Interlaminar mechanical properties and heat resistance of silicone modified epoxy resin composites
-
摘要:
纤维增强环氧树脂基复合材料在航空、航天、船舶以及电子封装等领域扮演着重要的角色,人们希望纤维增强环氧树脂基复合材料在具有更好的力学性能的同时也兼具更佳的环境适用能力(比如耐热和阻燃性能)。聚硅氧烷具有优良的柔韧性和热稳定性、高介电强度、低表面能等特点,在环氧树脂结构中引入具有柔韧性的Si—O键后,可降低固化物内应力从而提高韧性,同时还可以提升体系的热稳定性,聚硅氧烷对环氧树脂的增韧耐热改性成为相关领域的研究热点。本文通过端羟基聚二甲基硅氧烷与环氧树脂(EP)的缩合反应对纤维增强树脂基复合材料的基体进行改性,采用双悬臂梁和短梁剪切等实验对复合材料的层间力学性能进行测量,通过热失重和动态机械热测试对复合材料的耐热性能进行评价。实验结果表明:硅氧烷改性后复合材料的I型临界应变能释放率(断裂韧性)提升了98.1%,层间剪切强度提升13.3%,层间力学性能的强化归因于Si—O键柔性链段、“韧性点”发挥“钉锚”作用以及纤维/基体界面强化的综合作用,其层间破坏模式由纤维基体脱粘转变为基体内聚破坏。硅氧烷改性后复合材料耐热性能也得到了明显提升,最大热失重速率降低了33.1%,800℃最终残余增加了13.5倍。在Tg之前ES-GF的储能模量比EP-GF提高1.3 GPa,在Tg之后ES-GF的储能模量比EP-GF提高近10.8%,硅氧烷增韧改性并未降低环氧树脂的玻璃化转变温度,甚至略有提高。 复合材料层间破坏模型、浇铸体及复合材料的储能模量图Interlaminar failure model of composite, storage modulus of resin and their composites -
关键词:
- 端羟基聚二甲基硅氧烷(HTPDMS) /
- 改性 /
- 环氧树脂基复合材料 /
- 层间性能 /
- 耐热性能
Abstract: The research on improving the interlayer mechanical properties and heat resistance of epoxy resin matrix composites through toughening modification of epoxy resin matrix has important engineering application value. Modified resin (ES) was prepared by condensation reaction of hydroxyl terminated polydimethylsiloxane and epoxy resin, and glass fiber reinforced epoxy resin matrix composite (ES-GF) was prepared by vacuum introduction method. The interlaminar mechanical properties of the composite were measured by double cantilever beam and short beam shear tests. The thermal resistance of the composite was evaluated by thermogravimetry and dynamic mechanical thermal testing. The interlaminar mechanical properties and thermal resistance of the corresponding glass fiber reinforced unmodified epoxy matrix composites (EP-GF) were also tested for comparative analysis. In order to analyze the physical mechanism of strengthening the interlaminar mechanical properties and improving the heat resistance of the composite, the tensile strength, tensile modulus, flexural strength, flexural modulus, tensile elongation at break, pendulum impact strength and microstructure characteristics of the epoxy resin before and after modification were also measured and characterized. The experimental results show that, compared with EP-GF, the release rate of type I critical strain energy (fracture toughness) of ES-GF is increased by 98.1%, and the interlaminar shear strength is increased by 13.3%. The strengthening of interlaminar mechanical properties is attributed to the comprehensive effect of Si—O bond flexible chain segment, "ductile points" playing a "nail anchor" role and improvement of fiber/matrix wettability. The maximum thermal weight loss rate of ES decreased by 33.1%, and the final residue at 800 ℃ increased by 13.5 times. Before Tg, the storage modulus of ES GF is 1.3 GPa higher than that of EP GF, and after Tg, the storage modulus of ES GF is nearly 1.3 GPa higher than that of EP GF, and the glass transition temperature of siloxane modified epoxy resin is slightly increased. -
表 1 环氧树脂(EP)与端羟基聚二甲基硅氧烷改性环氧树脂(ES)固化配比表(质量比)
Table 1. Epoxy resin (EP) and silicone modified epoxy resin (ES) curing ratio table(Mass ratio)
Name E51/% HTPDMS/% MeHHPA/% DMP-30/% EP 100 0 85.68 0.5 ES 80 20 68.54 0.5 表 2 EP和ES在空气气氛下的热失重数据
Table 2. Thermogravimetric data of EP and ES in air
Atmosphere Sample T−5%/℃ T−10%/℃ Tmax1/℃ Tmax2/℃ Char residue in
800℃/wt%Air EP 323.0 337.0 369.9 517.3 0.37 ES 299.9 317.9 351.0 507.4 5.38 Notes: T−5% is onset degradation temperature (temperature at 5.0 wt.% mass loss), T−10% is the temperature at 10 wt.% mass loss, Tmax1 and Tmax2 are the maximum decomposition temperature in the first and second stage. -
[1] JIN F L, LI X, PARK S J. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry,2015,29:1-11. doi: 10.1016/j.jiec.2015.03.026 [2] GU H B, MA C, GU J W, et al. An overview of multifunctional epoxy nanocomposites[J]. Journal of Materials Chemistry C,2016,4(25):2050-7526. [3] DOMUN N, HADAVINIA H, ZHANG T, et al. Improving fracture toughness and strength of epoxy using nanomaterials – A review of current status[J]. Nanoscale,2015,7(23):10294-10329. doi: 10.1039/C5NR01354B [4] 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285.DONG Huimin, YI Xiaosu, AN Xuefeng, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(2):273-285(in Chinese). [5] ANDREA Z, MARIA L, Chiara Gualandi, et al. Electrospun nanofibers for enhancing structural performance of composite materials[J]. Polymers for Advanced Technologies,2011,22(3):339-349. doi: 10.1002/pat.1837 [6] 杨瑞瑞. PEI纳米纤维层间增韧碳纤维环氧复合材料性能研究[J]. 材料开发与应用, 2015, 30(5):57-62.YANG Ruirui. Performance of carbon fiber/epoxy composite interfacial toughened by PEI nanofiber membranes[J]. Develeopment and Application of Materials,2015,30(5):57-62(in Chinese). [7] KONMAROV V A, PAVLOV A A, PAVLOVA S A, et al. Reinforcement of aerospace structural elements made of layered composite materials[J]. Procedia Engineering,2017,185:126-130. doi: 10.1016/j.proeng.2017.03.329 [8] 莫正才, 胡程耀, 霍冀川, 等. 苎麻短纤维层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2017, 34(6):1237-1244.MO Zhengcai, HU Chengyao, HUO Jichuan, et al. Interlayer-toughening carbon fiber/epoxy composites with short ramie fiber[J]. Acta Materiae Compositae Sinica,2017,34(6):1237-1244(in Chinese). [9] YAO H, ZHOU G, WANG W, et al. Effect of polymer-grafted carbon nanofibers and nanotubes on the interlaminar shear strength and flexural strength of carbon fiber/epoxy multiscale composites[J]. Composite Structures,2018,195:288-296. doi: 10.1016/j.compstruct.2018.04.082 [10] DE VILLORIA R G, HALLANDER P, YDREFORS L, et al. In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement[J]. Composites Science and Technology,2016,133:33-39. doi: 10.1016/j.compscitech.2016.07.006 [11] 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10):307-314.YU Yanyan, ZHANG Yuan, GAO Limin, et al. Toughness enhancement for interlaminar fracture composite based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica,2019,40(10):307-314(in Chinese). [12] ALSAADI, M, UGLA, A A, ERKLIG A. A comparative study on the interlaminar shear strength of carbon, glass, and Kevlar fabric/epoxy laminates filled with SiC particles[J]. Journal of Composite Materials,2017,51(20):2835-2844. doi: 10.1177/0021998317701559 [13] 张兴迪, 刘刚, 党国栋, 等. 含磷聚芳醚酮颗粒层间增韧碳纤维/双马树脂RTM复合材料[J]. 高分子学报, 2016, 09:1254-1262.ZHANG Xingdi, LIU Gang, DANG Guodong, et al. Properties of interlaminar toughened CF/BMI composites by phosphorus-containing PAEK particles[J]. Acta Polymerica Sinica,2016,09:1254-1262(in Chinese). [14] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.YAO Jiawei, LIU Mengyao, NIU Yifan. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese). [15] NAFFAKH M, DUMON M, GERARD J F. Study of a reactive epoxy–amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites[J]. Composites science and technology,2006,66(10):1376-1384. doi: 10.1016/j.compscitech.2005.09.007 [16] 谭珏, 邓火英, 谭朝元. 丁腈橡胶增韧环氧树脂基烧蚀防热材料性能[J]. 宇航材料工艺, 2018, 48(1):54-57.TAN Yu, DENG Huoying, TAN Zhaoyuan. Properties of Ablative Material Based on Epoxy Resin Modified by CTBN[J]. Aerospace Materials & Technology,2018,48(1):54-57(in Chinese). [17] BACH Q V, VU C M, VU H T, et al. Significant enhancement of fracture toughness and mechanical properties of epoxy resin using CTBN-grafted epoxidized linseed oil[J]. Journal of Applied Polymer Science,2020,137(2):48276. doi: 10.1002/app.48276 [18] JIANG M Q, LIU Y, CHENG C, et al. Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone[J]. Polymer Testing,2018,69:302-309. doi: 10.1016/j.polymertesting.2018.05.039 [19] DRAGAN E S. Design and applications of interpenetrating polymer network hydrogels. A review[J]. Chemical Engineering Journal,2014,243:572-590. doi: 10.1016/j.cej.2014.01.065 [20] SALIMIAN S, MALFAIT W J, ZADHOUSH A, et al. Fabrication and evaluation of silica aerogel-epoxy nanocomposites: fracture and toughening mechanisms[J]. Theoretical and Applied Fracture Mechanics,2018,97:156-164. doi: 10.1016/j.tafmec.2018.08.007 [21] GU H B, ZHANG H Y, MA C, et al. Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy[J]. Carbon,2019,142:131-140. doi: 10.1016/j.carbon.2018.10.029 [22] 孔志祥, 邹路丝, 张洋, 等. 含柔性链段环氧树脂的合成与性能[J]. 粘接, 2015, 36(11):44-47.KONG Zhixiang, ZOU Lusi, ZHANG Yang, et al. Synthesis and properties of epoxy resin containing flexible segments[J]. Adhesion,2015,36(11):44-47(in Chinese). [23] BAO Q, WANG B, LIU Y, et al. Epoxy resin flame retarded and toughed via flexible siloxane chain containing phosphaphenanthrene[J]. Polymer Degradation and Stability,2020,172:109055. doi: 10.1016/j.polymdegradstab.2019.109055 [24] GROUP C. Rubber-toughened GFRCs optimised by nanoparticles[J]. Composites,2005,0(21):72-75. [25] 朱德志. 增强增韧的环氧树脂/二氧化硅纳米复合材料的制备与研究[J]. 塑料工业, 2017, 45(6):66-69.ZHU Dezhi. Preparation and study of reinforced and toughened epoxy/nanosilica nanocomposites[J]. China Plastics Industry,2017,45(6):66-69(in Chinese). [26] HU K, BAO L X, CHEN X F, et al. Synthesis of castor oil-derived decanediamide as a novel flexible asphalt-modified epoxy resin curing agent[J]. Advances in Polymer Technology,2018,37(4):1092-1098. doi: 10.1002/adv.21760 [27] 魏波, 周金堂, 姚正军, 等. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17):2976-2988.WEI Bo, ZHOU Jintang, YAO Zhengjun, et al. Research progress in toughening epoxy resin matrix by in-stiu technique[J]. Materials Reports,2019,33(17):2976-2988(in Chinese). [28] VERREY J, WINKLER Y, MICHAUD V, et al. Interlaminar fracture toughness improvement in composites with hyperbranched polymer modified resin[J]. Composites science and technology,2005,65(10):1527-1536. doi: 10.1016/j.compscitech.2005.01.005 [29] 文钦, 刘博伟, 冀运东. 端羟基聚二甲基硅氧烷改性环氧树脂研究[J]. 热固性树脂, 2020, 35(1):25-28.WEN Qin, LIU Bowei, JI Yundong, et al. Study on the hydroxyl-terminated polydimethylsiloxane modified epoxy resins[J]. Thermosetting Resin,2020,35(1):25-28(in Chinese). [30] ASTM International. Stand test method for matrix solids content and matrix content of composites prepreg: ASTM D3529-16[S]. West Conshohocken: ASTM International, 2008. [31] International Organization for standarization. plastics determination of tensile properties Part 1: General principles: ISO 527-1: 2012[S]. Geneva: ISO, 2012. [32] ASTM International. Standard test methods for flexural properties of unreinforced and reforced plastics and electrical insulating materials: ASTM D790[S]. West Conshohocken, 2017. [33] 全国塑料标准化技术委员会. 塑料简支梁冲击性能的测定: GB/T 1043.1-2008[S]. 北京: 中国标准出版社, 2008.National Plastic Standardization Technical Committee. Determination of charpy impact properties: GB/T 1043.1-2008[S]. Beijing: Standards Press of China, 2008(in Chinese). [34] ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344/D2344 M-00(2016)[S]. West Conshohochen, PA, 2006. [35] ASTM International. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528/D5528 M-21[S]. West Conshohocken: ASTM International, 2017. [36] OCHI M, TAKEMIYA K, KIYOHARA O, et al. Effect of the addition of aramid-silicone block copolymer on phase structure and toughness of cured epoxy resins modified with silicone[J]. Polymer,1998,41(1):195-201. [37] ZHENG G, ZHONG Z, CHEN Y, et al. Silicone modified epoxy resins with good toughness, damping properties and high thermal residual weight[J]. Journal of Polymer Research,2015,22(11):1-7. [38] HOU S S, CHUNG Y P, CHAN C K, et al. Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy–siloxane copolymers blended with diglycidyl ether of bisphenol-A[J]. Polymer,2000,41(9):3263-3272. doi: 10.1016/S0032-3861(99)00525-X [39] WANG W J, PERNG L H, HSIUE G H, et al. Characterization and properties of new silicone-containing epoxy resin[J]. Polymer,2000,41(16):6112-6113. [40] HUANG X N, HULL D. Effects of fibre bridging on GIC of a unidirectional glass/epoxy composite[J]. Composites Science and Technology,1989,35(3):283-299. doi: 10.1016/0266-3538(89)90040-7 [41] HAN Z, YI L, KUWATA M. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Composites Part A-Applied Science and Manufacturing,2015,70:102-110. doi: 10.1016/j.compositesa.2014.11.029 [42] CECH V, KNOB A, HOSEIN H-A, et al. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification[J]. Composites Part A:Applied Science and Manufacturing,2014,58:84-89. doi: 10.1016/j.compositesa.2013.12.003 [43] CHEN J H, SCHULZ E, BOHSE J, et al. Effect of fibre content on the interlaminar fracture toughness of unidirectional glass-fibre/polyamide composite[J]. Composites Part A Applied Science and Manufacturing,1999,30(6):747-755. doi: 10.1016/S1359-835X(98)00188-2 [44] BIAN D, TSUI J C, KYDD R R, et al. Interlaminar Toughening of Fiber-Reinforced Polymers by Synergistic Modification of Resin and Fiber[J]. Journal of Manufacturing Science and Engineering,2019,141(8):1-12. [45] CHONG H M, TAYLOR A C. The microstructure and fracture performance of styrene–butadiene–methylmethacrylate block copolymer-modified epoxy polymers[J]. Journal of Materials Science,2013,48(19):6762-6777. doi: 10.1007/s10853-013-7481-8 [46] CHENOWETH K, CHEUNG S, VAN D A, et al. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the American Chemical Society,2005,127(19):7192-7202. doi: 10.1021/ja050980t [47] CHEN K, SUSNER M A, VYAZOVKIN. Effect of the brush structure on the degradation mechanism of polystyrene-clay nanocomposites[J]. Macromolecular Rapid Communications,2005,26(NO.9):690-695. doi: 10.1002/marc.200500043 [48] PEI J, LIU H, QIANG L, et al. Thermal degradation mechanism and flame retardancy of MQ silicone/ epoxy resin composites[J]. Polymer Degradation and Stability,2016,134:144-150. doi: 10.1016/j.polymdegradstab.2016.09.029 [49] HAMDANI S, LONGUET C, PERRIN D, et al. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability,2009,94(4):465-495. doi: 10.1016/j.polymdegradstab.2008.11.019 [50] KUMAR S A, NARAYANAN T. Thermal properties of siliconized epoxy interpenetrating coatings[J]. Progress in Organic Coatings,2002,45(4):323-330. doi: 10.1016/S0300-9440(02)00062-0 [51] CRISTEA M, IBANESCU S, CASCAVAL C N, et al. Dynamic mechanical analysis of polyurethane-epoxy interpenetrating polymer networks[J]. High Performance Polymers,2009,21(5):608-623. doi: 10.1177/0954008309339940 -

计量
- 文章访问数: 156
- HTML全文浏览量: 147
- 被引次数: 0