Preparation and property modulation of stretchable conductive composites for extrusion 3D printing
-
摘要: 多层柔性和可拉伸电子因其在生物医疗、可穿戴设备、电子皮肤等领域具有较大的应用前景。然而,适用于多层电子的拉伸导电材料存在导电性差、拉伸性低以及层间互联导线制造难等问题,限制了多层柔性和可拉伸电子的进一步发展和应用。本文通过在纳米银颗粒(AgNP)、多壁碳纳米管(MWCNT)和聚二甲基硅氧烷(PDMS)复合导电材料内灵活的添加二甘醇(DEG)助剂,制备了一种适用于层间互联导线直接挤出3D打印的高导电可拉伸复合材料。受益于二甘醇的高沸点,固化过程中导电复合材料中的AgNP能够有效聚集并析出表面,从而提高导电性。溶剂良好的润湿性能平衡材料结构塌陷和3D打印机喷嘴堵塞的问题,有利于层间互联导线的3D打印。同时,大长径比的MWCNT在拉伸过程中能够稳定AgNP之间的电连接。最终制备的导电材料具备优异的导电性能(104 S·cm−1)和拉伸性能(在40%应变下循环拉伸
1000 次以上),并能基于材料挤出3D打印技术实现可拉伸层内互联导线、自支撑3D垂直互联导线以及2.5D弧形导线的打印。本文制造的拉伸复合浆料在柔性电加热以及柔性显示灯阵实现了良好的应用,充分验证了可拉伸导电复合材料在柔性和可拉伸电子领域的应用前景,为3D打印多层柔性和可拉伸电子的发展铺平了道路。Abstract: Multi-layer flexible and stretchable electronics have great potential in fields such as biomedicine, wearable devices, and electronic skin. However, the development and application of multi-layer flexible and stretchable electronics are hindered by issues such as poor conductivity, low stretchability, and difficulties in manufacturing interlayer interconnects. In this paper, a highly conductive stretchable composite material suitable for direct extrusion 3D printing of interlayer interconnecting wires was prepared by flexibly adding diethylene glycol (DEG) additives within the composite conductive materials of silver nanoparticles (AgNP), multi-walled carbon nanotubes (MWCNT) and polydimethylsiloxane (PDMS). Benefiting from the high melting point of diethylene glycol, the AgNP in the conductive composites can effectively aggregate and precipitate out of the surface during the curing process, thus improving the electrical conductivity. The good solvent wettability balances the issues of material structure collapse and 3D printer nozzle clogging, facilitating the 3D printing of interlayer interconnects. Meanwhile, the large aspect ratio of MWCNT can stabilize the electrical connection between AgNP during the stretching process. The resulting conductive material exhibits excellent conductivity (104 S·cm−1) and stretchability (cycling over1000 times at 40% strain), which can achieve the printing of stretchable intralayer interconnects, self-supporting 3D vertical interconnects, and 2.5D curved interconnects based on material extrusion 3D printing technology. The stretchable composite paste developed in this study demonstrates good performance in flexible electrothermal heating and flexible display arrays, confirming the promising application prospects of stretchable conductive composite materials in the field of flexible and stretchable electronics, paving the way for the development of 3D printed multi-layer flexible and stretchable electronics. -
图 1 可拉伸导电复合材料的材料:(a)内部形态示意图;(b)渗流形态示意图;(c-d)微观形貌电镜图;(e-f)多壁碳纳米管(MWCNT)分布电镜图;(g)元素分析
Figure 1. Materials of stretchable conductive composites: (a) Schematic internal morphology;; (b) Schematic percolation morphology; (c-d) Electron microscopy of the micromorphology; (e-f) Electron microscopy of the distribution of of multi-walled carbon nanotubes (MWCNTs); (g) Elemental analyses
图 2 (a)可拉伸导电复合材料固化前后表面的微观形貌变化图;(b)可拉伸导电复合材料添加二甘醇(DEG)前后表面的组分质量分数比例
Figure 2. (a) Micro-morphological changes of the surface of stretchable conductive composites before and after curing; (b) Component mass fraction ratio of the surface of stretchable conductive composites before and after addition of diethylene glycol (DEG)
图 23 打印的多种不同尺寸、不同图案的导电薄膜:(a)花朵;(b)分形;(a)凤凰;(a)雪花;(e-f)不同图案的导电薄膜形貌特征和拉伸效果
Figure 23. A variety of printed conductive films with different sizes and patterns: (a) flower; (b) fractal; (a) phoenix; (a) snowflake; (e-f) morphological characteristics and tensile effects of conductive films with different patterns
图 24 (a)透明电加热效果图;(b)2.5 D结构柔性显示灯阵的效果图及性能展示:(c)2.5 D结构柔性显示灯阵的拉伸变形测试;(d)2.5 D结构柔性显示灯阵的弯曲变形测试
Figure 24. (a) Transparent electric heating effect diagram; (b) Effect diagram and performance demonstration of 2.5 D structure flexible display light array: (c) Tensile deformation test of 2.5 D structure flexible display light array; (d) Bending deformation test of 2.5 D structure flexible display light array
表 1 导电复合材料各组分配比
Table 1. Distribution ratios for each group of conductive composites
Materials Mass fraction/wt% AgNP 71.3 MWCNT 0.18 PDMS 17.82 THF 7.1 DEG 3.6 Notes:AgNP is silver nanoparticles, MWCNT is multi-walled carbon nanotubes, PDMS is polydimethylsiloxane, THF is tetrahydrofuran solvent, DEG is diethylene glycol solvent 表 2 不同AgNP含量的可拉伸导电复合材料黏附力
Table 2. Adhesion of stretchable conductive composites with different AgNP contents
AgNP content 2.5 g 3 g 4 g 5 g 6 g Adhesion 5 B 5 B 5 B 2 B 0 B 表 3 不同MWCNT含量导电复合材料的黏附力
Table 3. Adhesion of conductive composites with different MWCNT contents
MWCNT content 0 mg 10 mg 20 mg Adhesion 5 B 5 B 5 B -
[1] SIM K, ERSHAD F, ZHANG Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity[J]. Nature Electronics, 2020, 3(12): 775-784. doi: 10.1038/s41928-020-00493-6 [2] CHOI Y S, HSUEH Y Y, KOO J, et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration[J]. Nature communications, 2020, 11(1): 5990. doi: 10.1038/s41467-020-19660-6 [3] LIU J, ZHANG X, LIU Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution[J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14769-14778. doi: 10.1073/pnas.2000207117 [4] TIAN L, ZIMMERMAN B, AKHTAR A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring[J]. Nature biomedical engineering, 2019, 3(3): 194-205. doi: 10.1038/s41551-019-0347-x [5] ALEKSANDROVA M P, ANDREEV S K. Design Methodology and Technological Flow of Screen-Printed Thick-Film Sensors[J]. IEEE Sensors Journal, 2021, 22(11): 10126-10136. [6] YÜCE C, OKAMOTO K, KARPOWICH L, et al. Non-volatile free silver paste formulation for front-side metallization of silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110040. doi: 10.1016/j.solmat.2019.110040 [7] SHAHARIAR H, KIM I, BHAKTA R, et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters[J]. Smart Materials and Structures, 2020, 29(8): 085018. doi: 10.1088/1361-665X/ab8c25 [8] LIAO Y, ZHANG R, WANG H, et al. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics[J]. RSC advances, 2019, 9(27): 15184-15189. doi: 10.1039/C9RA01721F [9] QI X, HA H, HWANG B, et al. Printability of the screen-printed strain sensor with carbon black/silver paste for sensitive wearable electronics[J]. Applied Sciences, 2020, 10(19): 6983. doi: 10.3390/app10196983 [10] LEE W, KIM H, KANG I, et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board[J]. Science, 2022, 378(6620): 637-641. doi: 10.1126/science.abo6631 [11] WANG M, MA C, UZABAKIRIHO P C, et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics[J]. Acs Nano, 2021, 15(12): 19364-19376. doi: 10.1021/acsnano.1c05762 [12] CHEN S, FAN S, QI J, et al. Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor[J]. Advanced Materials, 2023, 35(5): 2208569. doi: 10.1002/adma.202208569 [13] BISWAS S, SCHOEBERL A, HAO Y, et al. Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix[J]. Nature communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8 [14] ZHAO D, ZHAO J, LIU L, et al. Flexible hybrid integration enabled on-skin electronics for wireless monitoring of electrophysiology and motion[J]. IEEE Trans Biomed Eng, 2022, 69(4): 1340-1348. doi: 10.1109/TBME.2021.3115464 [15] SAKORIKAR T, MIHALIAK N, KRISNADI F, et al. A Guide to Printed Stretchable Conductors[J]. Chemical Reviews, 2024, 124(3): 860-888. doi: 10.1021/acs.chemrev.3c00569 [16] KIM D C, SHIM H J, LEE W, et al. Material-based approaches for the fabrication of stretchable electronics[J]. Advanced Materials, 2020, 32(15): 1902743. doi: 10.1002/adma.201902743 [17] HU J, YU J, LI Y, et al. Nano carbon black-based high performance wearable pressure sensors[J]. Nanomaterials, 2020, 10(4): 664. doi: 10.3390/nano10040664 [18] PARK Y G, AN H S, KIM J Y, et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures[J]. Science advances, 2019, 5(6): eaaw2844. doi: 10.1126/sciadv.aaw2844 [19] PARK Y G, MIN H, KIM H, et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement[J]. Nano letters, 2019, 19(8): 4866-4872. doi: 10.1021/acs.nanolett.9b00150 [20] WANG Y, ZHU C, PFATTNER R, et al. A highly stretchable, transparent, and conductive polymer[J]. Science advances, 2017, 3(3): e1602076. doi: 10.1126/sciadv.1602076 [21] DONG L, ZHOU X, ZHENG S, et al. Liquid metal@ mxene spring supports ionic gel with excellent mechanical properties for high-sensitivity wearable strain sensor[J]. Chemical Engineering Journal, 2023, 458: 141370. doi: 10.1016/j.cej.2023.141370 [22] KIM D W, KONG M, JEONG U. Interface Design for Stretchable Electronic Devices[J]. Advanced Science, 2021, 8(8): 2004170. doi: 10.1002/advs.202004170 [23] DAUZON E, SALLENAVE X, PLESSE C, et al. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review[J]. Advanced Materials, 2021, 33(36): 2101469. doi: 10.1002/adma.202101469 [24] KO Y, OH J, PARK K T, et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics[J]. ACS applied materials & interfaces, 2019, 11(40): 37043-37050. [25] DURAIRAJ R, LEONG K C. Effect of Silver Flakes and Particle Shape on the Steady Shear Viscosity of Isotropic Conductive Adhesives[J]. Journal of Testing and Evaluation, 2015, 43(6): 1288-1295. doi: 10.1520/JTE20130084 [26] ZHANG B, SEONG B, LEE J, et al. One-step sub-micrometer-scale electrohydrodynamic inkjet three-dimensional printing technique with spontaneous nanoscale joule heating[J]. ACS applied materials & interfaces, 2017, 9(35): 29965-29972. [27] 用胶带测定涂膜附着力的标准方法[J]. 食品与发酵工业, 1979, (01): 78-81.Standardized method for determining the adhesion of coating films by means of adhesive tape[J]. Food and Fermentation Industry, 1979, (01): 78-81(in Chinese). [28] CHHABRA R P. Non-Newtonian fluids: an introduction[J]. Rheology of complex fluids, 2010: 3-34. [29] 刘晓妹, 黄关葆, 马昊, 等. 几种用于3D打印的高分子材料的性能对比[J]. 塑料, 2020, 49(01): 129-133.LIU Xiaomei, HUANG Guanbao, MA Hao, et al. Performance comparison of several polymer materials for 3D printing[J]. Plastics, 2020, 49(01): 129-133(in Chinese). LIU Xiaomei, HUANG Guanbao, MA Hao, et al. Performance comparison of several polymer materials for 3D printing[J]. Plastics, 2020, 49(01): 129-133. (in Chinese) [30] ZHANG P, JIANG X, YUAN P, et al. Silver nanopaste: Synthesis, reinforcements and application[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1048-1069. doi: 10.1016/j.ijheatmasstransfer.2018.06.083 [31] XU D E, KIM J B, HOOK M D, et al. Real time resistance monitoring during sintering of silver paste[J]. Journal of Alloys and Compounds, 2018, 731: 504-514. doi: 10.1016/j.jallcom.2017.10.077
计量
- 文章访问数: 74
- HTML全文浏览量: 40
- 被引次数: 0