留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅氧烷改性环氧树脂基复合材料层间力学性能与耐热性

曹东风 陈新昌 冀运东 胡海晓 刘江波 李书欣

曹东风, 陈新昌, 冀运东, 等. 硅氧烷改性环氧树脂基复合材料层间力学性能与耐热性[J]. 复合材料学报, 2023, 40(11): 6098-6109. doi: 10.13801/j.cnki.fhclxb.20230109.001
引用本文: 曹东风, 陈新昌, 冀运东, 等. 硅氧烷改性环氧树脂基复合材料层间力学性能与耐热性[J]. 复合材料学报, 2023, 40(11): 6098-6109. doi: 10.13801/j.cnki.fhclxb.20230109.001
CAO Dongfeng, CHEN Xinchang, JI Yundong, et al. Interlaminar mechanical properties and heat resistance of silicone modified epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6098-6109. doi: 10.13801/j.cnki.fhclxb.20230109.001
Citation: CAO Dongfeng, CHEN Xinchang, JI Yundong, et al. Interlaminar mechanical properties and heat resistance of silicone modified epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6098-6109. doi: 10.13801/j.cnki.fhclxb.20230109.001

硅氧烷改性环氧树脂基复合材料层间力学性能与耐热性

doi: 10.13801/j.cnki.fhclxb.20230109.001
基金项目: 国家自然科学基金(52273080);先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金 (XHT2020-002);中央高校基本科研业务费专项资金(2020III028GX;2021III015JC;WUT2021IVA068)
详细信息
    通讯作者:

    冀运东,博士,副教授,硕士生导师,研究方向为复合材料阻燃与残余强度 E-mail: jiyundong@whut.edu.cn

  • 中图分类号: TB332

Interlaminar mechanical properties and heat resistance of silicone modified epoxy resin composites

Funds: National Natural Science Foundation of China (52273080); Open Fund for Advanced Energy Science and Technology Guangdong Provincial Laboratory Foshan Branch (Foshan Xianhu Laboratory) (XHT2020-002); Special Funds for Basic Scientific Research Business Expenses of Central Universities (2020III028GX; 2021III015JC; WUT2021IVA068)
  • 摘要: 通过环氧树脂基体增韧改性同时提升环氧树脂基复合材料层间力学性能和耐热性能的研究具有重要工程应用价值。对端羟基聚二甲基硅氧烷与环氧树脂进行缩合反应制备改性树脂(ES),采用真空导入方法制备玻璃纤维增强改性环氧树脂基复合材料(ES-GF)。通过双悬臂梁和短梁剪切等实验对复合材料的层间力学性能进行测量,通过热失重和动态机械热测试对复合材料的耐热性能进行评价,相应的玻璃纤维增强未改性环氧基复合材料(EP-GF)的层间力学性能和耐热性能也被测试用于对比分析。为了对复合材料层间力学性能强化和耐热性提升的物理机制进行解析,改性前后的环氧树脂的拉伸强度、拉伸模量、弯曲强度、弯曲模量、拉伸断裂延伸率、摆锤冲击强度和微观结构特征等也被测量和表征。实验结果表明:相比EP-GF,ES-GF的I型临界应变能释放率(断裂韧性)提升了98.1%,层间剪切强度提升13.3%,层间力学性能的强化归因于Si—O键柔性链段、“韧性点”发挥“钉锚”及纤维/基体浸润性提高的综合作用,其层间破坏模式由纤维基体脱粘转变为基体内聚破坏。ES的最大热失重速率降低了33.1%,800℃最终残余增加了13.5倍。在玻璃化转变温度Tg之前ES-GF的储能模量比EP-GF提高1.3 GPa,在Tg之后ES-GF的储能模量比EP-GF提高0.8 GPa左右,硅氧烷改性环氧树脂的玻璃化转变温度略有提高。

     

  • 图  1  端羟基聚二甲基硅氧烷(HTPDMS)改性环氧树脂反应机制

    Figure  1.  Reaction mechanism of epoxy resin modified by hydroxyl terminated polydimethylsiloxane (HTPDMS)

    图  2  双臂悬梁(DCB)实验测试图

    Figure  2.  Cantilever arms (DCB) experimental test diagram

    图  3  EP与ES树脂的断裂延伸率和冲击强度

    Figure  3.  Elongation at break and impact strength of EP and ES

    图  4  EP与ES树脂浇铸体的拉伸强度和模量(a)及弯曲强度和模量(b)

    Figure  4.  Tensile strength and modulus (a), flexural strength and modulus (b) of EP and ES resin

    图  5  EP (a)和ES (b)浇铸体拉伸试样断面扫描电镜图

    Figure  5.  SEM images of the cross-section of EP (a) and ES (b) cast specimens after tensile testing

    图  6  EP-玻璃纤维(GF)和ES-GF层间剪切强度

    Figure  6.  Interlaminar shear strength of EP-glass fiber (GF) and ES-GF

    图  7  复合材料短梁剪切测试载荷-位移曲线

    Figure  7.  Load-displacement curves of composite short beam shear test

    图  8  EP-GF (a)与ES-GF (b)短梁剪切截面形貌

    Figure  8.  Cross-sectional morphology of EP-GF (a) and ES-GF (b) composite short beam shear

    图  9  EP-GF和ES-GF的DCB测试的R曲线

    GIC—Release rate of type I critical strain energy

    Figure  9.  R-curves of EP-GF and ES-GF for DCB test

    图  10  EP与玻璃板(a)和ES与玻璃板(b)的润湿角

    Figure  10.  Wetting angle between EP and glass plate (a) and between ES and glass plate (b)

    图  11  DCB测试后EP-GF ((a), (c))和ES-GF ((b), (d))断裂面SEM图像

    Figure  11.  SEM images of fracture surface EP-GF ((a), (c)) and ES-GF ((b), (d)) after DCB test

    图  12  ES-GF纤维与树脂间的裂纹扩展示意图

    Figure  12.  Schematic diagram of crack propagation between fiber and resin of ES-GF

    图  13  EP和ES的TG (a)和DTG (b)曲线

    Figure  13.  TG (a) and DTG (b) curves of EP and ES

    图  14  EP和ES的DSC曲线

    Figure  14.  DSC curves of EP and ES resin

    图  15  树脂浇铸体及其复合材料的储能模量(a)、损耗模量(b)和损耗因子tanδ (c)

    Figure  15.  Storage modulus (a), loss modulus (b) and loss factor tanδ (c) of resin casting and its composites

    表  1  环氧树脂(EP)与HTPDMS改性环氧树脂(ES)固化配比表 (质量比)

    Table  1.   Epoxy resin (EP) and HTPDMS modified epoxy resin (ES) curing ratio table (Mass ratio)

    NameE51/%HTPDMS/%MeHHPA/%DMP-30/%
    EP100 0 85.68 0.5
    ES 80 20 68.54 0.5
    Notes: MeHHPA—Tetramethylhexahydrophthalic anhydride; DMP-30—2, 4, 6-tri(dimethylaminomethyl) phenol.
    下载: 导出CSV

    表  2  EP和ES在空气气氛下的热失重数据

    Table  2.   Thermogravimetric data of EP and ES in air

    AtmosphereSampleT−5%/℃T−10%/℃Tmax1/℃Tmax2/℃Char residue in
    800℃/wt%
    AirEP323.0337.0369.9517.30.37
    ES299.9317.9351.0507.45.38
    Notes: T−5%—Onset degradation temperature at 5.0wt% mass loss; T−10%—Temperature at 10wt% mass loss; Tmax1 and Tmax2—Maximum decomposition temperature in the first and second stage.
    下载: 导出CSV
  • [1] JIN F L, LI X, PARK S J. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry,2015,29:1-11. doi: 10.1016/j.jiec.2015.03.026
    [2] GU H B, MA C, GU J W, et al. An overview of multifunctional epoxy nanocomposites[J]. Journal of Materials Chemistry C,2016,4(25):5890-5906.
    [3] DOMUN N, HADAVINIA H, ZHANG T, et al. Improving the fracture toughness and the strength of epoxy using nanomaterials—A review of the current status[J]. Nanoscale,2015,7(23):10294-10329. doi: 10.1039/C5NR01354B
    [4] 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285.

    DONG Huimin, YI Xiaosu, AN Xuefeng, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(2):273-285(in Chinese).
    [5] ZUCCHELLI A, FOCARETE M L, GUALANDI C, et al. Electrospun nanofibers for enhancing structural performance of composite materials[J]. Polymers for Advanced Technologies,2011,22(3):339-349. doi: 10.1002/pat.1837
    [6] 杨瑞瑞. PEI纳米纤维层间增韧碳纤维环氧复合材料性能研究[J]. 材料开发与应用, 2015, 30(5):57-62.

    YANG Ruirui. Performance of carbon fiber/epoxy compo-site interfacial toughened by PEI nanofiber membranes[J]. Development and Application of Materials,2015,30(5):57-62(in Chinese).
    [7] KOMAROV V A, PAVLOV A A, PAVLOVA S A, et al. Reinforcement of aerospace structural elements made of layered composite materials[J]. Procedia Engineering,2017,185:126-130. doi: 10.1016/j.proeng.2017.03.329
    [8] 莫正才, 胡程耀, 霍冀川, 等. 苎麻短纤维层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2017, 34(6):1237-1244.

    MO Zhengcai, HU Chengyao, HUO Jichuan, et al. Interlayer-toughening carbon fiber/epoxy composites with short ramie fiber[J]. Acta Materiae Compositae Sinica,2017,34(6):1237-1244(in Chinese).
    [9] YAO H C, ZHOU G D, WANG W T, et al. Effect of polymer-grafted carbon nanofibers and nanotubes on the interlaminar shear strength and flexural strength of carbon fiber/epoxy multiscale composites[J]. Composite Structures,2018,195:288-296. doi: 10.1016/j.compstruct.2018.04.082
    [10] GUZMAN DE VILLORIA R, HALLANDER P, YDREFORS L, et al. In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement[J]. Composites Science and Technology,2016,133:33-39. doi: 10.1016/j.compscitech.2016.07.006
    [11] 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10):307-314.

    YU Yanyan, ZHANG Yuan, GAO Limin, et al. Toughness enhancement for interlaminar fracture composite based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica,2019,40(10):307-314(in Chinese).
    [12] ALSAADI M, UGLA A A, ERKLIG A. A comparative study on the interlaminar shear strength of carbon, glass, and Kevlar fabric/epoxy laminates filled with SiC particles[J]. Journal of Composite Materials,2017,51(20):2835-2844. doi: 10.1177/0021998317701559
    [13] 张兴迪, 刘刚, 党国栋, 等. 含磷聚芳醚酮颗粒层间增韧碳纤维/双马树脂RTM复合材料[J]. 高分子学报, 2016(9):1254-1262.

    ZHANG Xingdi, LIU Gang, DANG Guodong, et al. Properties of interlaminar toughened CF/BMI composites by phosphorus-containing PAEK particles[J]. Acta Polymerica Sinica,2016(9):1254-1262(in Chinese).
    [14] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.

    YAO Jiawei, LIU Mengyao, NIU Yifan. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese).
    [15] NAFFAKH M, DUMON M, GÉRARD J F. Study of a reactive epoxy-amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites[J]. Composites Science and Technology,2006,66(10):1376-1384. doi: 10.1016/j.compscitech.2005.09.007
    [16] 谭珏, 邓火英, 谭朝元. 丁腈橡胶增韧环氧树脂基烧蚀防热材料性能[J]. 宇航材料工艺, 2018, 48(1):54-57.

    TAN Jue, DENG Huoying, TAN Zhaoyuan. Properties of ablative material based on epoxy resin modified by CTBN[J]. Aerospace Materials & Technology,2018,48(1):54-57(in Chinese).
    [17] BACH Q V, VU C M, VU H T, et al. Significant enhancement of fracture toughness and mechanical properties of epoxy resin using CTBN-grafted epoxidized linseed oil[J]. Journal of Applied Polymer Science,2020,137(2):48276. doi: 10.1002/app.48276
    [18] JIANG M Q, LIU Y, CHENG C, et al. Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone[J]. Polymer Testing,2018,69:302-309. doi: 10.1016/j.polymertesting.2018.05.039
    [19] DRAGAN E S. Design and applications of interpenetrating polymer network hydrogels: A review[J]. Chemical Engi-neering Journal,2014,243:572-590. doi: 10.1016/j.cej.2014.01.065
    [20] SALIMIAN S, MALFAIT W J, ZADHOUSH A, et al. Fabrication and evaluation of silica aerogel-epoxy nanocompo-sites: Fracture and toughening mechanisms[J]. Theoretical and Applied Fracture Mechanics,2018,97:156-164. doi: 10.1016/j.tafmec.2018.08.007
    [21] GU H B, ZHANG H Y, MA C, et al. Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy[J]. Carbon,2019,142:131-140. doi: 10.1016/j.carbon.2018.10.029
    [22] 孔志祥, 邹路丝, 张洋, 等. 含柔性链段环氧树脂的合成与性能[J]. 粘接, 2015, 36(11):44-47.

    KONG Zhixiang, ZOU Lusi, ZHANG Yang, et al. Synthesis and properties of epoxy resin containing flexible segments[J]. Adhesion,2015,36(11):44-47(in Chinese).
    [23] BAO Q R, WANG B W, LIU Y, et al. Epoxy resin flame retarded and toughed via flexible siloxane chain containing phosphaphenanthrene[J]. Polymer Degradation and Stability,2020,172:109055. doi: 10.1016/j.polymdegradstab.2019.109055
    [24] Composites Group. Rubber-toughened GFRCs optimised by nanoparticles[J]. Composites,2005,42(21):72-75.
    [25] 朱德智. 增强增韧的环氧树脂/二氧化硅纳米复合材料的制备与研究[J]. 塑料工业, 2017, 45(6):66-69.

    ZHU Dezhi. Preparation and study of reinforced and toughened epoxy/nanosilica nanocomposites[J]. China Plastics Industry,2017,45(6):66-69(in Chinese).
    [26] HU K, BAO L X, CHEN X F, et al. Synthesis of castor oil-derived decanediamide as a novel flexible asphalt-modified epoxy resin curing agent[J]. Advances in Polymer Technology,2018,37(4):1092-1098. doi: 10.1002/adv.21760
    [27] 魏波, 周金堂, 姚正军, 等. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17):2976-2988.

    WEI Bo, ZHOU Jintang, YAO Zhengjun, et al. Research progress in toughening epoxy resin matrix by in-situ technique[J]. Materials Reports,2019,33(17):2976-2988(in Chinese).
    [28] VERREY J, WINKLER Y, MICHAUD V, et al. Interlaminar fracture toughness improvement in composites with hyperbranched polymer modified resin[J]. Composites Science and Technology,2005,65(10):1527-1536. doi: 10.1016/j.compscitech.2005.01.005
    [29] 文钦, 刘博伟, 冀运东. 端羟基聚二甲基硅氧烷改性环氧树脂研究[J]. 热固性树脂, 2020, 35(1):25-28.

    WEN Qin, LIU Bowei, JI Yundong. Study on the hydroxyl-terminated polydimethylsiloxane modified epoxy resins[J]. Thermosetting Resin,2020,35(1):25-28(in Chinese).
    [30] ASTM International. Stand test method for matrix solids content and matrix content of composites prepreg: ASTM D3529—16[S]. West Conshohocken: ASTM International, 2016.
    [31] International Organization for Standarization. Plastics— Determination of tensile properties—Part 1: General principles: ISO 527-1: 2012[S]. Geneva: ISO, 2012.
    [32] ASTM International. Standard test methods for flexural properties of unreinforced and reforced plastics and electrical insulating materials: ASTM D790—17[S]. West Conshohocken: ASTM International, 2017.
    [33] 全国塑料标准化技术委员会. 塑料简支梁冲击性能的测定: GB/T 1043.1—2008[S]. 北京: 中国标准出版社, 2008.

    National Plastic Standardization Technical Committee. Determination of charpy impact properties: GB/T 1043.1—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [34] ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344/D2344 M—16[S]. West Conshohochen: ASTM International, 2016.
    [35] ASTM International. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528/D5528 M—21[S]. West Conshohocken: ASTM International, 2021.
    [36] OCHI M, TAKEMIYA K, KIYOHARA O, et al. Effect of the addition of aramid-silicone block copolymer on phase structure and toughness of cured epoxy resins modified with silicone[J]. Polymer,1998,39(3):725-731.
    [37] HENG Z G, ZENG Z, CHEN Y, et al. Silicone modified epoxy resins with good toughness, damping properties and high thermal residual weight[J]. Journal of Polymer Research,2015,22(11):203.
    [38] HOU S S, CHUNG Y P, CHAN C K, et al. Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A[J]. Polymer,2000,41(9):3263-3272. doi: 10.1016/S0032-3861(99)00525-X
    [39] WANG W J, PERNG L H, HSIUE G H, et al. Characterization and properties of new silicone-containing epoxy resin[J]. Polymer,2000,41(16):6113-6122.
    [40] HUANG X N, HULL D. Effects of fibre bridging on GIC of a unidirectional glass/epoxy composite[J]. Composites Science and Technology,1989,35(3):283-299. doi: 10.1016/0266-3538(89)90040-7
    [41] ZHANG H, LIU Y, KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Compo-sites Part A: Applied Science and Manufacturing,2015,70:102-110. doi: 10.1016/j.compositesa.2014.11.029
    [42] CECH V, KNOB A, HOSEIN H A, et al. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification[J]. Composites Part A: Applied Science and Manufacturing,2014,58:84-89. doi: 10.1016/j.compositesa.2013.12.003
    [43] CHEN J H, SCHULZ E, BOHSE J, et al. Effect of fibre content on the interlaminar fracture toughness of unidirectional glass-fibre/polyamide composite[J]. Composites Part A: Applied Science and Manufacturing,1999,30(6):747-755. doi: 10.1016/S1359-835X(98)00188-2
    [44] BIAN D K, TSUI J C, KYDD R R, et al. Interlaminar toughening of fiber-reinforced polymers by synergistic modification of resin and fiber[J]. Journal of Manufacturing Science and Engineering,2019,141(8):1-12.
    [45] CHONG H M, TAYLOR A C. The microstructure and fracture performance of styrene-butadiene-methylmethacrylate block copolymer-modified epoxy polymers[J]. Journal of Materials Science,2013,48(19):6762-6777. doi: 10.1007/s10853-013-7481-8
    [46] CHENOWETH K, CHEUNG S, VAN DUIN A C T, et al. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the American Chemical Society,2005,127(19):7192-7202. doi: 10.1021/ja050980t
    [47] CHEN K, SUSNER M A, VYAZOVKIN S. Effect of the brush structure on the degradation mechanism of polystyrene-clay nanocomposites[J]. Macromolecular Rapid Communications,2005,26(9):690-695. doi: 10.1002/marc.200500043
    [48] JIA P, LIU H C, LIU Q, et al. Thermal degradation mechanism and flame retardancy of MQ silicone/epoxy resin composites[J]. Polymer Degradation and Stability,2016,134:144-150. doi: 10.1016/j.polymdegradstab.2016.09.029
    [49] HAMDANI S, LONGUET C, PERRIN D, et al. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability,2009,94(4):465-495. doi: 10.1016/j.polymdegradstab.2008.11.019
    [50] ANANDA KUMAR S, SANKARA NARAYANAN T S N. Thermal properties of siliconized epoxy interpenetrating coatings[J]. Progress in Organic Coatings,2002,45(4):323-330. doi: 10.1016/S0300-9440(02)00062-0
    [51] CRISTEA M, IBANESCU S, CASCAVAL C N, et al. Dynamic mechanical analysis of polyurethane-epoxy interpenetrating polymer networks[J]. High Performance Polymers,2009,21(5):608-623. doi: 10.1177/0954008309339940
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  613
  • HTML全文浏览量:  393
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2022-12-23
  • 录用日期:  2022-12-25
  • 网络出版日期:  2023-01-11
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回