Preparation and property modulation of stretchable conductive composites for extrusion 3D printing
-
摘要:
多层柔性和可拉伸电子因其在生物医疗、可穿戴设备、电子皮肤等领域具有较大的应用前景。然而,适用于多层电子的拉伸导电材料存在导电性差、拉伸性低以及层间互联导线制造难等问题,限制了多层柔性和可拉伸电子的进一步发展和应用。本文通过在纳米银颗粒(AgNP)、多壁碳纳米管(MWCNT)和聚二甲基硅氧烷(PDMS)复合导电材料内灵活的添加二甘醇(DEG)助剂,制备了一种适用于层间互联导线直接挤出3D打印的高导电可拉伸复合材料。受益于DEG的高沸点,固化过程中导电复合材料中的AgNP能够有效聚集并析出表面,从而提高导电性。溶剂良好的润湿性能平衡材料结构塌陷和3D打印机喷嘴堵塞的问题,有利于层间互联导线的3D打印。同时,大长径比的MWCNT在拉伸过程中能够稳定AgNP之间的电连接。最终制备的导电材料具备优异的导电性能(104 S·cm−1)和拉伸性能(在40%应变下循环拉伸
1000 次以上),并能基于材料挤出3D打印技术实现可拉伸层内互联导线、自支撑3D垂直互联导线以及2.5D弧形导线的打印。本文制造的拉伸复合浆料在柔性电加热以及柔性显示灯阵实现了良好的应用,充分验证了可拉伸导电复合材料在柔性和可拉伸电子领域的应用前景,为3D打印多层柔性和可拉伸电子的发展铺平了道路。Abstract:Multi-layer flexible and stretchable electronics have great potential in fields such as biomedicine, wearable devices, and electronic skin. However, the development and application of multi-layer flexible and stretchable electronics are hindered by issues such as poor conductivity, low stretchability, and difficulties in manufacturing interlayer interconnects. In this paper, a highly conductive stretchable composite material suitable for direct extrusion 3D printing of interlayer interconnecting wires was prepared by flexibly adding diethylene glycol (DEG) additives within the composite conductive materials of silver nanoparticles (AgNP), multi-walled carbon nanotubes (MWCNT) and polydimethylsiloxane (PDMS). Benefiting from the high melting point of DEG, the AgNP in the conductive composites can effectively aggregate and precipitate out of the surface during the curing process, thus improving the electrical conductivity. The good solvent wettability balances the issues of material structure collapse and 3D printer nozzle clogging, facilitating the 3D printing of interlayer interconnects. Meanwhile, the large aspect ratio of MWCNT can stabilize the electrical connection between AgNP during the stretching process. The resulting conductive material exhibits excellent conductivity (104 S·cm−1) and stretchability (Cycling over
1000 times at 40% strain), which can achieve the printing of stretchable intralayer interconnects, self-supporting 3D vertical interconnects, and 2.5D curved interconnects based on material extrusion 3D printing technology. The stretchable composite paste developed in this study demonstrates good performance in flexible electrothermal heating and flexible display arrays, confirming the promising application prospects of stretchable conductive composite materials in the field of flexible and stretchable electronics, paving the way for the development of 3D printed multi-layer flexible and stretchable electronics. -
膜分离技术具有高能效、易操作、环境友好和占地面积小等优点,近年来在气体分离领域受到广泛关注[1-4]。传统气体分离膜多以聚合物膜为主,然而由于聚合物分离膜固有的选择性和渗透性的制约关系(Trade-off效应),使其性能很难再提升[5-6]。研究者发现将多孔材料与聚合物基体共混制成混合基质膜,通过结合两种材料的优点,能够同时提升膜的气体渗透性和选择性,从而突破聚合物膜的Trade-off效应[7-8]。因此,制备混合基质膜是改善膜气体分离性能的一种有效方法。
对于混合基质膜,填料和聚合物基体材料的选择尤为重要。聚酰亚胺由于其优异的热稳定性、良好的力学性能以及可加工性,已经在气体分离膜领域发展多年,是混合基质膜聚合物基体候选材料之一[9-11]。对于填料材料的选择,共价有机框架材料(COFs)是一种由有机单元通过共价键构成的多孔材料,由于其具有优异的稳定性,易功能化、永久空隙率以及高比表面积等优点,在气体分离领域展现出不俗的潜力[12]。由于COFs全有机的性质,使其能够均匀地分散在聚合物基质中,减少了混合基质膜中由于界面缺陷产生的非选择性孔[13-14]。然而,大部分COFs的孔径很难做到2 nm以下,相对于气体分子动力学直径(N2:0.36 nm;O2:0.35 nm;CO2:0.33 nm)还是较大,难以实现对气体的高效分离,从而降低了气体选择性[15-16]。因此,需要对COFs的孔径大小调控或引入一些功能性吸附位点进行改善。研究表明,引入氟原子能够有效改善COFs的孔径大小且能够提供与气体相互作用的吸附位点。Alahakoon等[17]通过使用含氟单体制备出两种氟化COFs,将氟化COFs与未氟化的相比,发现氟化COFs具有更大的比表面积、更小且更明确的孔径。Gao等[18]报道了3种具有—H、—Me和—F取代基的同构三维共价有机骨架,对比不含氟的COFs,氟化COFs具有更高的CO2亲和力,对CO2/N2有着更高的IAST选择性。Yang等[19]制备了一种氟化CTF,通过氟原子的强静电作用以及C—F键与CO2的偶极-四极作用,使其具有优异的CO2吸附能力。
基于上述讨论,本文合成出一种具有较小孔径、高比表面积的氟化共价有机框架材料(TpPa-CF3)。随后,以TpPa-CF3为填料,聚酰亚胺(6FDA-ODA)为基体,制备出不同负载量的TpPa-CF3/6FDA-ODA混合基质膜。表征了其结构和表面、截面的微观形貌,探究了其热性能、力学性能以及疏水性能,最后讨论了混合基质膜的气体渗透性以及在烟道气分离(CO2/N2)和空气分离(O2/N2)上的应用前景。
1. 实验材料及方法
1.1 原材料
4,4-二氨基二苯醚(ODA,98%)、4,4-(六氟异丙烯)二酞酸酐(6FDA,98%+)、2,4,6-三甲酰间苯三酚(Tp,98%)、2-三氟甲基-1,4-苯二胺(Pa-CF3,97%)、1,3,5-三甲基苯(99%+)、1,4-二氧六环(99%)均购自上海阿达玛斯试剂有限公司;乙酸(AR)、N,N-二甲基甲酰胺(DMF,AR)均购自西陇科学股份有限公司;间甲酚(m-Cresol,99%)、异喹啉(97%)均购自上海阿拉丁试剂有限公司;丙酮(Acetone,AR),成都市科隆化学品有限公司;工业酒精(95%),弘昊实验设备有限公司。
1.2 TpPa-CF3的合成
将Tp (63.0 mg,0.30 mmol)、Pa-CF3 (79.0 mg,0.45 mmol)、1,3,5-三甲基苯(1.5 mL)、1,4-二氧六环(1.5 mL)依次加入到Pyrex管(25 mL)中。为使混合物均匀分散,超声处理0.5 h,再加入3 mol/L乙酸溶液(0.5 mL)。随后,用液氮将Pyrex管骤冻抽出空气,再在室温下解冻,此操作循环3次。密闭封管,将Pyrex管在120℃下油浴3天。反应完毕后冷却至室温,过滤收集产物,先用DMF溶液搅拌洗涤3次,再通过索氏提取法进行提纯(提纯溶剂采用丙酮)。随后,收集产物,在真空烘箱中120℃下干燥12 h后,得到橘红色粉末样品TpPa-CF3。
1.3 聚酰亚胺(6FDA-ODA)的合成
在N2氛围下,向装有机械搅拌、冷凝回流的150 mL三口烧瓶内依次加入ODA (2.00 g,9.99 mmol)、间甲酚(28 mL),待ODA完全溶解后再依次加入6FDA (4.44 g,9.99 mmol)、间甲酚(28 mL),随后将温度升到50℃待反应物完全溶解后,滴加5~6滴异喹啉后升温至80℃反应3 h,120℃反应3 h,180℃反应3 h,最后200℃反应12 h。反应结束冷却至室温后,将聚酰亚胺溶液缓慢倒入大量工业酒精中拉丝沉淀,过滤收集产物,在真空烘箱中150℃干燥8 h。随后,使用适量DMF重新溶解并进行二次沉淀以除去聚酰亚胺中残留杂质。
1.4 TpPa-CF3/6FDA-ODA混合基质膜的制备
取一定量的TpPa-CF3粉末分散在DMF (3 mL)中,使用细胞粉碎机,在300 W功率下超声0.5 h后再搅拌6 h,保证TpPa-CF3粉末在DMF溶液中分散均匀。同时,称取0.2 g 6FDA-ODA溶解在DMF (2 mL)中,用针式滤头(0.45 μm,尼龙)过滤除去杂质。随后,将TpPa-CF3的分散液滴加到6FDA-ODA溶液中搅拌12 h,确保TpPa-CF3和6FDA-ODA充分混合。最后,将混合溶液缓慢流延到光滑平整的玻璃板(5 cm×5 cm)上,在80℃下蒸发12 h除去溶剂,待冷却至室温后在温水中脱膜,最后在150℃的真空烘箱中干燥12 h以除去残留的溶剂分子。按以上步骤分别制备含量为0wt%、1wt%、3wt%、5wt%、7wt%的TpPa-CF3/6FDA-ODA混合基质膜。
1.5 表征测试
X射线衍射(XRD):采用荷兰帕纳科公司的X'Pert Pro型X射线衍射仪对制备的TpPa-CF3粉末与薄膜进行晶型及结构表征,扫描范围在3°~40°,扫描速度为2°/min。
傅里叶变换红外光谱(FTIR):采用美国尼高力公司的Nicolette 6700-NXR型傅里叶变换红外光谱仪分析TpPa-CF3和薄膜的化学键组成及官能团。对于粉末样品通过溴化钾压片的方式测试,对于薄膜样品通过制成厚度约为20 μm的薄膜直接测试。扫描范围为400~
4000 cm−1,扫描次数64次以上。固态核磁共振(ssNMR):通过德国布鲁克公司的Avance Neo 400 WB型固体核磁共振波谱仪测试TpPa-CF3的13C NMR,分析其化学键连接方式。所需样品压实后的体积应多于0.5 cm3。
X射线光电子能谱(XPS):采用美国热电公司的Escalab 250 Xi型X射线光电子能谱仪分析TpPa-CF3的化学元素及化学态。采用粉末压片的方式制样。
扫描电子显微镜(SEM):通过日本日立公司的SU 4800型扫描电子显微镜表征TpPa-CF3和薄膜表面、截面的微观形貌。对于粉末样品,用牙签将少量样品涂在导电胶上制样;对于薄膜样品,膜表面直接粘在导电胶上,膜断面通过液氮脆断选取平整截面制样。全部样品在测试前通过喷金处理提高样品导电性。
N2吸附-脱附测试:通过美国康塔公司的Autosorb IQ型比表面及孔隙度分析仪器表征TpPa-CF3的比表面积及孔径分布。采用BET (Brunauer-Emmett-Teller)法计算比表面积,密度泛函理论(DFT)计算孔径分布。
热重分析(TGA):通过德国耐驰公司的STA 449C型综合热分析仪测试TpPa-CF3和薄膜的热稳定性。在N2氛围下测试,升温速率为10℃/min,测试范围在50~800℃。
差示扫描量热分析(DSC):通过德国耐驰公司的DSC 214型差示扫描量热仪测试薄膜的玻璃化转变温度,在N2氛围下以10℃/min的速率升温,测试范围在30~350℃,所有结果均采用消除热历史后的二次升温曲线。
力学性能:通过美国美特斯公司的CMT2103型万能试验机来表征薄膜的力学性能。薄膜样品尺寸为50 mm×10 mm,拉伸载荷为5 kN,拉伸速率为2 mm/min,标距为20 mm。
水接触角测试:通过中国承德优特仪器有限公司JY-PHb型接触角分析仪测定薄膜的亲疏水性能。薄膜样品尺寸为20 mm×20 mm,测试次数至少3次。
气体渗透性测试:通过中国济南兰光公司的VAC-V1型气体渗透仪测试薄膜的气体渗透性能。测试方法为恒体积变压法,测试气体为高纯气体(CO2、O2、N2),测试条件为4 bar,35℃。测试过程如下,将厚度均匀的待测薄膜装入膜腔中,测试前将上下腔气压抽至20 Pa以下,随后下腔关闭,上腔通入待测纯气体形成压差。压差推动气体自上腔(高压侧)向下腔(低压侧)渗透,通过系统计算得到膜的气体渗透系数P。
2. 结果与讨论
2.1 TpPa-CF3的表征
通过粉末X射线衍射(PXRD)对合成的TpPa-CF3的晶体结构进行分析,图1(a)中2θ=4.79°处出现的强峰对应于COF的(100)晶面,其他峰也出现在2θ=7.81°、26.14°处,分别对应于(200)、(001)晶面,其中(001)晶面也是其π-π堆叠峰,通过布拉格方程计算得出其堆叠层间距为0.33 nm。将测试结果与模拟的晶体模型的衍射峰进行对比,结果表明二者衍射峰的位置与强度均匹配良好。TpPa-CF3在Pawley精修后得到的晶胞参数为a=
2.290351 nm,b=2.236760 nm,c=0.423813 nm,α=89.56415 ,β=89.73479 ,γ=120.51471 。实验结果与精修后的PXRD之间的残差值较小,Rwp=1.24%,Rp=0.91%。以上结果初步说明成功合成出了目标晶体结构,且具有良好的结晶性。为进一步说明TpPa-CF3成功合成,通过FTIR对TpPa-CF3以及其构筑单元测试,从图1(b)中可以看到,构筑单元2,4,6-三甲酰间苯三酚(Tp)在
2894 cm−1处醛基的CH=O特征峰和构筑单元2-三氟甲基-1,4-苯二胺(Pa-CF3)在3318 cm−1和3210 cm−1处的—NH2特征峰在产物TpPa-CF3中消失,表明醛胺缩合反应完全。在1282 cm−1处的C—N的特征吸收峰表明烯醇-酮异构的发生。因为框架是以酮的形式存在,结构中有强的分子内氢键及共轭作用,所以在1592 cm−1处的C=C的特征峰和1610 cm−1处的C=O特征峰合并呈肩状[20]。在1128 cm−1处出现了C—F的特征峰。13C固体NMR分析如图1(c)所示,图中显示化学位移在184.2×10−6和108.1×10−6处有两个较明显的信号峰,分别对应于烯醇-酮异构反应所形成的C=O键和C—N键上的C原子,123.6×10−6处归属于C—F上的C原子。其余在119.0×10−6、134.1×10−6和146.5×10−6处的信号峰则归属于芳香单元上的C原子。
FTIR和固体核磁分析结果证实TpPa-CF3的成功合成且以稳定的β-酮胺形式存在。
通过XPS测量TpPa-CF3的全谱和各个元素的光谱,由图2(a)的全谱可知TpPa-CF3是由C、N、O、F 4种元素组成的。图2(b)是C1s的高分辨率XPS光谱,其能够被卷积为4个峰,分别对应于TpPa-CF3中的C=C/C—C(284.8 eV)、C—N(286.2 eV)、C=O(288.9 eV)和C—F(292.9 eV)键,N1s的高分辨率XPS如图2(c)所示,其被卷积为2个峰,分别归属于N—C(400.2 eV)和N—H(403.9 eV)键,F1s的高分辨率XPS如图2(d)所示,其只有一个卷积峰归属于C—F(688.3 eV)。所有以上结果说明TpPa-CF3形成目标结构,由C1s和N1s证明该结构发生了烯醇-酮异构。
通过扫描电镜(SEM)观察TpPa-CF3的微观形貌。如图3(a)所示,TpPa-CF3具有均匀的微观形貌,呈现为“米粒”形颗粒堆积形成的团簇,每一颗“米粒”的尺寸在(100±30) nm。
为了解TpPa-CF3的多孔性,对其进行N2吸附-脱附测试。图3(b)中N2吸脱附曲线呈现出I型曲线特征,TpPa-CF3在相对压力较低的区域(p/p0<0.1),N2的吸附量快速增加,说明材料中存在丰富的微孔结构。通过计算分析得出TpPa-CF3具有较大的比表面积(791.83 m2·g−1),图3(c)显示TpPa-CF3具有较小的孔径(1.18 nm)。这归因于TpPa-CF3中氟原子的高电负性增强了框架中芳香环之间的相互作用力,这种相互作用力有助于COF形成较大的比表面积以及较小的孔径[17]。
通过热重分析TpPa-CF3的热性能。热重曲线如图3(d)所示,从图中看到热损失分为两个阶段,大约在400℃之前的损失可能为残留在孔道里的高沸点溶剂(DMF)的挥发。400℃后出现明显的质量损失,从DTG曲线上可以看到在416℃质量损失的速度最快,这主要归因于TpPa-CF3框架的分解。以上结果可以看出TpPa-CF3具有较好的热稳定性。
2.2 TpPa-CF3/6FDA-ODA混合基质膜的表征
通过XRD对膜结构表征,评价了填料对聚合物链排列的影响。从图4(a)中可以看到所有曲线在2θ=15°左右均出现典型的聚合物宽峰。通过布拉格方程计算,得到膜的分子链间距。纯6FDA-ODA膜的分子链间距为0.574 nm,随着填料TpPa-CF3负载量的增加,链间距呈现先增大后下降的趋势,7%TpPa-CF3/6FDA-ODA膜的链间距最小(0.566 nm)。分子链间距先增大主要是由于小负载量的掺入破坏了分子链的堆积,随着负载量的增大,填料与聚合物基质的相互作用逐渐增强,限制了分子链的迁移率,链间距减小有利于提高气体的选择性。同时,在TpPa-CF3/6FDA-ODA混合基质膜中没有观察到TpPa-CF3粉末的特征峰,这主要是由于在超声搅拌过程中COF填料的部分剥落[21]。
混合基质膜的FTIR图谱如图4(b)所示,所有膜都表现出6FDA-ODA的特征峰,包括C=O的对称(
1783 cm−1)和不对称拉伸(1733 cm−1)、C—N的拉伸振动(1378 cm−1)、C—O—C的拉伸振动(1157 cm−1)、C—F键的吸收峰(1110 cm−1),以及酰亚胺环的弯曲振动(721 cm−1),值得注意的是在1597 cm−1处的特征峰,随着填料的增加而增强,这主要归因于TpPa-CF3和6FDA-ODA中芳香环上的C=C的吸收峰重叠[22]。以上结果说明聚酰亚胺基体和填料之间具有良好的相容性,填料的加入并没有破坏聚酰亚胺的结构。为分析TpPa-CF3的加入对混合基质膜热稳定性的影响,对6FDA-ODA及TpPa-CF3/6FDA-ODA混合基质膜进行了热重测试。如图5(a)所示,混合基质膜的分解分为两个阶段,第一阶段是400℃左右TpPa-CF3框架的分解,第二阶段是500℃左右6FDA-ODA基体膜的分解,填料的加入对膜的热稳定性影响不大。所有混合基质膜都表现出高达500℃的良好热稳定性,远高于工业中膜的操作温度,表明这些膜具有良好的适用性。DSC曲线用于分析膜的玻璃化转变温度(Tg)。如图5(b)所示,6FDA-ODA膜的Tg出现在297.5℃。随着TpPa-CF3负载量的增加,TpPa-CF3/6FDA-ODA膜的Tg从297.5℃逐渐增加到302.1℃,说明TpPa-CF3与6FDA-ODA之间具有良好的界面相互作用,这有利于提升混合基质膜的气体选择性[23]。
膜表面、截面的扫描电镜表征能够反映出填料在膜内的分散情况。如图6(a1)~6(e1)所示,与表面光滑平整的纯膜相比,混合基质膜的表面随着填料负载量的增加逐渐变得粗糙,在负载量达到7wt%时可以看到膜表面出现不平整及大颗粒团聚的现象。图6(a2)~6(e2)为纯膜及其混合基质膜的截面扫描电镜图,纯膜的截面表现出均匀、致密的微观结构,在1wt%~5wt%混合基质膜的截面图中能够观察到随着负载量的增加其截面形貌逐渐变粗糙,同时在膜内能够观察到TpPa-CF3颗粒很好地被聚合物包裹且分散均匀。当填料负载量达到7wt%时膜内出现填料与聚合物基质相分离的现象,说明此时负载量已经达到聚合物基质所能承受的上限,5wt%为其最优负载量。
通过接触角测试仪分析纯膜及其混合基质膜的水接触角(θw)。如图7(a)和表1所示,6FDA-ODA膜的水接触角为79.9°,TpPa-CF3/6FDA-ODA混合基质膜的水接触角为81.4°~89.1°,呈现逐渐增大的趋势。这主要归因于TpPa-CF3框架中含有—CF3疏水基团,因此随着TpPa-CF3含量的增加相应负载量的混合基质膜水接触角也逐渐增加。提升膜的疏水性能有助于阻止水汽进入,提升其气体传输性能。
表 1 不同负载量下TpPa-CF3/6FDA-ODA混合基质膜的力学性能Table 1. Mechanical properties of TpPa-CF3/6FDA-ODA mixed matrix membranes at different loadingsTpPa-CF3 loadings/wt% Tensile strength/MPa Elongation at break/% Young's modulus/GPa θw/(°) 0 74.1 10.1 1.59 79.9 1 79.6 9.7 1.63 81.4 3 82.9 8.6 1.70 83.1 5 93.0 7.8 1.82 84.1 7 84.5 7.3 1.76 89.1 Note: θw—Water contact angle. 对混合基质膜进行拉伸实验以此来检验其力学性能。测试结果如图7(b)和表1所示。从表中可以看出,TpPa-CF3/6FDA-ODA混合基质膜的抗拉强度和杨氏模量随着TpPa-CF3负载量的增加呈现出先增加后下降的趋势,而断裂伸长率呈现逐渐下降的趋势。这主要归因于,在混合基质膜中TpPa-CF3与6FDA-ODA之间较好的相互作用力使得填料与聚合物之间具有良好的界面相容性,增强了膜的刚性。然而,当负载量达到7wt%时,抗拉强度和杨氏模量略微下降,这主要是过量的TpPa-CF3颗粒之间发生团聚,使得界面出现缺陷导致应力集中,降低了膜的力学性能[24]。
利用3种纯气体(CO2、O2、N2)渗透测试来评估不同负载量下TpPa-CF3/6FDA-ODA混合基质膜的渗透性及CO2/N2和O2/N2的理想选择性。结果如表2所示,每一种膜气体渗透系数的大小均与气体分子动力学直径呈反比,即膜的3种气体渗透系数大小排列为P(CO2)>P(O2)>P(N2),3种气体分子动力学直径大小排列为N2(0.36 nm)>O2(0.35 nm)>CO2(0.33 nm)。同6FDA-ODA膜相比所有混合基质膜的气体渗透性都有所提升。由图8(a)中可得,随着TpPa-CF3含量的增加,膜的气体渗透性呈现出先增大后下降的趋势,其中5%TpPa-CF3/6FDA-ODA膜气体渗透性能最佳,P(CO2)提升了149%,P(O2)提升了138%,P(N2)提升了98%。这主要归因于TpPa-CF3的高孔隙率提高了TpPa-CF3/6FDA-ODA膜的比表面积及固有孔隙率,为气体传输提供了快速通道。TpPa-CF3负载量到7wt%时,气体的渗透性明显下降,但仍然比6FDA-ODA膜高。这主要是由于负载量过大,造成TpPa-CF3在膜内团聚堵塞了气体传输的孔道。
表 2 6FDA-ODA及TpPa-CF3/6FDA-ODA混合基质膜的气体渗透系数P和理想选择性Table 2. Gas permeability coefficient P and ideal selectivity of 6FDA-ODA and TpPa-CF3/6FDA-ODA mixed matrix membranesMembrane Permeability/Barrer Ideal selectivity α CO2 O2 N2 α(CO2/N2) α(O2/N2) 6FDA-ODA 12.47 2.55 0.64 19.5 4.0 1%TpPa-CF3/6FDA-ODA 16.91 3.76 0.98 17.2 3.8 3%TpPa-CF3/6FDA-ODA 22.77 4.43 1.03 22.0 4.3 5%TpPa-CF3/6FDA-ODA 31.08 6.08 1.27 24.5 4.8 7%TpPa-CF3/6FDA-ODA 18.62 4.16 1.11 16.8 3.8 Notes: 1 Barrer=10−10 cm3(STP)·cm·cm−2·s−1·cmHg−1; Ideal selectivity α=P(A)/P(B), A and B are two different pure gases. TpPa-CF3/6FDA-ODA膜的气体选择性变化趋势和气体渗透性变化趋势不同,如图8(b)所示,CO2/N2和O2/N2均呈现出先下降后上升再下降的趋势,CO2/N2及O2/N2的理想选择性范围分别在16.8~24.4和3.8~4.8。其中,当TpPa-CF3负载量为5wt%时,混合基质膜的CO2/N2和O2/N2选择性最好,分别是6FDA-ODA膜的125%和119%。理想选择性的提高主要归因于两个方面:一个方面是CO2和O2的分子动力学直径要小于N2的分子动力学直径,从而CO2和O2分子倾向于优先通过。另一个方面,TpPa-CF3中富含大量对CO2具有亲和力的N、O和F等电负性原子,同时框架内还存在能与CO2发生偶极-四极相互作用的强极性C—F键,因此CO2/N2选择性相较于O2/N2的提升更明显[25]。然而,当负载量到7wt%时,混合基质膜的CO2/N2和O2/N2选择性大幅下降,略低于6FDA-ODA膜,这主要归因于当TpPa-CF3的负载量增加一定程度时,其在膜内发生团聚,并和聚合物基质产生部分相分离,产生一些非选择的孔,从而造成CO2/N2和O2/N2理想选择性的大幅下降。
对TpPa-CF3/6FDA-ODA混合基质膜进行72 h的连续气体渗透性测试,以验证膜的稳定性。如图8(c)所示,该膜在72 h的运行试验中P(CO2)下降了18%,CO2/N2的选择性下降了16%,总体表现出了良好的分离稳定性。
为了评估混合基质膜的气体分离性能,图9显示了不同负载量的TpPa-CF3/6FDA-ODA混合基质膜的气体分离性能与Robeson上限的对比。当负载量为5wt%时,其气体分离性能更靠近Robeson上限,气体的渗透性与选择性同步提升。说明适量的引入TpPa-CF3能够改善聚合物膜的气体分离性能。此外,表3显示了文献[26-30]中报道的混合基质膜气体分离性能与本工作的对比,TpPa-CF3/6FDA-ODA混合基质膜显示出适中的气体渗透性以及适中的气体选择性,说明TpPa-CF3/6FDA-ODA混合基质膜还有进一步提升的潜力。
表 3 文献中报道的混合基质膜气体分离性能与本工作的对比Table 3. Comparison of gas separation performance of mixed matrix membranes reported in the literature with the present workMembrane type P(CO2)/Barrer P(O2)/Barrer α(CO2/N2) α(O2/N2) Ref. TpPa-1-nc/Pebax 21 — 72 — [26] COFp-PVAm 270 — 86 — [27] TpBD@PBI-BuI 14.8 — 23 — [28] ZIF-7-I/(BPDA/6FDA-ODA) — 2.9 — 0.19 [29] PBI-PI-based carbon 293.5 93.1 8.3 2.6 [30] 5%TpPa-CF3/6FDA-ODA 31.08 6.08 24.4 4.8 This work Notes: TpPa-1-nc—; COFp—; TpBD—; BPDA—; Pebax—Poly(ether-block-amide); PVAm—Polyvinylamine; PBI-BuI—Tert-butylpolybenzimidazole; ZIF-7-I—Wide-pore ZIF-7; PBI—Polybenzimidazoles; PI—Polyimide. 3. 结 论
(1)采用溶剂热法合成了一种氟化共价有机框架材料(TpPa-CF3),其具有高比表面积(791.83 m2·g−1),较小且均一的孔径(1.18 nm)以及良好的热稳定性。
(2)采用共混法成功制备TpPa-CF3/聚酰亚胺(6FDA-ODA)混合基质膜。通过表征得出,所得膜具有良好的界面相容性以及较高的热稳定性(热分解温度在500℃左右)。水接触角的范围在81.4°~89.1°,且膜具有良好的力学性能,有利于膜在分离过程中的稳定性。
(3) TpPa-CF3的掺入提高了混合基质膜的气体渗透性,随着膜中TpPa-CF3负载量的增加,混合基质膜的气体渗透性呈现先减小后增大再减小的趋势。其中,5%TpPa-CF3/6FDA-ODA膜的气体分离性能最好,其CO2和O2的渗透性能分别提高了149%和138%,CO2/N2和O2/N2的分离性能分别是6FDA-ODA基体膜的125%和119%。
-
图 1 可拉伸导电复合材料的材料:(a)内部形态示意图;(b)渗流形态示意图;((c), (d))微观形貌电镜图;((e), (f))多壁碳纳米管(MWCNT)分布电镜图;(g)元素分析
Figure 1. Materials of stretchable conductive composites: (a) Schematic internal morphology; (b) Schematic percolation morphology; ((c), (d)) Electron microscopy of the micromorphology; ((e), (f)) Electron microscopy of the distribution of of multi-walled carbon nanotubes (MWCNTs); (g) Elemental analyses
图 2 (a)可拉伸导电复合材料固化前后表面的微观形貌变化图;(b)可拉伸导电复合材料添加二甘醇(DEG)前后表面的组分质量分数比例
Figure 2. (a) Micro-morphological changes of the surface of stretchable conductive composites before and after curing; (b) Component mass fraction ratio of the surface of stretchable conductive composites before and after addition of diethylene glycol (DEG)
图 23 打印的多种不同尺寸、不同图案的导电薄膜:(a)花朵;(b)分形;(c)凤凰;(d)雪花;((e)~(g))不同图案的导电薄膜形貌特征和拉伸效果
Figure 23. A variety of printed conductive films with different sizes and patterns: (a) Flower; (b) Fractal; (c) Phoenix; (d) Snowflake; ((e)-(g)) Morphological characteristics and tensile effects of conductive films with different patterns
图 24 (a)透明电加热效果图;(b) 2.5D结构柔性显示灯阵的效果图及性能展示:(c) 2.5D结构柔性显示灯阵的拉伸变形测试;(d) 2.5D结构柔性显示灯阵的弯曲变形测试
Figure 24. (a) Transparent electric heating effect diagram; (b) Effect diagram and performance demonstration of 2.5D structure flexible display light array; (c) Tensile deformation test of 2.5D structure flexible display light array; (d) Bending deformation test of 2.5D structure flexible display light array
表 1 导电复合材料各组分配比
Table 1 Distribution ratios for each group of conductive composites
Material Mass fraction/wt% AgNP 71.3 MWCNT 0.18 PDMS 17.82 THF 7.1 DEG 3.6 Notes: AgNP—Silver nanoparticles; MWCNT—Multi-walled carbon nanotubes; PDMS—Polydimethylsiloxane; THF—Tetrahydrofuran solvent; DEG—Diethylene glycol solvent. 表 2 不同AgNP含量的可拉伸导电复合材料黏附力
Table 2 Adhesion of stretchable conductive composites with different AgNP contents
AgNP content/g 2.5 3 4 5 6 Adhesion/B 5 5 5 2 0 表 3 不同MWCNT含量导电复合材料的黏附力
Table 3 Adhesion of conductive composites with different MWCNT contents
MWCNT content/mg 0 10 20 Adhesion/B 5 5 5 -
[1] SIM K, ERSHAD F, ZHANG Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity[J]. Nature Electronics, 2020, 3(12): 775-784. DOI: 10.1038/s41928-020-00493-6
[2] CHOI Y S, HSUEH Y Y, KOO J, et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration[J]. Nature Communications, 2020, 11(1): 5990. DOI: 10.1038/s41467-020-19660-6
[3] LIU J, ZHANG X, LIU Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution[J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14769-14778. DOI: 10.1073/pnas.2000207117
[4] TIAN L, ZIMMERMAN B, AKHTAR A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring[J]. Nature Biomedical Engineering, 2019, 3(3): 194-205. DOI: 10.1038/s41551-019-0347-x
[5] ALEKSANDROVA M P, ANDREEV S K. Design methodology and technological flow of screen-printed thick-film sensors[J]. IEEE Sensors Journal, 2021, 22(11): 10126-10136.
[6] YÜCE C, OKAMOTO K, KARPOWICH L, et al. Non-volatile free silver paste formulation for front-side metallization of silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110040. DOI: 10.1016/j.solmat.2019.110040
[7] SHAHARIAR H, KIM I, BHAKTA R, et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters[J]. Smart Materials and Structures, 2020, 29(8): 085018. DOI: 10.1088/1361-665X/ab8c25
[8] LIAO Y, ZHANG R, WANG H, et al. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics[J]. RSC Advances, 2019, 9(27): 15184-15189. DOI: 10.1039/C9RA01721F
[9] QI X, HA H, HWANG B, et al. Printability of the screen-printed strain sensor with carbon black/silver paste for sensitive wearable electronics[J]. Applied Sciences, 2020, 10(19): 6983. DOI: 10.3390/app10196983
[10] LEE W, KIM H, KANG I, et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board[J]. Science, 2022, 378(6620): 637-641. DOI: 10.1126/science.abo6631
[11] WANG M, MA C, UZABAKIRIHO P C, et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics[J]. ACS Nano, 2021, 15(12): 19364-19376. DOI: 10.1021/acsnano.1c05762
[12] CHEN S, FAN S, QI J, et al. Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor[J]. Advanced Materials, 2023, 35(5): 2208569. DOI: 10.1002/adma.202208569
[13] BISWAS S, SCHOEBERL A, HAO Y, et al. Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix[J]. Nature Communications, 2019, 10(1): 1-8. DOI: 10.1038/s41467-018-07882-8
[14] ZHAO D, ZHAO J, LIU L, et al. Flexible hybrid integration enabled on-skin electronics for wireless monitoring of electrophysiology and motion[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(4): 1340-1348. DOI: 10.1109/TBME.2021.3115464
[15] SAKORIKAR T, MIHALIAK N, KRISNADI F, et al. A guide to printed stretchable conductors[J]. Chemical Reviews, 2024, 124(3): 860-888. DOI: 10.1021/acs.chemrev.3c00569
[16] KIM D C, SHIM H J, LEE W, et al. Material-based approaches for the fabrication of stretchable electronics[J]. Advanced Materials, 2020, 32(15): 1902743. DOI: 10.1002/adma.201902743
[17] HU J, YU J, LI Y, et al. Nano carbon black-based high performance wearable pressure sensors[J]. Nanomaterials, 2020, 10(4): 664. DOI: 10.3390/nano10040664
[18] PARK Y G, AN H S, KIM J Y, et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures[J]. Science Advances, 2019, 5(6): eaaw2844. DOI: 10.1126/sciadv.aaw2844
[19] PARK Y G, MIN H, KIM H, et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement[J]. Nano Letters, 2019, 19(8): 4866-4872. DOI: 10.1021/acs.nanolett.9b00150
[20] WANG Y, ZHU C, PFATTNER R, et al. A highly stretchable, transparent, and conductive polymer[J]. Science Advances, 2017, 3(3): e1602076. DOI: 10.1126/sciadv.1602076
[21] DONG L, ZHOU X, ZHENG S, et al. Liquid metal@MXene spring supports ionic gel with excellent mechanical properties for high-sensitivity wearable strain sensor[J]. Chemical Engineering Journal, 2023, 458: 141370. DOI: 10.1016/j.cej.2023.141370
[22] KIM D W, KONG M, JEONG U. Interface design for stretchable electronic devices[J]. Advanced Science, 2021, 8(8): 2004170. DOI: 10.1002/advs.202004170
[23] DAUZON E, SALLENAVE X, PLESSE C, et al. Pushing the limits of flexibility and stretchability of solar cells: A review[J]. Advanced Materials, 2021, 33(36): 2101469. DOI: 10.1002/adma.202101469
[24] KO Y, OH J, PARK K T, et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37043-37050.
[25] DURAIRAJ R, LEONG K C. Effect of silver flakes and particle shape on the steady shear viscosity of isotropic conductive adhesives[J]. Journal of Testing and Evaluation, 2015, 43(6): 1288-1295. DOI: 10.1520/JTE20130084
[26] ZHANG B, SEONG B, LEE J, et al. One-step sub-micrometer-scale electrohydrodynamic inkjet three-dimensional printing technique with spontaneous nanoscale Joule heating[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29965-29972.
[27] ASTM. Standard test methods for measuring adhesion by tape test: ASTM D3359—97[S]. West Conshohocken: ASTM, 1997.
[28] CHHABRA R P. Non-newtonian fluids: An introduction[J]. Rheology of Complex Fluids, 2010: 3-34.
[29] 刘晓妹, 黄关葆, 马昊, 等. 几种用于3D打印的高分子材料的性能对比[J]. 塑料, 2020, 49(1): 129-133. LIU Xiaomei, HUANG Guanbao, MA Hao, et al. Performance comparison of several polymer materials for 3D printing[J]. Plastics, 2020, 49(1): 129-133(in Chinese).
[30] ZHANG P, JIANG X, YUAN P, et al. Silver nanopaste: Synthesis, reinforcements and application[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1048-1069. DOI: 10.1016/j.ijheatmasstransfer.2018.06.083
[31] XU D E, KIM J B, HOOK M D, et al. Real time resistance monitoring during sintering of silver paste[J]. Journal of Alloys and Compounds, 2018, 731: 504-514. DOI: 10.1016/j.jallcom.2017.10.077
-
其他相关附件
-
目的
多层柔性拉伸电子在生物医疗、电子皮肤、可穿戴设备等领域展现出巨大的发展潜力,然而,用于多层电子的拉伸导电材料存在导电性差、拉伸性低以及层间互联导线制造难等问题,限制了多层柔性和可拉伸电子的进一步发展和应用。本文提出了一种适用于层间互联导线直接打印的高导电可拉伸复合材料,旨在解决需平衡防止结构塌陷和挤出打印时喷嘴堵塞的流变性问题,实现多层拉伸电子的一体化成型。
方法本研究采用纳米银颗粒(AgNP)、多壁碳纳米管(MWCNT)、聚二甲基硅氧烷(PDMS)以及二甘醇(DEG)助剂的组合制备可拉伸导电复合材料,采用流变仪进行流变特性测试。并采用多功能数字四探针测试仪对样件电阻率或方阻进行测量。采用德国耐驰公司的热重分析仪获取特定物质分解温度的曲线图并探究了烧结工艺参数;采用实验室自研的柔性电子挤出式3D打印设备对可拉伸导电复合材料进行实验研究。通过实验揭示了主要工艺参数对垂直互联导线以及弧形导线的影响规律,之后,采用实验室自制拉伸试验机测试导电复合材料力学性能。并通过案例研究,探究了可拉伸导电复合材料在柔性电加热和柔性显示领域的应用。
结果可拉伸导电复合材料内部由高导电性的AgNP与增强银渗流的辅助填料MWCNTs共同构成导电通路,二者均匀地分散在作为粘结剂的弹性体衬底PDMS中。PDMS弹性体衬底显著提高了弹性导体的可拉伸性,碳纳米管的加入增强了导电材料的导电通路,提高了材料的电导率和拉伸性,DEG的引入增强了材料的流变性,有效防止喷头堵塞,同时,可以改变浆料内部AgNP的分布,便于提高PDMS基体表面的银颗粒含量。结果表明,添加DEG后的导电复合材料表面AgNP的质量分数从64%提高到90%,电导率从10 S·cm提高到10 S·cm。通过使用流变仪对导电材料的粘度和流变性进行表征发现,AgNP,MWCNT,DEG的含量都对材料的电导率、粘度和黏附性存在影响,最终优选比例为AgNP含量71.3wt%,MWCNT含量0.18wt%,DEG含量3.6wt%。采用热重分析仪对导电材料的烧结温度进行探究,并结果实验分析,适合本实验的最佳固化温度和固化时间为200°C固化2 h。利用实验室自制的拉伸试验机进行拉伸试验,通过在20%和40%的应变下进行超1000次的拉伸循环测试,其电阻变化率均被控制在0.75%以内,表现了在可拉伸电子器件领域的应用潜力。之后,采用实验室自制的柔性电子挤出式3D打印设备进行了层间垂直互联导线、弧形导线以及层内导线的打印工艺参数探究。通过探究打印气压、速度、喷头内径大小等参数对打印电路的分辨率、形貌以及性能的影响规律,根据具体的应用需求,可优选合适的打印参数。结果表明,能实现最小横截面积为150 μm的垂直互联导线的打印。本文验证了导电材料在柔性电加热和柔性显示等领域的应用,结果表明,打印的电加热设备能在5V的低电压下实现高达60°C的加热温度,打印的柔性显示灯阵在不同变形下均表现出稳定的显示亮度。
结论本文提出了一种适用于材料挤出3D打印层间互联导线的高导电可拉伸导电复合材料。其中,碳纳米管MWCNT和银颗粒AgNP的复合连接有效增加了导线通路的连通性,显著提升了导电复合材料的导电性能和拉伸性能。DEG的引入平衡了喷头堵塞和防止结构坍塌的平衡问题,并改变浆料内部AgNP的分布,提高了导电材料的电导率。同时,导电材料在40%的应变下能承受超过1000次的拉伸循环测试,其电阻变化率均被控制在0.75%以内。基于优化的工艺参数,可以直接打印成形2.5D或3D互联导线,如弧形导线和垂直互联导线。并验证了其在弯曲或拉伸的状态下的电气连接稳定性,在柔性电加热和柔性显示等领域具有良好的应用前景。
-
可拉伸导电复合材料作为一种具备广阔发展前景的先进材料,在柔性电子、可穿戴器件、智能传感器等领域具有巨大的应用潜力。3D打印技术在柔性及拉伸电子器件制造方面具有定制化、多材料、复杂化等诸多突出优势,然而,当前用于多层柔性电子层间互联导线挤出式3D打印的可拉伸导电复合材料需平衡防止结构塌陷和挤出打印时喷嘴堵塞的流变性问题。本文通过在纳米银颗粒(AgNP)、多壁碳纳米管(MWCNT)和聚二甲基硅氧烷(PDMS)复合导电材料内灵活的添加二甘醇(DEG)助剂,制备了一种适用于层间互联导线直接挤出3D打印的高导电可拉伸复合材料。其中,MWCNT作为复合材料的连接通路,优异的长径比能增加导电银之间导电通路,使复合材料具备导电性。DEG助剂的加入不仅使导电银能够有效聚集并析出表面(相较于未添加DEG的材料,添加DEG助剂的材料表面AgNP比例提升26%),从而提高导电性,同时也能润湿打印喷头,降低喷头堵塞风险。所制备的可拉伸导电复合材料具备良好的导电性(104 S cm-1)和拉伸稳定性(40%应变循环拉伸1000次以上),能实现用于多层柔性拉伸电子层间互联导线的自支撑3D结构的直接打印成形,在柔性电加热、柔性显示等领域均验证了其可行性。
(a)可拉伸导电复合材料加助剂前后表面的组分质量分数比例;(b)拉伸性能