留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保湿抗冻型导电水凝胶在柔性电子方面的研究进展

王亚芳 姚安荣 陈方春 兰建武 林绍建

王亚芳, 姚安荣, 陈方春, 等. 保湿抗冻型导电水凝胶在柔性电子方面的研究进展[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 王亚芳, 姚安荣, 陈方春, 等. 保湿抗冻型导电水凝胶在柔性电子方面的研究进展[J]. 复合材料学报, 2024, 42(0): 1-14.
WANG Yafang, YAO Anrong, CHEN Fangchun, et al. Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics[J]. Acta Materiae Compositae Sinica.
Citation: WANG Yafang, YAO Anrong, CHEN Fangchun, et al. Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics[J]. Acta Materiae Compositae Sinica.

保湿抗冻型导电水凝胶在柔性电子方面的研究进展

基金项目: 国家自然科学基金(No.52003171);四川省自然科学基金(No.2024NSFSC0259);四川大学-泸州市人民政府战略合作专项资金项目 (No.2023CDLZ-3)
详细信息
    通讯作者:

    林绍建,博士,副研究员,硕士生导师,研究方向为柔性传感器的制备及应用 E-mail: sjlin@.edu.cn

  • 中图分类号: TB34; TB332

Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics

Funds: National Natural Science Foundation of China (No. 52003171); Natural Science Foundation of Sichuan Province (No.2024NSFSC0259) ); the Science and Technology Cooperation Project between Sichuan University and Luzhou City (No: 2023CDLZ-3)
  • 摘要: 近年来,柔性电子材料得到了快速的发展,其中导电水凝胶由于其突出的导电性、柔韧性、亲肤性等已被广泛的应用于该领域。然而,类似于传统的水凝胶,大多数导电水凝胶在极端环境下仍面临应用受限的瓶颈问题。因此,许多学者对水凝胶的保湿/抗冻行为进行了研究,并设计制备了一系列保湿抗冻导电水凝胶。本文对近年来保湿抗冻导电水凝胶的制备策略进行了总结及归类,详细阐述其提升水凝胶温度适应性的潜在机制;重点对耐候型水凝胶在柔性电子领域的应用进行了综述,包括运动感知、健康监测、智能识别与人机交互等;并且对保湿抗冻导电水凝胶面临的机遇和挑战进行了探讨和展望,旨在为新型保湿抗冻导电水凝胶的构筑提供新的思路,可望开发出综合性能优异的导电水凝胶,进一步推动其在柔性电子领域中的实际应用。

     

  • 图  1  保湿抗冻水凝胶的设计策略及其应用

    Figure  1.  Design strategy and application of moisturizing and anti-freezing hydrogels.

    图  2  (a)溶剂置换制备丙烯酰胺杂化离子共价水凝胶[19];(b)胶束水凝胶的制备过程及其环境稳定性[20]

    Figure  2.  (a) Schematic diagram of the preparation of the SPOH from SPH by solvent displacement[19]. (b) Preparation and environmental stability of the organogels[20].

    图  3  (a) P(AM-co-AA)/海藻糖/LiCl水凝胶的合成过程[25];(b) CMC/PAA/Fe3+/LiCl水凝胶的设计策略[26]

    Figure  3.  (a) Preparation procedure of P(AM-co-AA)/ Trehalose/LiCl hydrogels[25]. (b) Designing strategy of CMC/PAA/Fe3+/LiCl hydrogel[26].

    图  4  (a) 双网络离子水凝胶示意图[33]; (b) IL/PEDOT:PSS-PAMPS的双网络-高导电柔性离子凝胶[34]

    Figure  4.  (a) Schematic illustration of the ionic hydrogels[33]. (b) Design of highly electrically conductive flexible ionic gel derived from IL/PEDOT:PSS-PAMPS[34].

    图  5  (a) PNVBA水凝胶的设计与合成机制[36];(b) PHEA/ZP水凝胶的形成示意图[37]

    Figure  5.  (a) Design and synthesis mechanism of the PNVBA hydrogel[36]. (b) Schematic diagram illustrating the formation of PHEA/ZP hydrogels[37].

    图  6  (a) 基于SPGL水凝胶的应变传感器示意图和通过电路板实时监测人类颈椎运动[38];(b) PCOBE-TENG的“三明治”结构示意图及其在单电极模式下的工作机制[48]

    Figure  6.  (a) Schematic diagram of the SPGL hydrogel-based strain sensor and real-time monitoring of human head bowing movement through the circuit board[38]. (b) The schematic diagram of the “sandwich” structure of PCOBE-TENG and its working mechanism in single-electrode mode[48].

    图  7  (a) 传感器附在人手腕上用于监测脉搏[49];(b) 水凝胶电极收集的ECG信号相应放大信号[50]

    Figure  7.  (a) The sensor attached to the human wrist for monitoring the radial artery pulse[49]. (b) ECG signals and the corresponding magnified signals collected by organohydrogel electrodes[50].

    图  8  (a) 2×2传感器阵列和施加到应变传感器阵列的不同权重的变化分布[51];(b)“温度死区”与温度的实时检测[53]

    Figure  8.  (a) Illustration of a flexible 2×2 PCH-Li3-G30 array device and its pressure detection and temperature detection[51]. (b) “Temperature dead zone” and real-time monitoring of environmental temperature[53].

    图  9  (a) PBAPE电子皮肤智能手套手语与多种手势相结合的照片[54];(b) 二维多功能人机界面进行检测及其应用[55]

    Figure  9.  (a) Photos of sign languages combined with multiple gestures and the signal curves corresponding to the five fingers collected by PBAPE e-skin smart glove[54]. (b) Detection using a two-dimensional multifunctional human–machine interface (2D-MHMI) and its application[55].

    图  10  (a) SPOH光纤在激光传输中的应用[19];(b) PVA/LNP水凝胶在100元人民币表面紫外线敏感荧光区的透明度和紫外线屏蔽能力[58];(c) 有机水凝胶实现重复的信息记录和擦除[59]

    Figure  10.  (a) Application of SPOH fibers in laser transmission[19]. (b) UV-shielding capabilities of PVA/LNP hydrogels on the UV-sensitive fluorescent area of the 100-yuan CNY surface[58]. (c) Photographs showing the organohydrogel can achieve repeated information recording and erasing[59].

    表  1  各种水凝胶的保湿抗冻性能比较

    Table  1.   Comprehensive performance comparison of various moisturizing and antifreezing hydrogels

    Conductive hydrogel Agent Moisturizing ability Anti-freezing ability References
    (PAAm)-F127DA Glycerol 60% (60℃, 34Days) −40℃ [20]
    CDPAP 1,3-propanediol ~80% (25℃, 20Days) −60℃ [40]
    PAA-CS-G/Gly Glycerol 80% (37℃, 15Days) −45℃ [41]
    PAM/carrageenan LiBr 87% (25℃, 4Days) −78.5℃ [42]
    P(AM-co-AA) LiCl 83.8% (50℃, 10 h) −20℃ [25]
    P(AA-co-DMAPS)/Al3+ Ionic liquid 97.2%(20℃, 60Days) −80℃ [33]
    P@P composite ionogel Ionic liquid 120℃ −58℃ [34]
    HPE-LiCl Ethylene glycol/LiCl 87% (25℃, 30Days)
    79% (80℃, 100 h)
    −40℃ [38]
    PGN Glycerol/CaCl2 90% (28℃, 12Days) −20℃ [43]
    PHA/Agar/EG Ethylene glycol/NaCl 89% (25℃, 12Days) −40℃ [44]
    P(PEG-co-AA)/PANI Glycerol/PEG ~90% (20℃, 7Days)
    ~85% (40℃, 7Days)
    ~80% (80℃, 7Days)
    −28℃ [45]
    P(SBMA-co-AA) LiCl/zwitterionic polymer 100% (25℃, 7Days) −80°C [46]
    Notes: PAAm (PAM)-Polyacrylamide; F127DA-Pluronic F127Diacrylate; PAA-Poly(acrylic acid); CS-Chitosan; Gly-Glycerol; DMAPS-[2-(methacryloyloxy)ethyl] dimethyl-(3 sulfopropyl)ammonium hydroxide; PHA-poly(N-hydroxymethyl acrylamide); PEG-poly (ethylene glycol) methacrylate; PANI-Polyaniline; SBMA-Sulfobetaine methacrylate.
    下载: 导出CSV
  • [1] LI H, LV T, SUN H, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte[J]. Nature Communications, 2019, 10(1): 536. doi: 10.1038/s41467-019-08320-z
    [2] PANJA S, DIETRICH B, ADAMS D J. Controlling syneresis of hydrogels using organic salts[J]. Angewandte Chemie International Edition, 2022, 61(4): e202115021. doi: 10.1002/anie.202115021
    [3] XU J, JING R, REN X, et al. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness[J]. Journal of Materials Chemistry A, 2020, 8(18): 9373-9381. doi: 10.1039/D0TA02370A
    [4] 崔聪聪, 李汉红, 毛林韩, 等. 聚天冬氨酸/聚(丙烯酰胺-丙烯酸)/Fe3+离子水凝胶应变传感器的制备及在人体运动监测中的应用[J]. 高分子材料科学与工程, 2023, 39(3): 127-133.

    CUI Congcong, LI Hanhong, MAO Hanlin, et al. Preparation of polyaspartic acid/poly(acrylamide -acrylic acid)/Fe3+ ionic hydrogel strain sensor and its application in human motion monitoring[J]. Polymer Materials Science & Engineering, 2023, 39(3): 127-133 (in Chinese).
    [5] HU Y, ZHUO H, ZHANG Y, et al. Graphene oxide encapsulating liquid metal to toughen hydrogel[J]. Advanced Functional Materials, 2021: 2106761.
    [6] ZHANG M, YU R, TAO X, et al. Mechanically robust and highly conductive ionogels for soft ionotronics[J]. Advanced Functional Materials, 2022, 33(10): 2208083.
    [7] FAN X, KE T, GU H. Multifunctional, ultra-tough organohydrogel e-skin reinforced by hierarchical goatskin fibers skeleton for energy harvesting and self-powered monitoring[J]. Advanced Functional Materials, 2023, 33(42): 2304015. doi: 10.1002/adfm.202304015
    [8] 杨羽歆, 周祥富, 郑丹丹, 等. 原位法制备聚乙二醇/聚(丙烯酰胺-co-丙烯酸)荧光水凝胶[J]. 高分子材料科学与工程, 2022, 38(6): 153-160.

    YANG Yuxin, ZHOU Xiangfu, ZHENG Dandan, et al. , In-situ preparation of polyethylene glycol/poly (acrylamide-co-acrylic acid) fluorescent hydrogel[J]. Polymer Materials Science & Engineering, 2022, 38(6): 153-160 (in Chinese).
    [9] ZHOU L, DAI C, FAN L, et al. Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery[J]. Advanced Functional Materials, 2021, 31(14): 2007457. doi: 10.1002/adfm.202007457
    [10] 高建朋, 明李, 唐佩福. 刺激响应型水凝胶在骨修复中的应用综述[J]. 解放军医学院学报, 2021, 42(8): 873-877. doi: 10.3969/j.issn.2095-5227.2021.08.016

    GAO Jianpeng, MING Li, TANG Peifu. Research advances in application of stimuli-responsive hydrogels in bone repairation[J]. Academic Journal of Chinese PLA Medical School, 2021, 42(8): 873-877 (in Chinese). doi: 10.3969/j.issn.2095-5227.2021.08.016
    [11] 谢竺航, 李金宝, 修慧娟, 等. OS-PVA/P(DMC-AM)双网络水凝胶的制备及其吸附性能研究[J]. 中国造纸, 2021, 40(10): 37-43.

    XIE Zhuhang, LI Jinbao, XIU Huijuan, et al. Preparation and adsorption properties of OS-PVA/ P(DMC-AM) double network hydrogel[J]. China Pulp & Paper, 2021, 40(10): 37-43 (in Chinese).
    [12] KANG M, ODERINDE O, HAN X, et al. Development of oxidized hydroxyethyl cellulose-based hydrogel enabling unique mechanical, transparent and photochromic properties for contact lenses[J]. International Journal of Biological Macromolecules, 2021, 183: 1162-1173. doi: 10.1016/j.ijbiomac.2021.05.029
    [13] XU S, ZHOU Z, LIU Z, et al. Concurrent stiffening and softening in hydrogels under dehydration[J]. Science Advances, 2023, 9: 3240. doi: 10.1126/sciadv.ade3240
    [14] RONG Q, LEI W, CHEN L, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angewandte Chemie International Edition, 2017, 56(45): 14159-14163. doi: 10.1002/anie.201708614
    [15] ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5: 5484. doi: 10.1126/sciadv.aaw5484
    [16] XU C, YANG K, ZHU G, et al. Anti-freezing multifunctional conductive hydrogels: From structure design to flexible electronic devices[J]. Materials Chemistry Frontiers, 2024, 8(2): 381-403. doi: 10.1039/D3QM00902E
    [17] JIAN Y, WANG S, ZHANG J, et al. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments[J]. Materials Horizons, 2021, 8(2): 351-369. doi: 10.1039/D0MH01029D
    [18] XIE Y, GAO S, JIAN J J, et al. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors[J]. International Journal of Biological Macromolecules, 2023, 227: 462-471. doi: 10.1016/j.ijbiomac.2022.12.079
    [19] ZHU L, XU J, SONG J, et al. Transparent, stretchable and anti-freezing hybrid double-network organohydrogels[J]. Science China Materials, 2022, 65(8): 2207-2216. doi: 10.1007/s40843-021-1961-1
    [20] SUN Y, LU S, DU Y, et al. Long-lasting moisture and anti-freezing tough organohydrogels based on multi-functional nano-micelles for flexible dual-response sensors[J]. Journal of Applied Polymer Science, 2022, 139(38): 52916. doi: 10.1002/app.52916
    [21] WU M, CHEN B, FAN X, et al. Liquid-metals-induced formation of MXene/ polyacrylamide composite organohydrogels for wearable flexible electronics[J]. Nano Research, 2023, 17: 1913-1922.
    [22] Li M, Chen D, Sun X, et al. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor[J]. Carbohydrate Polymers, 2022, 284: 119199. doi: 10.1016/j.carbpol.2022.119199
    [23] 王海朋, 蔡文生, 邵学广. 抗冻剂抗冻机制的近红外光谱与分子模拟研究[J]. 化学学报, 2023, 81(9): 1167. doi: 10.6023/A23040185

    WANG Haipeng, CAI Wensheng, SHAO Xueguang. Antifreeze mechanism of antifreeze agents by near infrared spectroscopy and molecular simulations[J]. Acta Chimica Sinica, 2023, 81(9): 1167 (in Chinese). doi: 10.6023/A23040185
    [24] WANG C, LIU Y, QU X, et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber[J]. Advanced Materials, 2022, 34(16): 2105416. doi: 10.1002/adma.202105416
    [25] CAI H, ZHANG D, ZHANG H, et al. Trehalose-enhanced ionic conductive hydrogels with extreme stretchability, self-adhesive and anti-freezing abilities for both flexible strain sensor and all-solid-state supercapacitor[J]. Chemical Engineering Journal, 2023, 472: 144849. doi: 10.1016/j.cej.2023.144849
    [26] SONG Y, NIU L, MA P, et al. Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 10006-10017.
    [27] FENG E, ZHANG M, LI X, et al. Mechanically toughed and self-adhesive organohydrogel with anti-freezing and non-drying properties for human motion monitoring and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132992. doi: 10.1016/j.colsurfa.2023.132992
    [28] ZHANG X, LIANG S, LI F, et al. Flexible strain-sensitive sensors assembled from mussel-inspired hydrogel with tunable mechanical properties and wide temperature tolerance in multiple application scenarios[J]. ACS Applied Materials & Interfaces, 2023, 15(43): 50400-50412.
    [29] CHEN D, ZHAO X, WEI X, et al. Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 53247-53256.
    [30] FAN X, LIU S, JIA Z, et al. Ionogels: Recent advances in design, material properties and emerging biomedical applications[J]. Chemical Society Reviews, 2023, 52(7): 2497-2527. doi: 10.1039/D2CS00652A
    [31] LIU J, ZHANG X, CUI Y, et al. Ionic liquid/water binary solvent anti-freezing hydrogel for strain and temperature sensors[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 5208-5216.
    [32] ZHOU Y, FEI X, TIAN J, et al. A ionic liquid enhanced conductive hydrogel for strain sensing applications[J]. Journal of Colloid and Interface Science, 2022, 606: 192-203. doi: 10.1016/j.jcis.2021.07.158
    [33] ZHANG X, CUI C, CHEN S, et al. Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices[J]. Chemistry of Materials, 2022, 34(3): 1065-1077. doi: 10.1021/acs.chemmater.1c03386
    [34] YANG J, CHANG L, MA C, et al. Highly electrically conductive flexible ionogels by drop-casting ionic liquid/PEDOT: PSS composite liquids onto hydrogel networks[J]. Macromolecular Rapid Communications, 2022, 43(1): e2100557. doi: 10.1002/marc.202100557
    [35] WANG Y, YAO A, DOU B, et al. Self-healing, environmentally stable and adhesive hydrogel sensor with conductive cellulose nanocrystals for motion monitoring and character recognition[J]. Carbohydrate Polymers, 2024, 332: 121932. doi: 10.1016/j.carbpol.2024.121932
    [36] WANG Q, LIANG X, SHEN L, et al. Double cross-linked hydrogel dressings based on triblock copolymers bearing antifreezing, antidrying, and inherent antibacterial properties[J]. Biomacromolecules, 2024, 25(1): 388-399. doi: 10.1021/acs.biomac.3c01040
    [37] PENG H, HAO L, ZHANG X, et al. Zwitterion-incorporated antifreeze hydrogel with highly stretchable, transparent, and self-adhesive properties for flexible strain sensors[J]. ACS Applied Polymer Materials, 2024, 6(3): 1911-1921. doi: 10.1021/acsapm.3c02749
    [38] WANG Y, LIU H, YU J, et al. Ionic conductive cellulose-based hydrogels with superior long-lasting moisture and antifreezing features for flexible strain sensor applications[J]. Biomacromolecules, 2024, 25(2): 838-852. doi: 10.1021/acs.biomac.3c01011
    [39] LIU R, LIU Y, FU S, et al. Humidity adaptive antifreeze hydrogel sensor for intelligent control and human-computer interaction[J]. Small, 2024: 2308092.
    [40] LING Q, FAN X, LING M, et al. Collagen-based organohydrogel strain sensor with self-healing and adhesive properties for detecting human motion[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12350-12362.
    [41] ZHANG Y, LI Q, CHEN J, et al. Rapid gelation of dual physical network hydrogel with ultra-stretchable, antifreezing, moisturing for stable and sensitive response[J]. Journal of Applied Polymer Science, 2023, 140(10): 53566. doi: 10.1002/app.53566
    [42] WU Z, SHI W, DING H, et al. Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing[J]. Journal of Materials Chemistry C, 2021, 9(39): 13668-13679. doi: 10.1039/D1TC02506F
    [43] LI Y, Hu C, LAN J, et al. Hydrogel-based temperature sensor with water retention, frost resistance and remoldability[J]. Polymer, 2020, 186: 122027. doi: 10.1016/j.polymer.2019.122027
    [44] YANG J, KANG Q, ZHANG B, et al. Strong, tough, anti-freezing, non-drying and sensitive ionic sensor based on fully physical cross-linked double network hydrogel[J]. Materials Science & Engineering C, 2021, 130: 112452.
    [45] YU X, ZHANG H, WANG Y, et al. Highly stretchable, ultra-soft, and fast self-healable conductive hydrogels based on polyaniline nanoparticles for sensitive flexible sensors[J]. Advanced Functional Materials, 2022, 32(33): 2204366. doi: 10.1002/adfm.202204366
    [46] SUI X, GUO H, CAI C, et al. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities[J]. Chemical Engineering Journal, 2021, 419: 129478. doi: 10.1016/j.cej.2021.129478
    [47] TAO X, ZHU K, CHEN H, et al. Recyclable, anti-freezing and anti-drying silk fibroin-based hydrogels for ultrasensitive strain sensors and all-hydrogel-state super-capacitors[J]. Materials Today Chemistry, 2023, 32: 101624. doi: 10.1016/j.mtchem.2023.101624
    [48] SONG B, FAN X, SHEN J, et al. Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel E-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator[J]. Chemical Engineering Journal, 2023, 474: 145780. doi: 10.1016/j.cej.2023.145780
    [49] SHI Y, GUAN Y, LIU M, et al. Tough, antifreezing, and piezoelectric organohydrogel as a flexible wearable sensor for human-machine interaction[J]. ACS Nano, 2024, 18(4): 3720-3732. doi: 10.1021/acsnano.3c11578
    [50] LI J, GE S, NIU Y, et al. Intrinsically adhesive, conductive organohydrogel with high stretchable, moisture retention, anti-freezing and healable properties for monitoring of human motions and electrocardiogram[J]. Sensors and Actuators: B. Chemical, 2023, 377: 133098. doi: 10.1016/j.snb.2022.133098
    [51] LU Y, YUE Y, DING Q, et al. Environment-tolerant ionic hydrogel-elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical-thermal multimode sensor[J]. InfoMat, 2023, 5(4): 12409. doi: 10.1002/inf2.12409
    [52] PANG J, WANG L, XU Y, et al. Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance[J]. Carbohydrate Polymers, 2020, 240: 116360. doi: 10.1016/j.carbpol.2020.116360
    [53] MIAO Z, SONG Y, DONG Y, et al. Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors[J]. Nano Research, 2022, 16(2): 3156-3167.
    [54] SONG B, DAI X, FAN X, et al. Wearable multifunctional organohydrogel-based electronic skin for sign language recognition under complex environments[J]. Journal of Materials Science & Technology, 2024, 181: 91-103.
    [55] WU W, REN Y, JIANG T, et al. Anti-drying, transparent, ion-conducting, and tough organohydrogels for wearable multifunctional human-machine interfaces[J]. Chemical Engineering Journal, 2022, 430: 132635. doi: 10.1016/j.cej.2021.132635
    [56] 范克凡, 李鲲, 杨志坚, 等. 双网络MXene水凝胶的制备及其电磁和紫外屏蔽性能[J]. 复合材料学报, 2023, 40(7): 3939.

    FAN Kefan, LI Kun, YAN Zhijian, et al. Preparation of dual-network MXene hydrogels and their electromagnetic and UV shielding properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3939 (in Chinese).
    [57] 王钦雯, 王雯君, 陈玟锦, 等. 纳米银/纳米纤维素复合抗菌应变响应性水凝胶[J]. 复合材料学报, 2023, 42: 1.

    WANG Qinwen, WANG Wenjun, CHEN Wenjin, et al. Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels[J]. Acta Materiae Compositae Sinica, 2023, 42: 1 (in Chinese).
    [58] WANG Y, LIU S, WANG Q, et al. Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shielding and transparent properties for strain sensing application[J]. International Journal of Biological Macromolecules, 2022, 205: 442-451. doi: 10.1016/j.ijbiomac.2022.02.088
    [59] ZHENG G, GAO W, LI X, et al. A kappa-carrageenan-containing organohydrogel with adjustable transmittance for an antifreezing, nondrying, and solvent-resistant strain sensor[J]. Biomacromolecules, 2022, 23(11): 4872-4882. doi: 10.1021/acs.biomac.2c01044
  • 加载中
计量
  • 文章访问数:  81
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-05-06
  • 录用日期:  2024-06-04
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回