留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能

张立卿 占小静 韩宝国 许开成 王云洋

张立卿, 占小静, 韩宝国, 等. 静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能[J]. 复合材料学报, 2023, 40(9): 5225-5240. doi: 10.13801/j.cnki.fhclxb.20221223.001
引用本文: 张立卿, 占小静, 韩宝国, 等. 静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能[J]. 复合材料学报, 2023, 40(9): 5225-5240. doi: 10.13801/j.cnki.fhclxb.20221223.001
ZHANG Liqing, ZHAN Xiaojing, HAN Baoguo, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5225-5240. doi: 10.13801/j.cnki.fhclxb.20221223.001
Citation: ZHANG Liqing, ZHAN Xiaojing, HAN Baoguo, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5225-5240. doi: 10.13801/j.cnki.fhclxb.20221223.001

静电自组装碳纳米管/二氧化钛水泥基复合材料的自感知性能

doi: 10.13801/j.cnki.fhclxb.20221223.001
基金项目: 国家自然基金地区项目(51968021);中国博士后科学基金 (2022M713497);江西省自然科学基金(20202BAB204031;20202BABL214042);江西省教育厅一般项目(GJJ210656)
详细信息
    通讯作者:

    王云洋,博士,副教授,研究方向为智能混凝土材料与结构、再生混凝土的建材资源化利用和钢管混凝土等E-mail: hnwangyunyang@126.com

  • 中图分类号: TU528;TB333

Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide

Funds: National Natural Science Foundation Area Project (51968021); China Postdoctoral Science Foundation (2022M713497); Natural Science Foundation of Jiangxi Province (20202BAB204031; 20202BABL214042); General Project of Education Department of Jiangxi Province (GJJ210656)
  • 摘要: 基于体积排阻效应,采用导电性能优异的碳纳米管(CNT)和微尺度二氧化钛(TiO2)通过静电自组装技术制得CNT/TiO2复合填料并将其与水泥基材料复合,有望发展具有优异自感知性能的水泥基复合材料。为此,对静电自组装CNT/TiO2水泥基复合材料的电学性能及加载幅值、加载速率和含水率等不同环境条件下的自感知性能进行了研究,并分析了静电自组装CNT/TiO2复合填料对水泥基复合材料电学性能和自感知性能的改善机制,最后对比了不同环境因素对自感知性能的影响规律。研究结果表明,当CNT的体积掺量为2.40vol%时,静电自组装CNT/TiO2水泥基复合材料的电阻率降低了99.8%。在循环压缩荷载作用下,静电自组装CNT/TiO2水泥基复合材料的最大电阻率变化率达到49.23%,应力灵敏度和应变灵敏度分别达到8.21%/MPa和812。当加载幅值、加载速率及含水率不同时,静电自组装CNT/TiO2水泥基复合材料均表现出优异的感知性能,其中灵敏度随着加载幅值和加载速率的增加分别降低和提高,但最大电阻率变化率、应力灵敏度和应变灵敏度均随着含水率降低而提高。50℃全烘干状态时,静电自组装CNT/TiO2水泥基复合材料的最大电阻率变化率、应力和应变灵敏度分别达到74.36%、12.39%/MPa和1350。不同环境因素对静电自组装CNT/TiO2水泥基复合材料自感知性能的影响大小顺序为:含水率、加载幅值和加载速率。

     

  • 图  1  静电自组装碳纳米管(CNT)/TiO2复合填料的示意图 (a) 和SEM图像 (b)

    Figure  1.  Schematic diagram (a) and SEM image (b) of electrostatic self-assembly carbon nanotube (CNT)/TiO2 composite fillers

    图  2  静电自组装CNT/TiO2水泥基复合材料的制备流程

    Figure  2.  Fabrication process of cementitious composite with electrostatic self-assembly CNT/TiO2

    图  3  静电自组装CNT/TiO2水泥基复合材料的电阻测试系统照片

    Figure  3.  Photographs on electrical resistivity measurement systems of cementitious composites with electrostatic self-assembly CNT/TiO2

    图  4  静电自组装CNT/TiO2水泥基复合材料的自感知性能测试过程

    Figure  4.  Self-sensing performance testing process of cementitious composites with electrostatic self-assembly CNT/TiO2

    图  5  空白水泥基材料和CNT/TiO2水泥基复合材料在不同龄期下的直流电阻率

    Figure  5.  DC electrical resistivity of cementitious composites without and with CNT/TiO2 at different age

    图  6  空白水泥基材料和CNT/TiO2水泥基复合材料在不同龄期下的交流电阻率

    Figure  6.  AC electrical resistivity of cementitious composites without and with CNT/TiO2 at different age

    图  7  CNT/TiO2水泥基复合材料的导电机制示意图

    Figure  7.  Schematic diagram of conduction mechanism of cementitious composites with CNT/TiO2

    图  8  CNT/TiO2水泥基复合材料的EDS (a) 和SEM图像 ((b), (c))

    Figure  8.  EDS (a) and SEM ((b), (c)) images of cementitious composites with CNT/TiO2

    图  9  空白水泥基材料在循环荷载为6 MPa作用下的压应力 (a)、应变 (b) 和电阻率变化率

    Figure  9.  Compressive stress (a), strain (b) and fractional change in resistivity of cementitious composites without CNT/TiO2 under repeated compressive loading with stress amplitude of 6 MPa

    图  10  CNT/TiO2水泥基复合材料在循环荷载为6 MPa作用下的压应力 (a)、应变 (b) 和电阻率变化率(FCR)

    Figure  10.  Compressive stress (a), strain (b) and fractional change in resistivity (FCR) of cementitious composites with CNT/TiO2 under repeated compressive loading with stress amplitude of 6 MPa

    图  11  CNT/TiO2水泥基复合材料压应力 (a)、应变 (b) 与FCR的试验数据和拟合函数

    Figure  11.  Relationship between compressive stress (a) , strain (b) and FCR of cementitious composites with CNT/TiO2 in experimental data and fitting curve

    图  12  CNT/TiO2水泥基复合材料在循环荷载为4 MPa、6 MPa和8 MPa时的压应力 (a)、应变 (b) 和FCR

    Figure  12.  Compressive stress (a), strain (b) and FCR of cementitious composites with CNT/TiO2 under compressive stress amplitudes of 4 MPa, 6 MPa and 8 MPa

    图  13  CNT/TiO2水泥基复合材料在加载速率为0.4 mm/min、0.6 mm/min和0.8 mm/min时的压应力 (a)、应变 (b) 和电阻率变化率

    Figure  13.  Compressive stress (a), strain (b) and fractional change in resistivity of cementitious composites with CNT/TiO2 under loading rates of 0.4 mm/min, 0.6 mm/min and 0.8 mm/min

    图  14  CNT/TiO2水泥基复合材料在循环荷载为6 MPa和50℃烘24 h时的压应力 (a)、应变 (b) 和电阻率变化率

    Figure  14.  Compressive stress (a), strain (b) and FCR of cementitious composites with CNT/TiO2 under drying at 50℃ for 24 h and repeated compressive loading with stress amplitude of 6 MPa

    图  15  CNT/TiO2水泥基复合材料在循环荷载为6 MPa和50℃全烘干状态时的压应力 (a)、应变 (b) 和电阻率变化率

    Figure  15.  Compressive stress (a), strain (b) and FCR of cementitious composites with CNT/TiO2 under full drying at 50℃ and repeated compressive loading with stress amplitude of 6 MPa

    图  16  空白水泥基材料和CNT/TiO2水泥基复合材料在单调加载下的压应力 (a)、应变 (b) 和FCR

    Figure  16.  Compressive stress (a), strain (b) and FCR of cementitious composites without and with CNT/TiO2 under monotonic loading

    图  17  CNT/TiO2水泥基复合材料在不同环境因素下的分析:(a) 雷达图;(b) 封闭区域面积

    Figure  17.  Analysis under different environmental factors of cementitious composites with CNT/TiO2: (a) Radar chart; (b) Enclosed areas

    表  1  静电自组装CNT/TiO2复合填料的主要性质

    Table  1.   Main properties of electrostatic self-assembly CNT/TiO2 composite fillers

    PropertiesValues
    Mass ratio of CNT∶TiO220∶80
    Resistivity of CNT/TiO2 composite fillers /(Ω∙cm)<2
    Density of CNT/(g∙cm−3)2.1
    CNT purity/wt%>90
    Outer diameter of CNT/nm>50
    Inner diameter of CNT/nm5-15
    Length of CNT/μm10-20
    Special surface area of CNT/(m2∙g−1)>60
    下载: 导出CSV

    表  2  静电自组装CNT/TiO2水泥基复合材料的配合比

    Table  2.   Mix proportion of cementitious composite with electrostatic self-assembly CNT/TiO2

    Specimen codeBinderCNT/TiO2/vol%
    (CNT/vol%)
    WaterSandSP/wt%
    CementSilica fume
    0.00vol%CNT0.90.10.00
    (0.00)
    0.41.50.2
    2.40vol%CNT0.90.17.17
    (2.40)
    0.41.50.2
    Note: SP—Superplasticizer.
    下载: 导出CSV

    表  3  CNT或CNT复合填料水泥基复合材料的电阻率对比

    Table  3.   Comparison of electrical resistivity of cementitious composites with CNT or CNT composite fillers

    TypeCNT
    content
    Electrical resistivity /(Ω∙cm)References
    DCAC
    CNT/TiO2 2.40vol% 696 532 This paper
    7.19vol% 2178 [27]
    2.50vol% 38807 [28]
    CNT 1.90vol% 62333 [29]
    1.00wt% 291065 [30]
    0.50wt% 801991 82293 [31]
    下载: 导出CSV

    表  4  循环荷载为6 MPa时CNT/TiO2水泥基复合材料的自感知性能评价指标

    Table  4.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under repeated compressive loading with stress amplitude of 6 MPa

    Specimen codeMaximum

    FCR/%
    Stress
    sensitivity/
    (%∙MPa−1)
    Strain
    sensitivity
    0.00vol%CNT 0.000.00 0
    2.40vol%CNT 49.238.21812
    Note: FCR—Fractional change in resistivity.
    下载: 导出CSV

    表  5  CNT或CNT复合填料水泥基复合材料在循环压缩荷载作用下的FCR、SESA对比

    Table  5.   Comparison of FCR, SE and SA of cementitious composites with CNT or CNT composite fillers under repeated compressive loading

    TypeCNT contentMaximum FCR/%SE/
    (%∙MPa−1)
    SARef.
    CNT/TiO2 2.40vol% 49.23 8.210 812.0 This paper
    CNT/NCB 0.86vol% 6.80 1.650 200.0 [33]
    0.96vol% 16.00 2.667 [22]
    CNT 1.70vol% 19.31 1.930 [29]
    1.31vol% 1.470 132.0 [34]
    5.10wt% 2.870 748.0 [35]
    1.00wt% 21.01 34.0 [36]
    0.50wt% 0.82 0.052 10.6 [31]
    Note: SE, SA, NCB and RF—Stress sensitivity, strain sensitivity, nano carbon black and references, respectively.
    下载: 导出CSV

    表  6  体积排阻效应对水泥基复合材料中CNT掺量的影响

    Table  6.   Effect of excluded volume effect on CNT content of cementitious composites

    CNT content
    /vol%
    Effective CNT content/vol%Increase of CNT content/%
    2.402.525.00
    下载: 导出CSV

    表  7  CNT/TiO2水泥基复合材料的稳健标准误回归结果

    Table  7.   Results of robust standard error regression of cementitious composites with CNT/TiO2

    yModel 1Model 2
    x1x12x2x22
    Coefficient−16.797131.84126−0.153151.461×10−4
    Robust standard error0.52500.104310.002805.34×10−6
    t−31.9917.65−54.7027.38
    p>|t|0.0000.0000.0000.000
    F(2, 601)6100.0621217.88
    prob>F0.00000.0000
    R20.86500.9574
    Notes: y—Fractional change in resistivity; x1, x12, x2 and x22—Stress, square of stress, strain and square of strain, respectively; t—Method used to test the significance of each variable in a regression equation; p—Probability distribution; F—Method used to test the overall significance of regression equations; Model 1: y=(−16.79713 ± 0.5321)x1+(1.84126±0.11559)x12; Model 2: y=(−0.15315±0.00289 )x2+(1.46071×10−4±5.90463×10−6)x22.
    下载: 导出CSV

    表  8  CNT/TiO2水泥基复合材料在不同循环荷载时的自感知性能评价指标

    Table  8.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under different compressive stress amplitudes

    Amplitude
    /MPa
    Maximum FCR/%Stress sensitivity
    /(%∙MPa−1)
    Strain sensitivity
    447.1011.781077
    653.17 8.86 881
    858.21 7.28 801
    下载: 导出CSV

    表  9  CNT/TiO2水泥基复合材料在不同加载速率时的自感知性能评价指标

    Table  9.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under different loading rates

    Rate/ (mm∙min−1)Maximum FCR/%Stress sensiti-
    vity/(%∙MPa−1)
    Strain sensitivity
    0.450.868.48842
    0.652.028.67864
    0.852.568.76876
    下载: 导出CSV

    表  10  CNT/TiO2水泥基复合材料在不同含水率作用下的自感知性能评价指标

    Table  10.   Self-sensing performance evaluation indexes of cementitious composites with CNT/TiO2 under different water content

    Water
    state
    Water content
    /%
    Maximum FCR/%Stress sensitivity
    /(%∙MPa−1)
    Strain sensitivity
    Wet10049.23 8.21 812
    Drying at 50℃ for 24 h 2860.2310.041035
    Full drying at 50℃ 074.3612.391350
    下载: 导出CSV
  • [1] SIAHKOUHI M, RAZAQPUR G, HOULT N A, et al. Utilization of carbon nanotubes (CNTs) in concrete for structural health monitoring (SHM) purposes: A review[J]. Construction and Building Materials,2021,309:125137. doi: 10.1016/j.conbuildmat.2021.125137
    [2] HAN B G, DING S Q, YU X. Intrinsic self-sensing concrete and structures: A review[J]. Measurement,2015,59:110-128. doi: 10.1016/j.measurement.2014.09.048
    [3] CHUNG D D L. Self-sensing concrete: From resistance-based sensing to capacitance-based sensing[J]. International Journal of Smart and Nano Materials,2021,12(1):1-19. doi: 10.1080/19475411.2020.1843560
    [4] WANG Y Y, ZHANG L Q. Development of self-sensing cementitious composite incorporating hybrid graphene nanoplates and carbon nanotubes for structural health monitoring[J]. Sensors and Actuators A: Physical,2022,336:113367. doi: 10.1016/j.sna.2022.113367
    [5] 欧进萍, 关新春, 李惠. 应力自感知水泥基复合材料 及其传感器的研究进展[J]. 复合材料学报, 2006(4):1-8. doi: 10.3321/j.issn:1000-3851.2006.04.001

    OU Jinping, GUAN Xinchun, LI Hui. State-of-the-art of stress-sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica,2006(4):1-8(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.001
    [6] TENG F, LUO J L, GAO Y B, et al. Piezoresistive/ piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review[J]. Nanotechnology Reviews,2021,10(1):1873-1894. doi: 10.1515/ntrev-2021-0112
    [7] CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures,1993,2(1):22-30. doi: 10.1088/0964-1726/2/1/004
    [8] TEOMETE E. Transverse strain sensitivity of steel fiber reinforced cement composites tested by compression and split tensile tests[J]. Construction and Building Materials,2014,55:136-145. doi: 10.1016/j.conbuildmat.2014.01.016
    [9] LE H V, LEE D H, KIM D J. Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes[J]. Sensors and Actuators A: Physical,2020,305:111925. doi: 10.1016/j.sna.2020.111925
    [10] 黄世峰, 徐东宇, 徐荣华, 等. 碳纤维/水泥基复合材料微观结构及机敏特性[J]. 复合材料学报, 2006, 23(4):95-99. doi: 10.3321/j.issn:1000-3851.2006.04.017

    HUANG Shifeng, XU Dongyu, XU Ronghua, et al. Microcosmic and smart properties of carbon fiber cement-based composites[J]. Acta Materiae Compositae Sinica,2006,23(4):95-99(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.017
    [11] HAN B G, ZHANG L Q, ZENG S Z, et al. Nano-core effect in nano-engineered cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2017,95:100-109. doi: 10.1016/j.compositesa.2017.01.008
    [12] DANOGLIDIS P A, KONSTA-GDOUTOS M S, GDOUTOS E E, et al. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars[J]. Construction and Building Materials,2016,120:265-274. doi: 10.1016/j.conbuildmat.2016.05.049
    [13] ÇELIK D N, YıLDıRıM G, AL-DAHAWI A, et al. Self-monitoring of flexural fatigue damage in large-scale steel-reinforced cementitious composite beams[J]. Cement and Concrete Composites,2021,123:104183. doi: 10.1016/j.cemconcomp.2021.104183
    [14] CASTAÑEDA-SALDARRIAGA D L, ALVAREZ-MONTOYA J, MARTÍNEZ-TEJADA V, et al. Toward structural health monitoring of civil structures based on self-sensing concrete nanocomposites: A validation in a reinforced-concrete beam[J]. International Journal of Concrete Structures and Materials,2021,15(1):99-116.
    [15] 施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5):1033-1049. doi: 10.13801/j.cnki.fhclxb.20180328.003

    SHI Tao, ZHU Min, LI Zexin, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1033-1049(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180328.003
    [16] SINDU B S, SASMAL S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants[J]. Construction and Building Materials,2017,155:389-399. doi: 10.1016/j.conbuildmat.2017.08.059
    [17] GUAN X C, BAI S, LI H, et al. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cementitious composites under the early-age freezing conditions[J]. Construction and Building Materials,2020,233:117317. doi: 10.1016/j.conbuildmat.2019.117317
    [18] SIKORA P, ABD ELRAHMAN M, CHUNG S Y, et al. Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature[J]. Cement and Concrete Composites,2019,95:193-204. doi: 10.1016/j.cemconcomp.2018.11.006
    [19] ZHANG L Q, ZHENG Q F, DONG X F, et al. Tailoring sensing properties of smart cementitious composites based on excluded volume theory and electrostatic self-assembly[J]. Construction and Building Materials,2020,256:119452. doi: 10.1016/j.conbuildmat.2020.119452
    [20] 张立卿. 水泥基材料纳米改性机制与复合静电自组装纳米填料改性[D]. 大连: 大连理工大学, 2018.

    ZHANG Liqing. Nano-modification mechanisms and electrostatic self-assembly nano filler modification of cement based materials[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [21] ZHANG L Q, DING S Q, LI L W, et al. Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials[J]. Composites Part A: Applied Science and Manufacturing,2018,109:303-320. doi: 10.1016/j.compositesa.2018.03.020
    [22] ZHANG L Q, HAN B G, OUYANG J, et al. Multifunctionality of cement based composite with electrostatic self-assembled CNT/NCB composite filler[J]. Archives of Civil and Mechanical Engineering,2017,17(2):354-364. doi: 10.1016/j.acme.2016.11.001
    [23] ZHANG L Q, LI L W, WANG Y L, et al. Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler[J]. Construction and Building Materials,2020,238:117787. doi: 10.1016/j.conbuildmat.2019.117787
    [24] HAN B G, ZHANG L Q, SUN S W, et al. Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality[J]. Composites Part A: Applied Science and Manufacturing,2015,79:103-115. doi: 10.1016/j.compositesa.2015.09.016
    [25] HAN B G, SUN S W, DING S Q, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2015,70:69-81. doi: 10.1016/j.compositesa.2014.12.002
    [26] HAN B G, WANG Y Y, DING S Q, et al. Self-sensing cementitious composites incorporated with botryoid hybrid nano-carbon materials for smart infrastructures[J]. Journal of Intelligent Material Systems and Structures,2017,28(6):699-727. doi: 10.1177/1045389X16657416
    [27] 罗健林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    LUO Jianlin. Fabrication and functional properties of multi-walled carbon nanotube/cement composites[D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
    [28] LIU L Y, XU J X, YIN T J, et al. Improved conductivity and piezoresistive properties of Ni-CNTs cement-based composites under magnetic field[J]. Cement and Concrete Composites,2021,121:104089. doi: 10.1016/j.cemconcomp.2021.104089
    [29] YIN T J, XU J X, WANG Y, et al. Increasing self-sensing capability of carbon nanotubes cement-based materials by simultaneous addition of Ni nanofibers with low content[J]. Construction and Building Materials,2020,254:119306. doi: 10.1016/j.conbuildmat.2020.119306
    [30] WANG L N, ASLANI F. Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales[J]. Construction and Building Materials,2022,314:125679. doi: 10.1016/j.conbuildmat.2021.125679
    [31] DONG S F, ZHANG W, WANG D N, et al. Modifying self-sensing cement-based composites through multiscale composition[J]. Measurement Science and Technology,2021,32(7):74002. doi: 10.1088/1361-6501/abdfed
    [32] 左俊卿, 周虹, 姚武, 等. CNT-CF水泥基材料传感特性研究[J]. 材料导报, 2017, 31(22):125-129. doi: 10.11896/j.issn.1005-023X.2017.022.025

    ZUO Junqing, ZHOU Hong, YAO Wu, et al. Research on the sensing properties of CNT-CF/cement-based materials[J]. Materials Reports,2017,31(22):125-129(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.022.025
    [33] ZHANG L Q, DING S Q, DONG S F, et al. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers[J]. Materials Research Express,2017,4(12):125704. doi: 10.1088/2053-1591/aa9d1d
    [34] LUO J L, ZHANG C W, DUAN Z D, et al. Influences of multi-walled carbon nanotube (MCNT) fraction, moisture, stress/strain level on the electrical properties of MCNT cement-based composites[J]. Sensors and Actuators A: Physical,2018,280:413-421. doi: 10.1016/j.sna.2018.08.010
    [35] DING S Q, XIANG Y, NI Y Q, et al. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures[J]. Nano Today,2022,43:101438. doi: 10.1016/j.nantod.2022.101438
    [36] JANG D, YOON H N, SEO J, et al. Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor[J]. Journal of Building Engineering,2022,47:103816. doi: 10.1016/j.jobe.2021.103816
    [37] LOUKILI A, KHELIDJ A, RICHARD P. Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete[J]. Cement and Concrete Research,1999,29(4):577-584. doi: 10.1016/S0008-8846(99)00022-8
    [38] ZHANG L Q, DING S Q, HAN B G, et al. Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/ nanocarbon black composite filler[J]. Composites Part A: Applied Science and Manufacturing,2019,119:8-20. doi: 10.1016/j.compositesa.2019.01.010
    [39] UBERTINI F, LAFLAMME S, CEYLAN H, et al. Novel nanocomposite technologies for dynamic monitoring of structures: A comparison between cement-based embeddable and soft elastomeric surface sensors[J]. Smart Materials and Structures,2014,23(4):045023. doi: 10.1088/0964-1726/23/4/045023
    [40] MENG W N, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research,2017,101:46-54. doi: 10.1016/j.cemconres.2017.08.018
  • 加载中
图(17) / 表(10)
计量
  • 文章访问数:  614
  • HTML全文浏览量:  222
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-23
  • 录用日期:  2022-12-04
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回