    Table  4.   Vertical combustion data of hydrogel flame retardant coating

    SampleT1/sT2/sUL-94Dripping or not
    Pure wood//NRYes
    Control221V-1No
    BS-PA-Al00V-0No
    BS-PA-Ni00V-0No
    BS-PA-Zn313V-1No
    Notes: T1—The first fire of wood; T2—The second fire of wood; UL-94—UL-94 combustion rating of wood; Dripping or not—Whether the coating drips during wood burning.
    下载: 导出CSV
  • [1] YAN L, XU Z S, DENG N. Synthesis of organophosphate-functionalized graphene oxide for enhancing the flame retardancy and smoke suppression properties of transparent fire-retardant coatings[J]. Polymer Degradation and Stability, 2020, 172: 109064. doi: 10.1016/j.polymdegradstab.2019.109064
    [2] BERGLUND L A, BURGERT I. Bioinspired Wood Nanotechnology for Functional Materials[J]. Advanced Materials, 2018, 30(19): 1704285. doi: 10.1002/adma.201704285
    [3] WIMMERS G. Wood: a construction material for tall buildings[J]. Nature Reviews Materials, 2017, 2(12): 17051. doi: 10.1038/natrevmats.2017.51
    [4] LI S, WANG X H, XU M J, et al. Effect of a biomass based waterborne fire retardant coating on the flame retardancy for wood[J]. Polymers for Advanced Technologies, 2021, 32(12): 4805-4814. doi: 10.1002/pat.5472
    [5] XIE H L, LAI X J, LI H Q, et al. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities[J]. Chemical Engineering Journal, 2019, 369: 8-17. doi: 10.1016/j.cej.2019.03.045
    [6] 韦嘉盛, 戴磊, 贺瓶. 基于纤维素及其衍生物的凝胶材料设计[J]. 复合材料学报, 2022, 39(7): 3084-3103.

    WEI J S, DAI L, HE P. Design of gel materials with cellulose and its derivatives[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3084-3103 (in Chinese).
    [7] CUI X F, ZHENG W J, ZOU W, et al. Water-retaining, tough and self-healing hydrogels and their uses as fire-resistant materials[J]. Polymer Chemistry, 2019, 10(37): 5151-5158. doi: 10.1039/C9PY01015G
    [8] CHEN X X, LIU J H, KURNIAWAN A, et al. Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic-organic nanostructures[J]. Soft Matter, 2021, 17(43): 9819-9841. doi: 10.1039/D1SM00975C
    [9] ZHANG L, HUANG Y B, SUN P, et al. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings[J]. Soft Matter, 2021, 17(20): 5231-5239. doi: 10.1039/D1SM00435B
    [10] ZHAO X J, LIANG Z W, HUANG Y B, et al. Influence of phytic acid on flame retardancy and adhesion performance enhancement of poly (vinyl alcohol) hydrogel coating to wood substrate[J]. Progress In Organic Coatings, 2021, 161: 106453. doi: 10.1016/j.porgcoat.2021.106453
    [11] WANG Q Y, GUO J H, XU D F, et al. Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties[J]. Cellulose, 2015, 22(6): 3799-3810. doi: 10.1007/s10570-015-0758-0
    [12] CHEN Q, CUI X F, ZHENG W J, et al. Hydrogels containing modified ammonium polyphosphate for fireproof materials[J]. Journal of Applied Polymer Science, 2021, 138(39): e51007. doi: 10.1002/app.51007
    [13] ZHAO P P, GUO C G, LI L P. Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites[J]. Construction and Building Materials, 2018, 170: 193-199. doi: 10.1016/j.conbuildmat.2018.03.074
    [14] YUAN B H, BAO C L, GUO Y Q, et al. Preparation and Characterization of Flame-Retardant Aluminum Hypophosphite/Poly(Vinyl Alcohol) Composite[J]. Industrial & Engineering Chemistry Research, 2012, 51(43): 14065-14075.
    [15] LIU X D, SUN J, ZHANG S, et al. Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane[J]. Polymer Degradation And Stability, 2019, 160: 168-176. doi: 10.1016/j.polymdegradstab.2018.12.019
    [16] WEN P Y, WANG D, LIU J J, et al. Organically modified montmorillonite as a synergist for intumescent flame retardant against the flammable polypropylene[J]. Polymers for Advanced Technologies, 2017, 28(6): 679-685. doi: 10.1002/pat.3967
    [17] LI Y, JIANG J C, CHEN Z Q, et al. Preparation and characterization of microencapsulated aluminum hypophosphite and its performance on the thermal, flame retardancy, and mechanical properties of epoxy resin[J]. Polymer Composites, 2021, 42(4): 1818-1834. doi: 10.1002/pc.25937
    [18] ZHANG Z H, LI X J, MA Z Y, et al. A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid[J]. Dalton Transactions, 2020, 49(32): 11226-11237. doi: 10.1039/D0DT02019B
    [19] YANG W, JIA Z J, CHEN Y N, et al. Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: thermal degradation, flame retardancy and mechanical properties[J]. RSC Advances, 2015, 5(128): 105869-10579. doi: 10.1039/C5RA18606D
    [20] NOVITSKII A G, EFREMOV M V. Technological aspects of the suitability of rocks from different deposits for the production of continuous basalt fiber[J]. Glass and Ceramics, 2013, 69(11-12): 409-412. doi: 10.1007/s10717-013-9491-z
    [21] HE P, WANG J X, LU F Y, et al. Synergistic effect of polyaniline grafted basalt plates for enhanced corrosion protective performance of epoxy coatings[J]. Progress In Organic Coatings, 2017, 110: 1-9. doi: 10.1016/j.porgcoat.2017.05.001
    [22] 张招崇, MAHONEY J J, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部熔融的证据[J]. 岩石学报, 2006, (6): 1538-1552. doi: 10.3321/j.issn:1000-0569.2006.06.012

    ZHANG Z C, MAHONEY J J, Wang F S, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China: evidence for a plume-head origin[J]. Acta Petrologica Sinica, 2006, (6): 1538-1552 (in Chinese). doi: 10.3321/j.issn:1000-0569.2006.06.012
    [23] 国家标准化管理委员会. 塑料—燃烧性能的测定—水平法和垂直法: GB/T 2408-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization administration. Plastics - Determination of burning characteristics - Horizontal and vertical test: GB/T 2408-2008[S]. Bei Jing: Standards Press of China, 2008 (in Chinese).
    [24] ZHANG L, HUANG Y B, SUN P, et al. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings[J]. Soft Matter, 2021, 20(17): 5231-5239.
    [25] ZHENG H P, LIU L, MENG F D, et al. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. Journal of Materials Science & Technology, 2021, 84: 86-96.
    [26] SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016, 506: 60-70. doi: 10.1016/j.memsci.2016.01.053
    [27] GAO X, ZHAO C C, LU H F, et al. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions[J]. Electrochim Acta, 2014, 150: 188-196. doi: 10.1016/j.electacta.2014.09.160
    [28] ZIEGLER-BOROWSKA M, CHELMINIAK D, KACZMAREK H, et al. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite[J]. Journal of Thermal Analysis And Calorimetry, 2016, 124(3): 1267-1280. doi: 10.1007/s10973-016-5260-x
    [29] ZHANG Z H, MA Z Y, LENG Q, et al. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions[J]. International Journal of Biological Macromolecules, 2019, 140: 303-310. doi: 10.1016/j.ijbiomac.2019.08.049
    [30] 罗吉. 植酸金属盐的制备及其协效IFR阻燃PLA的研究[D]. 上海: 华东理工大学, 2021.

    LUO J. Preparation of Phytic Acid Metal Salt and Synergistic Effect with IFR for the Flame Retartant Performance Control of PLA[D]. Shang Hai: East China University of Science and Technology, 2021(in Chinese).
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-06-15
  • 录用日期:  2024-06-21
  • 网络出版日期:  2024-07-03

目录

    /

    返回文章
    返回