留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能

张立卿 占小静 韩宝国 许开成 王云洋

张立卿, 占小静, 韩宝国, 等. 静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能[J]. 复合材料学报, 2022, 41(0): 1-16
引用本文: 张立卿, 占小静, 韩宝国, 等. 静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能[J]. 复合材料学报, 2022, 41(0): 1-16
Liqing ZHANG, Xiaojing ZHAN, Baoguo HAN, Kaicheng XU, Yunyang WANG. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica.
Citation: Liqing ZHANG, Xiaojing ZHAN, Baoguo HAN, Kaicheng XU, Yunyang WANG. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica.

静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能

基金项目: 国家自然基金地区项目 (51968021); 中国博士后科学基金 (2022M713497); 江西省自然科学基金 (20202BAB204031; 20202BABL214042); 江西省教育厅一般项目 (GJJ210656)
详细信息
    通讯作者:

    王云洋,博士,讲师,研究方向为智能混凝土材料与结构、再生混凝土的建材资源化利用和钢管混凝土等 E-mail: hnwangyunyang@126.com

  • 中图分类号: TU528

Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide

Funds: National Natural Science Foundation Area Project (51968021); China Postdoctoral Science Foundation (2022 M713497); Natural Science Foundation of Jiangxi Province (20202 BAB204031; 20202 BABL214042); General Project of Education Department of Jiangxi Province (GJJ210656)
  • 摘要: 碳纳米管因具有优异的电学性能和感知性,与水泥基材料复合可赋予其自感知性能。但碳纳米管因具有高的表面能、大的长径比和高的疏水性,而易团聚、不易在水溶液中分散,进而影响其在水泥基材料中分散的均匀性和对自感知性能的改性效果和效率。基于体积排阻效应和静电自组装技术,有望提高碳纳米管分散及碳纳米管的改性效果和效率,因此本文采用静电自组装碳纳米管/二氧化钛制备了具有优异自感知性能的水泥基复合材料,并获得不同环境因素对其自感知性能的影响规律与机制,且对比了不同环境因素对水泥基复合材料自感知性能的影响规律。体积掺量为2.40%时,静电自组装CNT/TiO2水泥基复合材料的电阻率降低了99.8%,其在50℃全烘干状态时的最大电阻率变化率、应力和应变灵敏度分别达到74.36%、12.39%/MPa和1350;环境因素对静电自组装CNT/TiO2水泥基复合材料的自感知性能影响由强到弱依次为:含水量、加载幅值和加载速率。静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能

     

  • 图  1  静电自组装CNT/TiO2复合填料的示意图和SEM图像

    Figure  1.  Schematic diagram and SEM image of electrostatic self-assembly CNT/TiO2 composite fillers

    图  2  静电自组装CNT/TiO2水泥基复合材料的制备流程

    Figure  2.  Fabrication process of cementitious composite with electrostatic self-assembly CNT/TiO2

    图  3  静电自组装CNT/TiO2水泥基复合材料的电阻测试系统照片

    Figure  3.  Photographs on electrical resistivity measurement systems of cementitious composites with electrostatic self-assembly CNT/TiO2

    图  4  静电自组装CNT/TiO2水泥基复合材料的自感知性能测试过程

    Figure  4.  Self-sensing performance testing process of cementitious composites with electrostatic self-assembly CNT/TiO2

    图  5  空白水泥基材料和CNT/TiO2水泥基复合材料在不同龄期下的直流电阻率

    Figure  5.  DC electrical resistivity of cementitious composites without and with CNT/TiO2

    图  6  空白水泥基材料和CNT/TiO2水泥基复合材料在不同龄期下的交流电阻率:(a)3 d;(b)7 d;(c)14 d;(d)28 d

    Figure  6.  AC electrical resistivity of cementitious composites without and with CNT/TiO2 at 3 d (a), 7 d (b), 14 d (c), 28 d (d)

    图  7  CNT/TiO2水泥基复合材料的导电机制示意图

    Figure  7.  Schematic diagram of conduction mechanism of cementitious composites with CNT/TiO2

    图  8  CNT/TiO2水泥基复合材料的EDS和SEM图像

    Figure  8.  EDS and SEM images of cementitious composites with CNT/TiO2

    图  9  空白水泥基材料在循环荷载为6 MPa作用下的压应力(a)/应变(b)和电阻率变化率

    Figure  9.  Compressive stress (a) /strain (b) and fractional change in resistivity of cementitious composites without CNT/TiO2 under repeated compressive loading with stress amplitude of 6 MPa

    图  10  CNT/TiO2水泥基复合材料在循环荷载为6 MPa作用下的压应力(a)/应变(b)和电阻率变化率

    Figure  10.  Compressive stress (a) /strain (b) and fractional change in resistivity of cementitious composites with CNT/TiO2 under repeated compressive loading with stress amplitude of 6 MPa

    图  11  CNT/TiO2水泥基复合材料压应力(a)/应变(b)与电阻率变化率的试验数据和拟合函数

    Figure  11.  Relationship between compressive stress (a) /strain (b) and fractional change in resistivity of cementitious composites with CNT/TiO2 in experimental data and fitting curve

    图  12  CNT/TiO2水泥基复合材料在循环荷载为4 MPa、6 MPa和8 MPa时的压应力(a)/应变(b)和电阻率变化率

    Figure  12.  Compressive stress (a) /strain (b) and fractional change in resistivity of cementitious composites with CNT/TiO2 under compressive stress amplitudes of 4 MPa, 6 MPa and 8 MPa

    图  13  CNT/TiO2水泥基复合材料在加载速率为0.4 mm/min、0.6 mm/min和0.8 mm/min时的压应力(a)/应变(b)和电阻率变化率

    Figure  13.  Compressive stress (a) /strain (b) and fractional change in resistivity of cementitious composites with CNT/TiO2 under loading rates of 0.4 mm/min, 0.6 mm/min and 0.8 mm/min

    图  14  CNT/TiO2水泥基复合材料在循环荷载为6 MPa和50℃烘24 h时的压应力(a)/应变(b)和电阻率变化率

    Figure  14.  Compressive stress (a) /strain (b) and fractional change in resistivity of cementitious composites with CNT/TiO2 under drying at 50℃ for 24 h and repeated compressive loading with stress amplitude of 6 MPa

    图  15  CNT/TiO2水泥基复合材料在循环荷载为6 MPa和50℃全烘干状态时的压应力(a)/应变(b)和电阻率变化率

    Figure  15.  Compressive stress (a) /strain (b) and fractional change in resistivity of cementitious composites with CNT/TiO2 under full drying at 50℃ and repeated compressive loading with stress amplitude of 6 MPa

    图  16  空白水泥基材料和CNT/TiO2水泥基复合材料在单调加载下的压应力(a)/应变(b)和电阻率变化率

    Figure  16.  Compressive stress (a) /strain (b) and FCR of cementitious composites without and with CNT/TiO2 under monotonic loading (note: FCR represents fractional change in resistivity)

    图  17  CNT/TiO2水泥基复合材料在不同环境因素下的分析:(a)雷达图;(b)封闭区域面积

    Figure  17.  Analysis under different environmental factors of cementitious composites with CNT/TiO2: (a) radar chart; (b) enclosed areas (notes: FCR, SA and SE represent fractional change in resistivity, strain sensitivity and stress sensitivity, respectively)

    表  1  静电自组装CNT/TiO2复合填料的主要性质

    Table  1.   Main properties of electrostatic self-assembly CNT/TiO2 composite fillers

    PropertiesValues
    Mass ratio of CNT:TiO2/wt%20∶80
    Resistivity of CNT/TiO2 composite fillers /(Ω∙cm)<2
    Density of CNT /(g∙cm−3)2.1
    CNT Purity /wt%>90
    Outer Diameter of CNT /nm>50
    Inner Diameter of CNT /nm5-15
    Length of CNT /μm10-20
    Special surface area of CNT /(m2∙g−1)>60
    下载: 导出CSV

    表  2  静电自组装CNT/TiO2水泥基复合材料的配合比

    Table  2.   Mix proportion of cementitious composite with electrostatic self-assembly CNT/TiO2

    Specimen codeBinderCNT/TiO2/vol%
    (CNT/vol%)
    WaterSandSP/wt%
    CementSilica fume
    0.00 vol% CNT0.90.10.00
    (0.00)
    0.41.50.2
    2.40 vol% CNT0.90.17.17
    (2.40)
    0.41.50.2
    Note:SP represents superplasticizer.
    下载: 导出CSV

    表  3  CNT或CNT复合填料水泥基复合材料的电阻率对比

    Table  3.   Comparison of electrical resistivity of cementitious composites with CNT or CNT composite fillers

    TypeCNT
    content
    Electrical resistivity /(Ω∙cm)References
    DCAC
    CNT/TiO2 2.40 vol% 696 532 This paper
    CNT 7.19 vol% 2178 - [27]
    2.50 vol% 38807 - [28]
    1.90 vol% 62333 - [29]
    1.00 wt% 291065 - [30]
    0.50 wt% 801991 82293 [31]
    下载: 导出CSV

    表  4  循环荷载为6 MPa时CNT/TiO2水泥基复合材料的自感知性能评价指标

    Table  4.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under repeated compressive loading with stress amplitude of 6 MPa

    Specimen codeMaximum

    FCR/%
    Stress
    sensitivity/
    (%∙MPa−1)
    Strain
    sensitivity
    0.00 vol% CNT 0.000.00 0
    2.40 vol% CNT49.238.21812
    Note: FCR represents fractional change in resistivity.
    下载: 导出CSV

    表  5  CNT或CNT复合填料水泥基复合材料在循环压缩荷载作用下的电阻率变化率、应力和应变灵敏度对比

    Table  5.   Comparison of FCR, SE and SA of cementitious composites with CNT or CNT composite fillers under repeated compressive loading

    TypeCNT contentMaximum FCR/%SE/
    (%∙MPa−1)
    SARF
    CNT/TiO2 2.40 vol% 49.23 8.210 812.0 This paper
    CNT/NCB 0.86 vol% 6.80 1.650 200.0 [33]
    0.96 vol% 16.00 2.667 - [22]
    CNT 1.70 vol% 19.31 1.930 - [29]
    1.31 vol% - 1.470 132.0 [34]
    5.10 wt.% - 2.870 748.0 [35]
    1.00 wt.% 21.01 - 34.0 [36]
    0.50 wt.% 0.82 0.052 10.6 [31]
    Notes: SE, SA, NCB and RF represent stress sensitivity, strain sensitivity nano carbon black and references, respectively.
    下载: 导出CSV

    表  6  体积排阻效应对水泥基复合材料中CNT掺量的影响

    Table  6.   Effect of excluded volume effect on CNT content of cementitious composites

    CNT content
    /vol%
    Effective CNT content/vol%Increase of CNT content/%
    2.402.525.00
    下载: 导出CSV

    表  7  CNT/TiO2水泥基复合材料的稳健标准误回归结果

    Table  7.   Results of robust standard error regression of cementitious composites with CNT/TiO2

    yModel 1Model 2
    x1x12x2x22
    Coefficient−16.797131.84126−0.153151.461×10−4
    Robust
    Standard error
    0.52500.104310.002805.34×10−6
    t−31.9917.65−54.7027.38
    p>|t|0.0000.0000.0000.000
    F(2, 601)6100.0621217.88
    prob>F0.00000.0000
    R20.86500.9574
    Notes: “y” represents fractional change in resistivity, “x1, x12, x2 and x22” represent stress, square of stress, strain and square of strain, respectively. Model 1: y=(−16.79713 ± 0.5321)x1 + (1.84126 ± 0.11559)x12; Model 2: y=(−0.15315 ± 0.00289 )x2 + (1.46071×10−4±5.90463×10−6)x22.
    下载: 导出CSV

    表  8  CNT/TiO2水泥基复合材料在不同循环荷载时的自感知性能评价指标

    Table  8.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under different compressive stress amplitudes

    Amplitude
    /MPa
    The maximum FCR/%Stress sensitivity
    /(%∙MPa-1)
    Strain sensitivity
    447.1011.781077
    653.17 8.86 881
    858.21 7.28 801
    下载: 导出CSV

    表  9  CNT/TiO2水泥基复合材料在不同加载速率时的自感知性能评价指标

    Table  9.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under different loading rates

    Rate/ (mm∙min−1)The maximum FCR/%Stress sensitivity
    /(%∙MPa−1)
    Strain sensitivity
    0.450.868.48842
    0.652.028.67864
    0.852.568.76876
    下载: 导出CSV

    表  10  CNT/TiO2水泥基复合材料在不同含水率作用下的自感知性能评价指标

    Table  10.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under different water content

    Water
    state
    Water content
    /%
    The maximum FCR/%Stress sensitivity
    /(%∙MPa−1)
    Strain sensitivity
    Wet10049.23 8.21 812
    Drying at 50℃ for 24 h 2860.2310.041035
    Full drying at 50℃ 074.3612.391350
    下载: 导出CSV
  • [1] SIAHKOUHI M, RAZAQPUR G, HOULT N A, et al. Utilization of carbon nanotubes (CNTs) in concrete for structural health monitoring (SHM) purposes: A review[J]. Construction and Building Materials,2021,309:125137. doi: 10.1016/j.conbuildmat.2021.125137
    [2] HAN B G, DING S Q, YU X. Intrinsic self-sensing concrete and structures: A review[J]. Measurement:Journal of the International Measurement Confederation,2015,59:110-128. doi: 10.1016/j.measurement.2014.09.048
    [3] CHUNG D D L. Self-sensing concrete: from resistance-based sensing to capacitance-based sensing[J]. International Journal of Smart and Nano Materials,2021,12(1):1-19. doi: 10.1080/19475411.2020.1843560
    [4] WANG Y Y, ZHANG L Q. Development of self-sensing cementitious composite incorporating hybrid graphene nanoplates and carbon nanotubes for structural health monitoring[J]. Sensors and Actuators A:Physical,2022,336:113367. doi: 10.1016/j.sna.2022.113367
    [5] 欧进萍, 关新春, 李惠. 应力自感知水泥基复合材料 及其传感器的研究进展[J]. 复合材料学报, 2006(4):1-8. doi: 10.3321/j.issn:1000-3851.2006.04.001

    OU Jinping, GUAN Xinchun, LI Hui. State of the art of stress sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica,2006(4):1-8(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.001
    [6] TENG F, LUO J L, GAO Y B, et al. Piezoresistive/ piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review[J]. Nanotechnology Reviews (Berlin),2021,10(1):1873-1894. doi: 10.1515/ntrev-2021-0112
    [7] CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures,1993,2(1):22-30. doi: 10.1088/0964-1726/2/1/004
    [8] TEOMETE E. Transverse strain sensitivity of steel fiber reinforced cement composites tested by compression and split tensile tests[J]. Construction and Building Materials,2014,55:136-145. doi: 10.1016/j.conbuildmat.2014.01.016
    [9] LE H V, LEE D H, KIM D J. Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes[J]. Sensors and Actuators A:Physical,2020,305:111925. doi: 10.1016/j.sna.2020.111925
    [10] 黄世峰, 徐东宇, 徐荣华, 等. 碳纤维/水泥基复合材料微观结构及机敏特性[J]. 复合材料学报, 2006(4):95-99. doi: 10.3321/j.issn:1000-3851.2006.04.017

    HUANG Shifeng, XU Dongyu, XU Ronghua, et al. Microcosmic and smart properties of carbon fiber cement-based composites[J]. Acta Materiae Compositae Sinica,2006(4):95-99(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.017
    [11] HAN B G, ZHANG L Q, ZENG S Z, et al. Nano-core effect in nano-engineered cementitious composites[J]. Composites Part A:Applied Science and Manufacturing,2017,95:100-109. doi: 10.1016/j.compositesa.2017.01.008
    [12] DANOGLIDIS P A, KONSTA-GDOUTOS M S, GDOUTOS E E, et al. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars[J]. Construction and Building Materials,2016,120:265-274. doi: 10.1016/j.conbuildmat.2016.05.049
    [13] ÇELIK D N, YıLDıRıM G, AL-DAHAWI A, et al. Self-monitoring of flexural fatigue damage in large-scale steel-reinforced cementitious composite beams[J]. Cement and Concrete Composites,2021,123:104183. doi: 10.1016/j.cemconcomp.2021.104183
    [14] CASTAÑEDA-SALDARRIAGA D L, ALVAREZ- MONTOYA J, MARTÍNEZ-TEJADA V, et al. Toward Structural Health Monitoring of Civil Structures Based on Self-Sensing Concrete Nanocomposites: A Validation in a Reinforced-Concrete Beam[J]. International Journal of Concrete Structures and Materials,2021,15(1):99-116.
    [15] 施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5):1033-1049. doi: 10.13801/j.cnki.fhclxb.20180328.003

    SHI Tao, ZHU Min, LI Zexin, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1033-1049(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180328.003
    [16] SINDU B S, SASMAL S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants[J]. Construction and Building Materials,2017,155:389-399. doi: 10.1016/j.conbuildmat.2017.08.059
    [17] GUAN X C, BAI S, LI H, et al. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cementitious composites under the early-age freezing conditions[J]. Construction and Building Materials,2020,233:117317. doi: 10.1016/j.conbuildmat.2019.117317
    [18] SIKORA P, ABD EIRAHMAN M, CHUNG S Y, et al. Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature[J]. Cement and Concrete Composites,2019,95:193-204. doi: 10.1016/j.cemconcomp.2018.11.006
    [19] ZHANG L Q, ZHENG Q F, DONG X F, et al. Tailoring sensing properties of smart cementitious composites based on excluded volume theory and electrostatic self-assembly[J]. Construction and Building Materials,2020,256:119452. doi: 10.1016/j.conbuildmat.2020.119452
    [20] 张立卿. 水泥基材料纳米改性机制与复合静电自组装纳米填料改性[D]. 大连: 大连理工大学, 2018.

    ZHANG Liqing. Nano-Modification Mechanisms and Electrostatic Self-Assembly Nano Filler Modification of Cement Based Materials[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [21] ZHANG L Q, DING S Q, LI L W, et al. Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials[J]. Composites Part A:Applied Science and Manufacturing,2018,109:303-320. doi: 10.1016/j.compositesa.2018.03.020
    [22] ZHANG L Q, HAN B G, OUYANG J, et al. Multifunctionality of cement based composite with electrostatic self-assembled CNT/NCB composite filler[J]. Archives of Civil and Mechanical Engineering,2017,17(2):354-364. doi: 10.1016/j.acme.2016.11.001
    [23] ZHANG L Q, Li L W, WANG Y L, et al. Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler[J]. Construction and Building Materials,2020,238:117787. doi: 10.1016/j.conbuildmat.2019.117787
    [24] HAN B G, ZHANG L Q, SUN S W, et al. Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality[J]. Composites Part A:Applied Science and Manufacturing,2015,79:103-115. doi: 10.1016/j.compositesa.2015.09.016
    [25] HAN B G, SUN S W, DING S Q, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A:Applied Science and Manufacturing,2015,70:69-81. doi: 10.1016/j.compositesa.2014.12.002
    [26] HAN B G, WANG Y Y, DING S Q, et al. Self-sensing cementitious composites incorporated with botryoid hybrid nano-carbon materials for smart infrastructures[J]. Journal of Intelligent Material Systems and Structures,2017,28(6):699-727. doi: 10.1177/1045389X16657416
    [27] 罗健林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    LUO Jianlin. Fabrication and functional properties of multi-walled carbon nanotube/cement composites[D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
    [28] LIU L Y, XU J X, YIN T J, et al. Improved conductivity and piezoresistive properties of Ni-CNTs cement-based composites under magnetic field[J]. Cement and Concrete Composites,2021,121:104089. doi: 10.1016/j.cemconcomp.2021.104089
    [29] YIN T J, XU J X, WANG Y, et al. Increasing self-sensing capability of carbon nanotubes cement-based materials by simultaneous addition of Ni nanofibers with low content[J]. Construction and Building Materials,2020,254:119306. doi: 10.1016/j.conbuildmat.2020.119306
    [30] WANG L N, ASLANI F. Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales[J]. Construction and Building Materials,2022,314:125679. doi: 10.1016/j.conbuildmat.2021.125679
    [31] DONG S F, ZHANG W, WANG D N, et al. Modifying self-sensing cement-based composites through multiscale composition[J]. Measurement Science and Technology,2021,32(7):74002. doi: 10.1088/1361-6501/abdfed
    [32] 左俊卿, 周虹, 姚武, 等. CNT-CF水泥基材料传感特性研究[J]. 材料导报, 2017, 31(22):125-129. doi: 10.11896/j.issn.1005-023X.2017.022.025

    ZUO Junqing, ZHOU Hong, YAO Wu, et al. Research on the Sensing Properties of CNT-CF/Cement-based Materials[J]. Materials Reports,2017,31(22):125-129(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.022.025
    [33] ZHANG L Q, DING S Q, DONG S F, et al. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers[J]. Materials Research Express,2017,4(12):125704. doi: 10.1088/2053-1591/aa9d1d
    [34] LUO J L, ZHANG C W, DUAN Z D, et al. Influences of multi-walled carbon nanotube (MCNT) fraction, moisture, stress/strain level on the electrical properties of MCNT cement-based composites[J]. Sensors and Actuators A:Physical.,2018,280:413-421. doi: 10.1016/j.sna.2018.08.010
    [35] DING S Q, XIANG Y, NI Y Q, et al. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures[J]. Nano Today,2022,43:101438. doi: 10.1016/j.nantod.2022.101438
    [36] JANG D, YOON H N, SEO J, et al. Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor[J]. Journal of Building Engineering,2022,47:103816. doi: 10.1016/j.jobe.2021.103816
    [37] LOUKILI A, KHELIDJ A, RICHARD P. Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete[J]. Cement and Concrete Research,1999,29(4):577-584. doi: 10.1016/S0008-8846(99)00022-8
    [38] ZHANG L Q, DING S Q, HAN B G, et al. Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/ nanocarbon black composite filler[J]. Composites Part A:Applied Science and Manufacturing,2019,119:8-20. doi: 10.1016/j.compositesa.2019.01.010
    [39] UBERTINI F, LAFLAMME S, CEYLAN H, et al. Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors[J]. Smart Materials and Structures,2014,23(4):45023. doi: 10.1088/0964-1726/23/4/045023
    [40] MENG W N, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research,2017,101:46-54. doi: 10.1016/j.cemconres.2017.08.018
  • 加载中
计量
  • 文章访问数:  141
  • HTML全文浏览量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-23
  • 录用日期:  2022-12-04
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回