留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

挤出3D打印用可拉伸导电复合材料的制备及性能调控

王瑞 商帅 李政豪 李红珂 张厚超 孙文正 杨建军 刘朝红 李鹏 黄友奇 兰红波 朱晓阳

王瑞, 商帅, 李政豪, 等. 挤出3D打印用可拉伸导电复合材料的制备及性能调控[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 王瑞, 商帅, 李政豪, 等. 挤出3D打印用可拉伸导电复合材料的制备及性能调控[J]. 复合材料学报, 2024, 42(0): 1-17.
WANG Rui, SHANG Shuai, LI Zhenghao, et al. Preparation and property modulation of stretchable conductive composites for extrusion 3D printing[J]. Acta Materiae Compositae Sinica.
Citation: WANG Rui, SHANG Shuai, LI Zhenghao, et al. Preparation and property modulation of stretchable conductive composites for extrusion 3D printing[J]. Acta Materiae Compositae Sinica.

挤出3D打印用可拉伸导电复合材料的制备及性能调控

基金项目: 国家自然科学基金(52175331、52375348);山东省自然科学基金重大基础研究资助项目(ZR2020ZD04)
详细信息
    通讯作者:

    李红珂,博士研究生,主要研究方向为微纳尺度3D打印、复合微纳增材制造。 E-mail: LHK1164072308@163.com

    朱晓阳,博士,副教授,博士生导师,主要研究方向为微纳3D打印、先进电子电路增材制造、印制电子,光电子产品,柔性电子3D打印制造等。E-mail:zhuxiaoyang@qut.edu.cn

  • 中图分类号: TB333

Preparation and property modulation of stretchable conductive composites for extrusion 3D printing

Funds: National Natural Science Foundation of China (No. 52175331、No. 52375348); Shandong Provincial Natural Science Foundation Major Basic Research Support Project (No. ZR2020ZD04)
  • 摘要: 多层柔性和可拉伸电子因其在生物医疗、可穿戴设备、电子皮肤等领域具有较大的应用前景。然而,适用于多层电子的拉伸导电材料存在导电性差、拉伸性低以及层间互联导线制造难等问题,限制了多层柔性和可拉伸电子的进一步发展和应用。本文通过在纳米银颗粒(AgNP)、多壁碳纳米管(MWCNT)和聚二甲基硅氧烷(PDMS)复合导电材料内灵活的添加二甘醇(DEG)助剂,制备了一种适用于层间互联导线直接挤出3D打印的高导电可拉伸复合材料。受益于二甘醇的高沸点,固化过程中导电复合材料中的AgNP能够有效聚集并析出表面,从而提高导电性。溶剂良好的润湿性能平衡材料结构塌陷和3D打印机喷嘴堵塞的问题,有利于层间互联导线的3D打印。同时,大长径比的MWCNT在拉伸过程中能够稳定AgNP之间的电连接。最终制备的导电材料具备优异的导电性能(104 S·cm−1)和拉伸性能(在40%应变下循环拉伸1000次以上),并能基于材料挤出3D打印技术实现可拉伸层内互联导线、自支撑3D垂直互联导线以及2.5D弧形导线的打印。本文制造的拉伸复合浆料在柔性电加热以及柔性显示灯阵实现了良好的应用,充分验证了可拉伸导电复合材料在柔性和可拉伸电子领域的应用前景,为3D打印多层柔性和可拉伸电子的发展铺平了道路。

     

  • 图  1  可拉伸导电复合材料的材料:(a)内部形态示意图;(b)渗流形态示意图;(c-d)微观形貌电镜图;(e-f)多壁碳纳米管(MWCNT)分布电镜图;(g)元素分析

    Figure  1.  Materials of stretchable conductive composites: (a) Schematic internal morphology;; (b) Schematic percolation morphology; (c-d) Electron microscopy of the micromorphology; (e-f) Electron microscopy of the distribution of of multi-walled carbon nanotubes (MWCNTs); (g) Elemental analyses

    图  2  (a)可拉伸导电复合材料固化前后表面的微观形貌变化图;(b)可拉伸导电复合材料添加二甘醇(DEG)前后表面的组分质量分数比例

    Figure  2.  (a) Micro-morphological changes of the surface of stretchable conductive composites before and after curing; (b) Component mass fraction ratio of the surface of stretchable conductive composites before and after addition of diethylene glycol (DEG)

    图  3  纳米银颗粒(AgNP)含量对可拉伸导电复合材料导电性能的影响

    Figure  3.  The influencet of silver nanoparticles (AgNP) content on the electrical conductivity of stretchable conductive composites

    图  4  不同AgNP含量导电薄膜SEM图:(a)2.5 g;(b)3 g;(c)4 g;(d)5 g;(e)6 g

    Figure  4.  The SEM images of conductive films with different AgNP contents:(a) 2.5 g; (b) 3 g; (c) 4 g; (d) 5 g; (e) 6 g

    图  5  DEG含量对可拉伸导电复合材料导电性能的影响

    Figure  5.  The influence of DEG content on the electrical conductivity of stretchable conductive composites

    图  6  AgNP含量对可拉伸导电复合材料流变性能的影响:(a)黏度曲线;(b)流动曲线

    Figure  6.  The influence of AgNP content on the rheological properties of stretchable conductive composites: (a) viscosity profile; (b) flow profile

    图  7  MWCNT含量对可拉伸导电复合材料黏度的影响

    Figure  7.  The influence of multi-walled carbon nanotube content on the viscosity of stretchable conductive composites

    图  8  DEG含量对可拉伸导电复合材料黏度的影响

    Figure  8.  The influence of DEG content on the viscosity of stretchable conductive composites

    图  9  四氢呋喃(THF)含量对可拉伸导电复合材料黏度的影响

    Figure  9.  The influence of tetrahydrofuran (THF) content on the viscosity of stretchable conductive composites

    图  10  可拉伸导电复合材料热重分析

    Figure  10.  Thermogravimetric analysis of stretchable conductive composites

    图  11  固化温度和固化时间对导电复合材料的导电性能的影响

    Figure  11.  The influence of curing temperature and curing time on the electrical conductivity of conductive composites

    图  12  可拉伸导电复合材料拉伸性能对比(a)未退火(b)退火后;(c)直线拉伸效果;(d)蛇形曲线拉伸效果

    Figure  12.  Comparison of tensile properties of stretchable conductive composites (a) unannealed (b) after annealing; (c) straight line tensile effect; (d) serpentine curve tensile effect

    图  13  可拉伸导电复合材料打印的层间互联导线拉伸和弯曲性能测试

    Figure  13.  Tensile bending performance test of interlayer interconnecting wires printed from stretchable conductive composites

    图  14  打印速度对打印层内互联导线线宽的影响规律

    Figure  14.  The influence of printing speed on the line width of interconnecting wires in the printing layer

    图  15  打印气压对打印层内互联导线线宽的影响规律

    Figure  15.  The influence of printing air pressure on the line width of interconnecting wires in the printing layer

    图  16  打印喷头内径大小对打印层内互联导线线宽的影响规律

    Figure  16.  The influence of printhead inner diameter size on the line width of interconnecting wires in the printing layer

    图  17  垂直互联导线(VIA)的打印原理图及流程图

    Figure  17.  Printed schematic and flowchart for Vertical Interconnect Access (VIA)

    图  18  打印速度对VIA成形高度和横截面面积的影响

    Figure  18.  The influence of print speed on VIA forming height and cross-sectional area

    图  19  打印气压对VIA成形高度和横截面面积的影响

    Figure  19.  The influence of print air pressure on VIA molding height and cross-sectional area

    图  20  打印喷头内径大小对VIA成形高度和横截面面积的影响

    Figure  20.  The influence of the inner diameter of the printing nozzle on the VIA forming height and cross-sectional area

    图  21  (a)弧形互联导线的打印原理图及流程;(b-e)VIA的高度对弧形互联导线的跨越宽度和高度的影响规律

    Figure  21.  (a) Printing schematic diagram and process of arc-shaped interconnection wires; (b-e) The influence of the height of VIA on the span width and height of arc-shaped interconnection wires.

    图  22  弧形互联导线:(a)打印效果图;(b)SEM图像;(c)俯视图;(d)用镊子按压效果图

    Figure  22.  Curved interconnecting wires: (a) printed effect; (b) SEM image; (c) top view; (d) effect of pressing with tweezers

    图  23  打印的多种不同尺寸、不同图案的导电薄膜:(a)花朵;(b)分形;(a)凤凰;(a)雪花;(e-f)不同图案的导电薄膜形貌特征和拉伸效果

    Figure  23.  A variety of printed conductive films with different sizes and patterns: (a) flower; (b) fractal; (a) phoenix; (a) snowflake; (e-f) morphological characteristics and tensile effects of conductive films with different patterns

    图  24  (a)透明电加热效果图;(b)2.5 D结构柔性显示灯阵的效果图及性能展示:(c)2.5 D结构柔性显示灯阵的拉伸变形测试;(d)2.5 D结构柔性显示灯阵的弯曲变形测试

    Figure  24.  (a) Transparent electric heating effect diagram; (b) Effect diagram and performance demonstration of 2.5 D structure flexible display light array: (c) Tensile deformation test of 2.5 D structure flexible display light array; (d) Bending deformation test of 2.5 D structure flexible display light array

    表  1  导电复合材料各组分配比

    Table  1.   Distribution ratios for each group of conductive composites

    MaterialsMass fraction/wt%
    AgNP71.3
    MWCNT0.18
    PDMS17.82
    THF7.1
    DEG3.6
    Notes:AgNP is silver nanoparticles, MWCNT is multi-walled carbon nanotubes, PDMS is polydimethylsiloxane, THF is tetrahydrofuran solvent, DEG is diethylene glycol solvent
    下载: 导出CSV

    表  2  不同AgNP含量的可拉伸导电复合材料黏附力

    Table  2.   Adhesion of stretchable conductive composites with different AgNP contents

    AgNP content2.5 g3 g4 g5 g6 g
    Adhesion5 B5 B5 B2 B0 B
    下载: 导出CSV

    表  3  不同MWCNT含量导电复合材料的黏附力

    Table  3.   Adhesion of conductive composites with different MWCNT contents

    MWCNT content0 mg10 mg20 mg
    Adhesion5 B5 B5 B
    下载: 导出CSV
  • [1] SIM K, ERSHAD F, ZHANG Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity[J]. Nature Electronics, 2020, 3(12): 775-784. doi: 10.1038/s41928-020-00493-6
    [2] CHOI Y S, HSUEH Y Y, KOO J, et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration[J]. Nature communications, 2020, 11(1): 5990. doi: 10.1038/s41467-020-19660-6
    [3] LIU J, ZHANG X, LIU Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution[J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14769-14778. doi: 10.1073/pnas.2000207117
    [4] TIAN L, ZIMMERMAN B, AKHTAR A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring[J]. Nature biomedical engineering, 2019, 3(3): 194-205. doi: 10.1038/s41551-019-0347-x
    [5] ALEKSANDROVA M P, ANDREEV S K. Design Methodology and Technological Flow of Screen-Printed Thick-Film Sensors[J]. IEEE Sensors Journal, 2021, 22(11): 10126-10136.
    [6] YÜCE C, OKAMOTO K, KARPOWICH L, et al. Non-volatile free silver paste formulation for front-side metallization of silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110040. doi: 10.1016/j.solmat.2019.110040
    [7] SHAHARIAR H, KIM I, BHAKTA R, et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters[J]. Smart Materials and Structures, 2020, 29(8): 085018. doi: 10.1088/1361-665X/ab8c25
    [8] LIAO Y, ZHANG R, WANG H, et al. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics[J]. RSC advances, 2019, 9(27): 15184-15189. doi: 10.1039/C9RA01721F
    [9] QI X, HA H, HWANG B, et al. Printability of the screen-printed strain sensor with carbon black/silver paste for sensitive wearable electronics[J]. Applied Sciences, 2020, 10(19): 6983. doi: 10.3390/app10196983
    [10] LEE W, KIM H, KANG I, et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board[J]. Science, 2022, 378(6620): 637-641. doi: 10.1126/science.abo6631
    [11] WANG M, MA C, UZABAKIRIHO P C, et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics[J]. Acs Nano, 2021, 15(12): 19364-19376. doi: 10.1021/acsnano.1c05762
    [12] CHEN S, FAN S, QI J, et al. Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor[J]. Advanced Materials, 2023, 35(5): 2208569. doi: 10.1002/adma.202208569
    [13] BISWAS S, SCHOEBERL A, HAO Y, et al. Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix[J]. Nature communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8
    [14] ZHAO D, ZHAO J, LIU L, et al. Flexible hybrid integration enabled on-skin electronics for wireless monitoring of electrophysiology and motion[J]. IEEE Trans Biomed Eng, 2022, 69(4): 1340-1348. doi: 10.1109/TBME.2021.3115464
    [15] SAKORIKAR T, MIHALIAK N, KRISNADI F, et al. A Guide to Printed Stretchable Conductors[J]. Chemical Reviews, 2024, 124(3): 860-888. doi: 10.1021/acs.chemrev.3c00569
    [16] KIM D C, SHIM H J, LEE W, et al. Material-based approaches for the fabrication of stretchable electronics[J]. Advanced Materials, 2020, 32(15): 1902743. doi: 10.1002/adma.201902743
    [17] HU J, YU J, LI Y, et al. Nano carbon black-based high performance wearable pressure sensors[J]. Nanomaterials, 2020, 10(4): 664. doi: 10.3390/nano10040664
    [18] PARK Y G, AN H S, KIM J Y, et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures[J]. Science advances, 2019, 5(6): eaaw2844. doi: 10.1126/sciadv.aaw2844
    [19] PARK Y G, MIN H, KIM H, et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement[J]. Nano letters, 2019, 19(8): 4866-4872. doi: 10.1021/acs.nanolett.9b00150
    [20] WANG Y, ZHU C, PFATTNER R, et al. A highly stretchable, transparent, and conductive polymer[J]. Science advances, 2017, 3(3): e1602076. doi: 10.1126/sciadv.1602076
    [21] DONG L, ZHOU X, ZHENG S, et al. Liquid metal@ mxene spring supports ionic gel with excellent mechanical properties for high-sensitivity wearable strain sensor[J]. Chemical Engineering Journal, 2023, 458: 141370. doi: 10.1016/j.cej.2023.141370
    [22] KIM D W, KONG M, JEONG U. Interface Design for Stretchable Electronic Devices[J]. Advanced Science, 2021, 8(8): 2004170. doi: 10.1002/advs.202004170
    [23] DAUZON E, SALLENAVE X, PLESSE C, et al. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review[J]. Advanced Materials, 2021, 33(36): 2101469. doi: 10.1002/adma.202101469
    [24] KO Y, OH J, PARK K T, et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics[J]. ACS applied materials & interfaces, 2019, 11(40): 37043-37050.
    [25] DURAIRAJ R, LEONG K C. Effect of Silver Flakes and Particle Shape on the Steady Shear Viscosity of Isotropic Conductive Adhesives[J]. Journal of Testing and Evaluation, 2015, 43(6): 1288-1295. doi: 10.1520/JTE20130084
    [26] ZHANG B, SEONG B, LEE J, et al. One-step sub-micrometer-scale electrohydrodynamic inkjet three-dimensional printing technique with spontaneous nanoscale joule heating[J]. ACS applied materials & interfaces, 2017, 9(35): 29965-29972.
    [27] 用胶带测定涂膜附着力的标准方法[J]. 食品与发酵工业, 1979, (01): 78-81.

    Standardized method for determining the adhesion of coating films by means of adhesive tape[J]. Food and Fermentation Industry, 1979, (01): 78-81(in Chinese).
    [28] CHHABRA R P. Non-Newtonian fluids: an introduction[J]. Rheology of complex fluids, 2010: 3-34.
    [29] 刘晓妹, 黄关葆, 马昊, 等. 几种用于3D打印的高分子材料的性能对比[J]. 塑料, 2020, 49(01): 129-133.

    LIU Xiaomei, HUANG Guanbao, MA Hao, et al. Performance comparison of several polymer materials for 3D printing[J]. Plastics, 2020, 49(01): 129-133(in Chinese). LIU Xiaomei, HUANG Guanbao, MA Hao, et al. Performance comparison of several polymer materials for 3D printing[J]. Plastics, 2020, 49(01): 129-133. (in Chinese)
    [30] ZHANG P, JIANG X, YUAN P, et al. Silver nanopaste: Synthesis, reinforcements and application[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1048-1069. doi: 10.1016/j.ijheatmasstransfer.2018.06.083
    [31] XU D E, KIM J B, HOOK M D, et al. Real time resistance monitoring during sintering of silver paste[J]. Journal of Alloys and Compounds, 2018, 731: 504-514. doi: 10.1016/j.jallcom.2017.10.077
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-07-13
  • 录用日期:  2024-07-22
  • 网络出版日期:  2024-07-31

目录

    /

    返回文章
    返回