留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于加工变形的复合材料固化残余应力评估方法

刘学术 乔仁勇

刘学术, 乔仁勇. 基于加工变形的复合材料固化残余应力评估方法[J]. 复合材料学报, 2023, 40(7): 4260-4269. doi: 10.13801/j.cnki.fhclxb.20220922.002
引用本文: 刘学术, 乔仁勇. 基于加工变形的复合材料固化残余应力评估方法[J]. 复合材料学报, 2023, 40(7): 4260-4269. doi: 10.13801/j.cnki.fhclxb.20220922.002
LIU Xueshu, QIAO Renyong. Cure-induced residual stresses assessment of composite materials based on machining deformation[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4260-4269. doi: 10.13801/j.cnki.fhclxb.20220922.002
Citation: LIU Xueshu, QIAO Renyong. Cure-induced residual stresses assessment of composite materials based on machining deformation[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4260-4269. doi: 10.13801/j.cnki.fhclxb.20220922.002

基于加工变形的复合材料固化残余应力评估方法

doi: 10.13801/j.cnki.fhclxb.20220922.002
基金项目: 中央高校基础科研业务费(DUT21 GF305);山东省海上航天装备技术创新中心(鲁东大学)开放课题基金(MAETIC2021-04)
详细信息
    通讯作者:

    刘学术,博士,副教授,硕士生导师,研究方向为复合材料制件连接装配 E-mail: liuxs@dlut.edu.cn

  • 中图分类号: TB332

Cure-induced residual stresses assessment of composite materials based on machining deformation

Funds: The Fundamental Research Funds for the Central Universities (DUT21 GF305); Supported by the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center, Ludong University (MAETIC2021-04)
  • 摘要: 各向异性的复合材料在固化成型过程中极易产生残余应力,直接影响后续的加工与连接装配。因此,掌握复合材料固化残余应力的分布规律是实现复合材料制件高性能制造的前提和基础。本文在分析传统切割槽法测量应力的基础上,根据变形产生机制将制件在切割槽加工后所产生的变形分为由固化残余应力释放及重力引起的两部分组成。在利用有限元方法给出重力影响制件几何变形规律后,依据弯曲变形理论建立了固化残余应力与试件几何变形之间的映射关系,并据此获得固化残余应力分布状态。与传统切割槽法所得结果对比后表明:本文所提方法能得到与传统切割槽法相一致的应力分布规律;当选择合适的测量点位置后二者对固化残余应力估算的平均误差可控制在14%以内。

     

  • 图  1  切割槽法示意图

    Figure  1.  Slitting method schematic

    σx(z)—Residual stress component; d—Cutting depth; t—Thickness of specimen; u—Width of slitting; λ—Width of residual stress release area; S—Wall surface

    图  2  变形区域简化力学模型

    Figure  2.  Mechanical model of deformation region

    Fx(d)—Equivalent force; L—Length of deformation area of the specimen; q(d)—Distance from the action position of Fx(d) to the neutral plane of the cantilever beam

    图  3  力学模型

    Figure  3.  Mechanical model

    Me(d)—Moment generated by Fx(d); ω(x)—Total deflection in x point;ωm(x)—Deflection caused by residual stress;ωG(x)—Deflection caused by gravity G

    图  4  三角附加应力

    Figure  4.  Triangular additional stress

    σd—Initial curing stress; Sd—Additional stress on top surface; S'd—Additional stress on the lower surface; hud—Distance from the neutral plane to the upper surface; hld—Distance from neutral plane to the lower surface; Δd—Depth increment; h(d)—Position of the neutral plane of the specimen

    图  5  激光测距仪固定位置 (a) 及试验装置图 (b)

    Figure  5.  Laser rangefinder location (a) and experimental setup (b)

    图  6  激光测距仪及应变片布置示意图

    Figure  6.  Schematic diagram of laser rangefinder and strain gauge arrangement

    图  7  有限元模型

    Figure  7.  Finite element model

    U1, U2, U3, UR1, UR2, UR3—Displacement and rotational degrees of freedom along 1, 2 and 3 axis respectively

    图  8  铝合金-复合材料层压板不同位置处应变-切深关系曲线

    Figure  8.  Strain-depth curves of aluminum-composite laminate at different locations

    图  9  铝合金-复合材料层压板不同位置处应力-切深曲线

    Figure  9.  Stress-depth curves of aluminum-composite laminate at different locations

    图  10  铝合金-复合材料层压板不同位置处位移-切深曲线

    Figure  10.  Displacement-depth curves of aluminum-composite laminate at different locations

    图  11  铝合金-复合材料层压板重力产生位移-切深曲线

    Figure  11.  Displacement-depth curves induced by gravity of aluminum-composite laminate

    图  12  重力消除后铝合金-复合材料层压板位移-切深曲线

    Figure  12.  Displacement-depth curves of aluminum-composite laminate without gravity

    图  13  铝合金-复合材料层压板半解析法与切割槽法应力对比曲线

    Figure  13.  Stress comparison curves of aluminum-composite laminate between the semi-analytical method and the slitting method

    表  1  试件力学性能

    Table  1.   Mechanical properties of specimen

    AluminumE=70 GPaG=27 GPaν=0.33
    CompositeEx=Ey=6.5 GPaGxy=2.5 GPaν=0.31
    Notes: E—Elastic modulus; G—Shear modulus; ν—Poisson's ratio.
    下载: 导出CSV

    表  2  加工参数

    Table  2.   Machining parameters

    Spindle speed/(r·min−1)Feed rate
    /(mm·min−1)
    Cutting depth/mmCutting times
    4000180129
    下载: 导出CSV

    表  3  铝合金-复合材料层压板应力对比及误差分析

    Table  3.   Stress comparison and error analysis of aluminum-composite laminate

    Depth/mmSlitting method/MPaSemi-analytical method/MPaError/%
    80 mm100 mm140 mm80 mm100 mm140 mm
    1 0.71 0.49 0.46 0.46 30.8 34.9 35.3
    2 −0.19 −0.11 −0.07 −0.05 43.4 60.7 72.0
    3 −1.03 −0.67 −0.67 −0.62 35.2 35.0 39.9
    4 −1.55 −1.14 −1.16 −1.16 26.2 25.0 24.8
    5 −1.85 −1.51 −1.55 −1.59 18.5 16.3 13.9
    6 −1.97 −1.80 −1.72 −1.83 8.7 12.6 7.2
    7 −1.92 −1.83 −1.92 −1.92 4.9 0.0 0.3
    8 −1.74 −1.64 −1.63 −1.77 5.7 6.3 1.9
    9 −1.44 −1.42 −1.49 −1.55 0.9 3.5 7.6
    10 −1.04 −1.15 −1.11 −1.09 10.7 7.1 4.9
    11 −0.57 −0.68 −0.64 −0.55 19.1 12.8 3.3
    12 −0.05 −0.12 −0.03 −0.06 124.0 51.1 21.8
    13 0.49 0.50 0.55 0.38 2.1 11.4 23.2
    14 1.04 1.11 1.20 1.05 6.9 15.7 1.3
    15 1.57 1.89 1.84 1.80 20.3 17.7 14.7
    16 2.05 2.48 2.36 2.31 20.9 15.0 12.3
    17 2.48 2.97 2.94 2.83 19.8 18.8 14.1
    18 2.81 3.35 3.34 3.20 19.0 18.6 14.0
    19 3.04 3.56 3.49 3.44 17.3 14.7 13.1
    20 3.13 3.59 3.49 3.48 14.6 11.5 11.3
    21 3.07 3.30 3.28 3.24 7.7 6.9 5.7
    22 2.83 2.81 2.79 2.80 0.5 1.2 0.8
    23 2.38 2.21 2.22 2.28 7.4 6.7 4.2
    24 1.72 1.54 1.63 1.64 10.5 5.2 4.6
    25 0.80 0.58 0.69 0.79 28.2 13.7 1.8
    26 −0.38 −0.33 −0.30 −0.34 12.3 19.4 9.4
    27 −1.85 −1.46 −1.47 −1.57 21.0 20.5 15.2
    28 −3.24 −2.50 −2.63 −2.75 22.9 18.7 15.2
    29 −4.57 −3.61 −3.73 −3.92 20.9 18.3 14.3
    Average error 20.0 17.2 14.1
    下载: 导出CSV
  • [1] MAHMOUDI A H, SHEIKHPOUR M R, HEYDARIAN S. A novel cutting strategy for measuring two components of residual stresses using slitting method[J]. Experimental Mechanics,2014,54:1237-1246. doi: 10.1007/s11340-014-9897-8
    [2] SALEHI S D, SHOKRIEH M M. Residual stress measurement using the slitting method via a combination of eigenstrain, regularization and series truncation techniques[J]. International Journal of Mechanical Sciences,2019,152:558-567. doi: 10.1016/j.ijmecsci.2019.01.011
    [3] 王秋成, 柯映林, 章巧芳. 7075铝合金板材残余应力深度梯度的评估[J]. 航空学报, 2003, 24(4):336-338. doi: 10.3321/j.issn:1000-6893.2003.04.011

    WANG Qiucheng, KE Yinglin, ZHANG Qiaofang. Evaluation of residual stress depth profiling in 7075 aluminum alloy plates[J]. Acta Aeronautica et Astronautica Sinica,2003,24(4):336-338(in Chinese). doi: 10.3321/j.issn:1000-6893.2003.04.011
    [4] GHASEMI A, TABATABAEIAN A, ASGHARI A. Application of slitting method to characterize the effects of thermal fatigue, lay-up arrangement and mwcnts on the residual stresses of laminated composites[J]. Mechanics of Materials,2019,134:185-192. doi: 10.1016/j.mechmat.2019.04.008
    [5] GOWER M, SHAW R, WRIGHT K, et al. Determination of ply level residual stress in a laminated carbon fibre-reinforced epoxy composite using constant, linear and quadratic variations of the incremental slitting method[J]. Composites Part A: Applied Science and Manufacturing,2016,90:441-450. doi: 10.1016/j.compositesa.2016.08.005
    [6] SHOKRIEH M, JALILI S, KAMANGAR M. An eigenstrain approach on the estimation of non-uniform residual stress distribution using incremental hole drilling and slitting techniques[J]. International Journal of Mechanical Sciences,2018,148:383-392. doi: 10.1016/j.ijmecsci.2018.08.035
    [7] AKBARI S, TAHERI-BEHROOZ F, SHOKRIEH M. Slitting measurement of residual hoop stresses through the wall-thickness of a filament wound composite ring[J]. Experimental Mechanics,2013,53:1509-1518. doi: 10.1007/s11340-013-9768-8
    [8] SHOKRIEH M, AKBARI S, DANESHVAR A. A comparison between the slitting method and the classical lamination theory in determination of macro residual stresses in laminated composites[J]. Composite Structures,2013,96:708-715. doi: 10.1016/j.compstruct.2012.10.001
    [9] MATVIENKO Y, PISAREY V, ELEONSKY S, et al. Determination of fracture mechanics parameters by measurements of local displacements due to crack length increment[J]. Fatigue & Fracture of Engineering Materials & Structures,2014,37(12):1306-1318.
    [10] SALEHI S, SHOKEIEH M. Repeated slitting safe distance in the measurement of residual stresses[J]. International Journal of Mechanical Sciences,2019,157-158:599-608. doi: 10.1016/j.ijmecsci.2019.05.010
    [11] 周长安, 孙杰, 李卫东, 等. 航空铝合金7050-T7451毛坯初始残余应力测试[J]. 机械科学与技术, 2014, 33(8):1251-1254.

    ZHOU Changan, SUN Jie, LI Weidong, et al. The measurement of original residual stress in aircraft aluminum alloy[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(8):1251-1254(in Chinese).
    [12] SHOKRIEH M, AKBARI R. Simulation of slitting method for calculation of compliance functions of laminated composites[J]. Journal of Composite Materials,2011,46(9):1101-1109.
    [13] HU H, LI S, CAO D, et al. Measurement of manufacture assembly stresses in thick composite components using a modified DHD method[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105922. doi: 10.1016/j.compositesa.2020.105922
    [14] TABATABAEIAN A, GHASEMI A, AAGHARI B. Specification of non-uniform residual stresses and tensile characteristic in laminated composite materials exposed to simulated space environment[J]. Polymer Testing,2019,80:106147. doi: 10.1016/j.polymertesting.2019.106147
    [15] LIU X, WANG X, GUAN Z, et al. Improvement and validation of residual stress measurement in composite laminates using the incremental hole-drilling method[J]. Mechanics of Materials,2021,154:103715. doi: 10.1016/j.mechmat.2020.103715
    [16] PAN L, GE H, WANG B. Effects of Poisson's ratio on the calibration coefficients of hole-drilling strain-gauge method for measuring residual stresses[J]. Strength of Materials,2021,53(4):566-572. doi: 10.1007/s11223-021-00318-7
    [17] 胡照会, 王荣国, 赫晓东, 等. 金属模板对复合材料层板固化过程中残余应力的影响[J]. 宇航学报, 2007, 28(4):44-47. doi: 10.3321/j.issn:1000-1328.2007.04.007

    HU Zhaohui, WANG Rongguo, HE Xiaodong, et al. The effect of metal mould on residual stress of composite laminated during cure process[J]. Journal of Astronautics,2007,28(4):44-47(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.04.007
    [18] 郭章新, 韩小平, 李金强, 等. 纤维缠绕复合材料固化过程残余应力/应变的三维数值模拟[J]. 复合材料学报, 2014, 31(4):1006-1012.

    GUO Zhangxin, HAN Xiaoping, LI Jinqiang, et al. Three-dimensional numerical simulation of residual stress/strain for filament-wound composites during curing process[J]. Acta Materiae Compositae Sinica,2014,31(4):1006-1012(in Chinese).
    [19] LI J, LIU X, WANG Q, et al. Study on machining deformation control of fiber-metal laminates[J]. Polymer Composites,2020,41(7):2866-2874. doi: 10.1002/pc.25582
    [20] GAO H, ZHANG Y, WU Q, et al. Investigation on influences of initial residual stress on thin-walled part machining deformation based on a semi-analytical model[J]. Journal of Materials Processing Technology,2018,262:437-448. doi: 10.1016/j.jmatprotec.2018.04.009
    [21] 秦国华, 林锋, 叶海潮, 等. 基于残余应力释放的航空结构件加工变形模型与结构优化方法[J]. 工程力学, 2018, 35(9):214-222, 231. doi: 10.6052/j.issn.1000-4750.2017.06.0433

    QIN Guohua, LIN Feng, YE Haichao, et al. Machining deformation model and structural optimization method of aerospace structural parts based on residual stress release[J]. Engineering Mechanics,2018,35(9):214-222, 231(in Chinese). doi: 10.6052/j.issn.1000-4750.2017.06.0433
    [22] WANG Z, SUN J, LIANG B, et al. An analytical model to predict the machining deformation. of frame parts caused by residual stress[J]. Journal of Materials Processing Technology,2019,274:116282. doi: 10.1016/j.jmatprotec.2019.116282
    [23] RICHTER-TRUMMER V, KOCH D, WITTE A, et al. Methodology for prediction of distortion of workpieces manufactured by high speed machining based on an accurate through-the-thickness residual stress determination[J]. International Journal of Advanced Manufacturing Technology,2013,68(9-12):2271-2281. doi: 10.1007/s00170-013-4828-x
    [24] 黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报, 2017, 53(9):201-208. doi: 10.3901/JME.2017.09.201

    HUANG Xiaoming, SUN Jie, LI Jianfeng. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolution[J]. Journal of Mechanical Engineering,2017,53(9):201-208(in Chinese). doi: 10.3901/JME.2017.09.201
    [25] 张蒙恩. 金属-复合材料叠层构件加工变形控制研究[D]. 大连: 大连理工大学, 2019.

    ZHANG Meng'en. Research on machining deformation control of metal-composite laminated members[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
    [26] CHE L, ZHOU Z, FANG G, et al. Cured shape prediction of fiber metal laminates considering interfacial interaction[J]. Composite Structures,2018,194:564-574. doi: 10.1016/j.compstruct.2018.04.042
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  355
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-09-02
  • 录用日期:  2022-09-15
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回