Crashworthiness of a novel bionic quasi-honeycomb structure based on variable cross-section design
-
摘要: 为有效提升薄壁结构的吸能特性,受到骨骼和竹子结构的启发,提出了一种新型变截面仿生类蜂窝结构(VCBQH)。该结构在提高吸能特性的同时能有效降低结构的峰值碰撞力。通过准静态压缩试验,我们对比分析了0-2级VCBQH结构与传统蜂窝结构(TH)在轴向与径向压缩下的能量吸收特性。研究发现,层级数的增加可显著降低VCBQH结构的峰值碰撞力,其中2级结构的峰值碰撞力分别较TH结构和0级VCBQH结构降低了23.33%和44.54%。此外,我们研究了角度、壁厚和层级对VCBQH结构耐撞性能的影响。结果显示,增加壁厚和层级均可提高结构的比吸能,但壁厚的增加会提高结构的初始峰值力,而合理设计的角度恰好可以弥补这一缺陷。在相同壁厚的情况下,2级VCBQH结构随角度增加,其比吸能提高了21.50%,同时初始峰值力下降了26.04%。Abstract: To enhance the energy absorption of thin-walled structures, we propose a novel variable cross-section bionic quasi-honeycomb structure (VCBQH), inspired by bone and bamboo. This design improves energy absorption and reduces peak collision force (PCF). Through quasi-static compression tests and finite element simulations, we compared the energy absorption characteristics of 0-2 layers VCBQH with a traditional honeycomb structure (TH). Results show that increasing layers significantly reduces PCF, with VCBQH-2 exhibiting a 23.33% decrease compared to TH and a 44.54% decrease compared to VCBQH-0. We also found that increasing wall thickness and layers enhances specific energy absorption (SEA), though it may increase PCF. However, optimizing angles can mitigate this issue. Under the equal mass, the VCBQH-2 exhibits a 21.50% increase in SEA with a concurrent 26.04% reduction in PCF as the angle is adjusted. or VCBQH-2, adjusting the angle results in a 21.50% increase in SEA and a 26.04% reduction in PCF.
-
Key words:
- finite element /
- hierarchy /
- honeycomb structure /
- bionic /
- crashworthiness
-
图 1 结构示意图:(a) 仿生结构设计流程;(b) 0-2级新型变截面仿生类蜂窝结构的几何特征;(c) 变截面设计示意图
Figure 1. Structural schematic diagrams: (a) Bionic structure design process; (b) Geometrical characteristics of the novel variable cross-section bionic quasi-honeycomb structures from 0-2 layers; (c) Schematic diagram of variable cross-section design
Notes: L0 , L0’-Length of the outer edge of the VCBQH; L1, L1’-Length of the inner hexagonal honeycomb edge of the VCBQH-2; t0-Wall thickness of the honeycomb structure; θ-Angle of the variable cross-section design; H-Height of the honeycomb structure.
图 6 试验与有限元仿真结果对比:(a) TH的变形模式及应力-应变曲线;(b) VCBQH-0的变形模式及应力-应变曲线;(c) VCBQH-1的变形模式及应力-应变曲线;(d) VCBQH-2的变形模式及应力-应变曲线
Figure 6. Comparison of test and finite element simulation results:(a) Deformation mode and stress-strain curve of TH;(b) Deformation mode and stress-strain curve of VCBQH-0;(c) Deformation mode and stress-strain curve of VCBQH-1;(d) Deformation mode and stress-strain curve of VCBQH-2
表 1 传统蜂窝与新型变截面仿生类蜂窝结构的尺寸参数
Table 1. Dimensional parameters of traditional honeycomb (TH) and the novel variable cross-section bionic quasi-honeycomb structure (VCBQH)
Specimen L0 L1 t0 θ H m mm mm mm ° mm g TH 30 0 1.84 0 50 43.162 VCBQH-0 30 0 2.00 30 50 43.160 VCBQH-1 30 0 1.00 30 50 43.161 VCBQH-2 30 15 0.82 30 50 43.158 Notes: L0-Length of the outer edge of the VCBQH; L1-Length of the inner hexagonal honeycomb edge of the VCBQH-2; t0-Wall thickness of the honeycomb structure; θ-Angle of the variable cross-section design; H-Height of the honeycomb structure; m-Mass of the honeycomb structure. 表 2 标准试样的性能参数
Table 2. Performance parameters of standard specimens
Material ρ Young's modulus Poisson's ratio Yield strength g/cm3 MPa MPa PLA 1.989 1581.61 0.32 29.3 Notes: PLA-Polylactic acid; ρ- Density of PLA. 表 3 试验与有限元仿真结果对比
Table 3. Comparison of tests and finite element simulation results
Tubes t0/mm H/mm m/g PCF/kN MCF/kN SEA/(J·g−1) Sim Exp Error% Sim Exp Error% Sim TH 1.84 50 43.162 8.573 8.926 −3.955 2.841 3.011 −5.646 2.218 VCBQH-0 2.00 50 43.160 10.835 12.34 −12.196 4.869 4.429 9.935 3.722 VCBQH-1 1.00 50 43.161 7.382 6.752 9.331 3.27 3.332 −1.861 2.759 VCBQH-2 0.82 50 43.158 5.8 6.844 −15.254 3.671 3.889 −5.606 2.940 Notes: TH—Traditional honeycomb; VCBQH-0-0-layer novel variable cross-section bionic quasi-honeycomb structure;VCBQH-1—1-layer novel variable cross-section bionic quasi-honeycomb structure;VCBQH-2—2-layer novel variable cross-section bionic quasi-honeycomb structure; PCF—Peak collision force; MCF—Mean collision force; SEA-Specific energy absorption. 表 4 试验与有限元仿真结果对比
Table 4. Comparison of tests and finite element simulation results
Tubes t0/mm H/mm m/g PCF/kN MCF/kN SEA/(J·g−1) Sim Exp Error% Sim Exp Error% Sim TH 1.84 50 43.157 0.205 0.190 7.89 0.137 0.132 3.79 0.1399 VCBQH-0 2.00 50 43.160 0.385 0.444 -13.29 0.256 0.266 -3.76 0.2095 VCBQH-1 1.00 50 43.164 1.078 1.026 5.07 0.529 0.591 -10.49 0.4223 VCBQH-2 0.82 50 43.155 0.911 0.838 8.71 0.743 0.733 1.36 0.6096 表 5 不同角度对0-2级VCBQH耐撞性的影响
Table 5. Effect of different angles on the crashworthiness of 0-2 layers VCBQH
Models θ/(°) m/g PCF/kN MCF/kN SEA/(J·g−1) VCBQH-0 20 53.52 136.77 67.53 41.39 25 53.52 135.10 59.00 35.82 30 53.52 132.51 60.35 35.84 35 53.52 126.23 75.71 47.66 40 53.52 118.02 65.30 38.62 45 53.52 108.09 63.75 37.91 50 53.52 96.68 62.53 37.29 VCBQH-1 20 53.52 124.46 53.25 34.23 25 53.52 122.48 52.55 33.51 30 53.52 119.17 53.43 34.29 35 53.52 118.95 55.38 34.90 40 53.52 103.00 55.90 35.40 45 53.52 108.93 56.04 35.04 50 53.52 99.97 62.58 39.65 VCBQH-2 20 53.52 126.60 63.59 41.34 25 53.52 121.91 65.74 42.48 30 53.52 120.29 68.54 44.39 35 53.52 109.59 68.95 44.67 40 53.52 98.26 70.09 45.37 45 53.52 96.60 71.42 46.26 50 53.52 93.63 77.44 50.23 表 6 不同壁厚与角度对VCBQH-2的耐撞性影响
Table 6. Effect of different wall thicknesses and angles on crashworthiness of VCBQH-2
θ/(°) t0/mm m/g PCF/kN MCF/kN EA/J SEA/(J·g−1) 20 0.75 41.06 96.40 41.73 1445.24 35.20 1.00 53.93 125.76 63.37 2194.60 40.70 1.25 66.39 153.31 90.15 3129.85 47.15 1.50 78.44 183.01 139.82 4804.84 61.26 25 0.75 40.39 92.62 41.51 1433.53 35.49 1.00 53.03 122.88 64.76 2240.58 42.25 1.25 65.27 147.98 91.30 3142.85 48.16 1.50 77.09 176.37 135.36 4659.66 60.44 30 0.75 39.71 84.49 41.59 1434.17 36.12 1.00 52.13 113.52 64.47 2220.68 42.60 1.25 64.13 140.69 90.95 3122.36 48.69 1.50 75.73 174.30 132.52 4497.33 59.39 35 0.75 39.02 77.05 40.99 1422.65 36.46 1.00 51.21 104.85 63.57 2200.11 42.96 1.25 64.86 135.93 96.94 3334.75 51.41 1.50 74.37 163.08 130.49 4500.33 60.52 40 0.75 38.33 69.49 40.47 1399.33 36.51 1.00 50.29 94.47 63.07 2188.36 43.52 1.25 61.84 118.91 89.52 3096.07 50.07 1.50 72.98 154.50 131.07 4508.82 61.78 45 0.75 37.63 63.90 41.42 1437.39 38.20 1.00 49.36 83.94 60.71 2100.58 42.56 1.25 60.67 113.86 92.30 3186.02 52.51 1.50 71.58 143.28 132.40 4502.97 62.91 50 0.75 36.92 58.04 40.18 1402.95 38.00 1.00 48.41 81.71 58.07 2007.27 41.47 1.25 59.49 103.52 86.10 2973.81 49.99 1.50 70.16 136.46 130.60 4460.40 63.58 Note: EA—Energy absorption. -
[1] Zhang L, Zhong Y, Tan W, et al. Crushing characteristics of bionic thin-walled tubes inspired by bamboo and beetle forewing[J]. Mechanics of Advanced Materials and Structures, 2022, 29(14): 2024-2039. doi: 10.1080/15376494.2020.1849880 [2] Rahi A. Experimental and crash-worthiness optimization of end-capped conical tubes under quasi-static and dynamic loading[J]. Mechanics of advanced materials and structures, 2019, 26(17): 1437-1446. doi: 10.1080/15376494.2018.1432815 [3] Smeets B J R, Fagan E M, Matthews K, et al. Structural testing of a shear web attachment point on a composite lattice cylinder for aerospace applications[J]. Composites Part B: Engineering, 2021, 212: 108691. doi: 10.1016/j.compositesb.2021.108691 [4] Sun G, Huo X, Wang H, et al. On the structural parameters of honeycomb-core sandwich panels against low-velocity impact[J]. Composites Part B: Engineering, 2021, 216: 108881. doi: 10.1016/j.compositesb.2021.108881 [5] 胡玲玲, 陈依骊. 三角形蜂窝在面内冲击荷载下的力学性能[J]. 振动与冲击, 2011, 30(5): 226-229+235. doi: 10.3969/j.issn.1000-3835.2011.05.047HU Lingling, CHEN Yili. Mechanical properties of triangular honeycombs under in-plane impact loading[J]. Journal of Vibration and Shock, 2011, 30(5): 226-229+235. doi: 10.3969/j.issn.1000-3835.2011.05.047 [6] 李响, 王阳, 杨祉豪, 等. 新型类方形蜂窝夹芯结构泊松比研究[J]. 三峡大学学报(自然科学版), 2019, 41(3): 9196.LI Xiang, WANG Yang, YANG Zhihao, et al. Research on Poisson’s Ratio of Quasi-Square Honeycomb Sandwich Structure Core[J]. Journal of Three Gorges University(Natural Sciences), 2019, 41(3): 9196. [7] Wang A J, McDowell D L. In-plane stiffness and yield strength of periodic metal honeycombs[J]. Journal of Engineering Materials and Technology., 2004, 126(2): 137-156. doi: 10.1115/1.1646165 [8] Gibson L J. Cellular solids[J]. Mrs Bulletin, 2003, 28(4): 270-274. doi: 10.1557/mrs2003.79 [9] 何强, 马大为, 张震东. 含随机填充孔圆形蜂窝结构的面内冲击性能[J]. 爆炸与冲击, 2015, 35(3): 401-408.He Qiang, Ma Dawei, Zhang Zhendong. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions[J]. Explosion and Shock Waves, 2015, 35(3): 401-408. [10] Zhu H X, Yan L B, Zhang R, et al. Size-dependent and tunable elastic properties of hierarchical honeycombs with regular square and equilateral triangular cells[J]. Acta Materialia, 2012, 60(12): 4927-4939. doi: 10.1016/j.actamat.2012.05.009 [11] Li X, Xu X, Wang Y, et al. Out-of-plane crashworthiness of the new combined quasi-honeycomb core[J]. International Journal of Crashworthiness, 2022, 27(3): 826-834. doi: 10.1080/13588265.2020.1858625 [12] Li X, Cai M, He R, et al. Research on out-of-plane impact characteristics of self-similar gradient hierarchical quasi-honeycomb structure[J]. International Journal of crashworthiness, 2023, 28(5): 676-692. doi: 10.1080/13588265.2022.2116786 [13] Wu Y, Fang J, He Y, et al. Crashworthiness of hierarchical circular-joint quadrangular honeycombs[J]. Thin-Walled Structures, 2018, 133: 180-191. doi: 10.1016/j.tws.2018.09.044 [14] Huang W, Zhang Y, Zhou J, et al. Stabilized and efficient multi-crushing properties via face-centered hierarchical honeycomb[J]. International Journal of Mechanical Sciences, 2024, 266: 108918. doi: 10.1016/j.ijmecsci.2023.108918 [15] Qin S, Deng X, Liu F. Energy absorption characteristics and crashworthiness of rhombic hierarchical gradient multicellular hexagonal tubes[J]. Mechanics of Advanced Materials and Structures, 2024, 31(4): 783-804. doi: 10.1080/15376494.2022.2122640 [16] Deng X, Wei Q, Liu H, et al. Effect of cross-sectional shape evolvement on the energy absorption performances of multicellular square tube[J]. Mechanics of Advanced Materials and Structures, 2023: 1-17. [17] Wang P, Yang F, Fan H, et al. Bio-inspired multi-cell tubular structures approaching ideal energy absorption performance[J]. Materials & Design, 2023, 225: 111495. [18] Deng X, Yang F, Cao L, et al. Multi-objective optimization for a novel sandwich corrugated square tubes[J]. Alexandria Engineering Journal, 2023, 74: 611-626. doi: 10.1016/j.aej.2023.05.069 [19] Lakes R. Materials with structural hierarchy[J]. Nature, 1993, 361(6412): 511-515. doi: 10.1038/361511a0 [20] San Ha N, Pham T M, Tran T T, et al. Mechanical properties and energy absorption of bio-inspired hierarchical circular honeycomb[J]. Composites Part B: Engineering, 2022, 236: 109818. doi: 10.1016/j.compositesb.2022.109818 [21] Wang Z, Deng J, He K, et al. Out-of-plane crushing behavior of hybrid hierarchical square honeycombs[J]. Thin-Walled Structures, 2022, 181: 110051. doi: 10.1016/j.tws.2022.110051 [22] Huang H, Xu S. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads[J]. Thin-Walled Structures, 2019, 144: 106333. doi: 10.1016/j.tws.2019.106333 [23] Huang F, Zhou X, Zhou D, et al. Crashworthiness analysis of bio-inspired hierarchical circular tube under axial crushing[J]. Journal of Materials Science, 2023, 58(1): 101-123. doi: 10.1007/s10853-022-07982-3 [24] He Q, Feng J, Chen Y, et al. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading[J]. Journal of Sandwich Structures & Materials, 2020, 22(3): 771-796. [25] Cai Z, Deng X. Mechanical properties of the novel spider-web bionic hierarchical honeycomb under out-of-plane crushing[J]. Applied Physics A, 2024, 130(1): 57. doi: 10.1007/s00339-023-07248-y [26] Song J, Chen Y, Lu G. Light-weight thin-walled structures with patterned windows under axial crushing[J]. International journal of mechanical sciences, 2013, 66: 239-248. doi: 10.1016/j.ijmecsci.2012.11.014 [27] Wu S, Li G, Sun G, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube[J]. Thin-Walled Structures, 2016, 105: 121-134. doi: 10.1016/j.tws.2016.03.029 [28] Alkhatib S E, Tarlochan F, Eyvazian A. Collapse behavior of thin-walled corrugated tapered tubes[J]. Engineering Structures, 2017, 150: 674-692. doi: 10.1016/j.engstruct.2017.07.081 [29] Hou S, Li Q, Long S, et al. Crashworthiness design for foam filled thin-wall structures[J]. Materials & design, 2009, 30(6): 2024-2032. [30] Baykasoğlu A, Baykasoğlu C, Cetin E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes[J]. Thin-Walled Structures, 2020, 149: 106630. doi: 10.1016/j.tws.2020.106630 [31] Alghamdi A A A. Collapsible impact energy absorbers: an overview[J]. Thin-walled structures, 2001, 39(2): 189-213. doi: 10.1016/S0263-8231(00)00048-3 [32] Ahmad Z, Thambiratnam D P. Crushing response of foam-filled conical tubes under quasi-static axial loading[J]. Materials & design, 2009, 30(7): 2393-2403. [33] Baroutaji A, Gilchrist M D, Smyth D, et al. Analysis and optimization of sandwich tubes energy absorbers under lateral loading[J]. International Journal of Impact Engineering, 2015, 82: 74-88. doi: 10.1016/j.ijimpeng.2015.01.005
计量
- 文章访问数: 41
- HTML全文浏览量: 30
- 被引次数: 0