留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变截面设计的新型仿生类蜂窝结构的耐撞性

李响 李宁创 吴海华 付君健 胡启双 赵越超 李周发

李响, 李宁创, 吴海华, 等. 基于变截面设计的新型仿生类蜂窝结构的耐撞性[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 李响, 李宁创, 吴海华, 等. 基于变截面设计的新型仿生类蜂窝结构的耐撞性[J]. 复合材料学报, 2024, 42(0): 1-12.
LI Xiang, LI Ningchuang, WU Haihua, et al. Crashworthiness of a novel bionic quasi-honeycomb structure based on variable cross-section design[J]. Acta Materiae Compositae Sinica.
Citation: LI Xiang, LI Ningchuang, WU Haihua, et al. Crashworthiness of a novel bionic quasi-honeycomb structure based on variable cross-section design[J]. Acta Materiae Compositae Sinica.

基于变截面设计的新型仿生类蜂窝结构的耐撞性

基金项目: 国家自然科学基金青年科学基金项目(51305232);国家自然科学基金(51575313);湖北省教育厅科学技术研究计划重点项目(D20181206);水电机械设备设计与维护湖北省重点实验室开放基金项目(2021KJX08)
详细信息
    通讯作者:

    李响,博士,副教授,硕士生导师,研究方向为新型夹层结构创新设计及其力学行为 E-mail: lixiangcfy@ctgu.edu.cn

Crashworthiness of a novel bionic quasi-honeycomb structure based on variable cross-section design

Funds: National Natural Science Foundation of China Youth Science Fund Project (51305232); National Natural Science Foundation of China (51575313); Key Project of Science and Technology Research Programme of Hubei Provincial Department of Education (D20181206); Open Fund Project of Hubei Key Laboratory for Design and Maintenance of Hydropower Machinery and Equipment (2021KJX08)
  • 摘要: 为有效提升薄壁结构的吸能特性,受到骨骼和竹子结构的启发,提出了一种新型变截面仿生类蜂窝结构(VCBQH)。该结构在提高吸能特性的同时能有效降低结构的峰值碰撞力。通过准静态压缩试验,我们对比分析了0-2级VCBQH结构与传统蜂窝结构(TH)在轴向与径向压缩下的能量吸收特性。研究发现,层级数的增加可显著降低VCBQH结构的峰值碰撞力,其中2级结构的峰值碰撞力分别较TH结构和0级VCBQH结构降低了23.33%和44.54%。此外,我们研究了角度、壁厚和层级对VCBQH结构耐撞性能的影响。结果显示,增加壁厚和层级均可提高结构的比吸能,但壁厚的增加会提高结构的初始峰值力,而合理设计的角度恰好可以弥补这一缺陷。在相同壁厚的情况下,2级VCBQH结构随角度增加,其比吸能提高了21.50%,同时初始峰值力下降了26.04%。

     

  • 图  1  结构示意图:(a) 仿生结构设计流程;(b) 0-2级新型变截面仿生类蜂窝结构的几何特征;(c) 变截面设计示意图

    Figure  1.  Structural schematic diagrams: (a) Bionic structure design process; (b) Geometrical characteristics of the novel variable cross-section bionic quasi-honeycomb structures from 0-2 layers; (c) Schematic diagram of variable cross-section design

    Notes: L0 , L0’-Length of the outer edge of the VCBQH; L1, L1’-Length of the inner hexagonal honeycomb edge of the VCBQH-2; t0-Wall thickness of the honeycomb structure; θ-Angle of the variable cross-section design; H-Height of the honeycomb structure.

    图  2  试验设备示意图:(a)为电子万能试验机,数据采集器及数码相机;(b)狗骨拉伸试验;(c)所制备的TH与VCBQH的试样及狗骨试样尺寸

    Figure  2.  Diagram of experimental equipment:(a) Electronic universal testing machine, data collector, digital camera;(b) Tensile test;(c) Prepared specimens of TH and VCBQH and dimensional parameters of the dog bone

    图  3  标准试样的工程应力-应变曲线

    Figure  3.  Engineering stress-strain curve of standard specimens

    图  4  仿真分析:(a) TH与VCBQH有限元模型示意图;(b) 网格收敛性分析

    Figure  4.  Analysis of FEM: (a) Schematic diagram of TH and VCBQH finite element models;(b) Mesh convergence analysis

    图  5  有限元模型验证:(a) 斜坡速度;(b)内能与动能对比曲线

    Figure  5.  Finite element model validation:(a) Slope velocity;(b) Comparison curve of internal energy and kinetic energy

    图  6  试验与有限元仿真结果对比:(a) TH的变形模式及应力-应变曲线;(b) VCBQH-0的变形模式及应力-应变曲线;(c) VCBQH-1的变形模式及应力-应变曲线;(d) VCBQH-2的变形模式及应力-应变曲线

    Figure  6.  Comparison of test and finite element simulation results:(a) Deformation mode and stress-strain curve of TH;(b) Deformation mode and stress-strain curve of VCBQH-0;(c) Deformation mode and stress-strain curve of VCBQH-1;(d) Deformation mode and stress-strain curve of VCBQH-2

    图  7  四种结构在轴向压缩载荷下的力学性能:(a) 载荷-位移曲线;(b) 能量吸收曲线

    Figure  7.  Mechanical properties of four structures under axial compressive loading: (a) Load-displacement curves;(b) Energy absorption curves

    图  8  四种结构在径向压缩载荷下的力学性能:(a) 载荷-位移曲线;(b) 能量吸收曲线

    Figure  8.  Mechanical properties of four structures under radial compressive loading: (a) Load-displacement curves; (b) Energy absorption curves

    图  9  径向压缩载荷下四种结构试验与有限元仿真的对比:(a) TH;(b) VCBQH-0;(c) VCBQH-1;(d) VCBQH-2

    Figure  9.  Comparison of deformation patterns between four structural tests and finite element simulations under radial compressive loading: (a) TH;(b) VCBQH-0; (c) VCBQH-1; (d) VCBQH-2

    表  1  传统蜂窝与新型变截面仿生类蜂窝结构的尺寸参数

    Table  1.   Dimensional parameters of traditional honeycomb (TH) and the novel variable cross-section bionic quasi-honeycomb structure (VCBQH)

    Specimen L0 L1 t0 θ H m
    mm mm mm ° mm g
    TH 30 0 1.84 0 50 43.162
    VCBQH-0 30 0 2.00 30 50 43.160
    VCBQH-1 30 0 1.00 30 50 43.161
    VCBQH-2 30 15 0.82 30 50 43.158
    Notes: L0-Length of the outer edge of the VCBQH; L1-Length of the inner hexagonal honeycomb edge of the VCBQH-2; t0-Wall thickness of the honeycomb structure; θ-Angle of the variable cross-section design; H-Height of the honeycomb structure; m-Mass of the honeycomb structure.
    下载: 导出CSV

    表  2  标准试样的性能参数

    Table  2.   Performance parameters of standard specimens

    Material ρ Young's modulus Poisson's ratio Yield strength
    g/cm3 MPa MPa
    PLA 1.989 1581.61 0.32 29.3
    Notes: PLA-Polylactic acid; ρ- Density of PLA.
    下载: 导出CSV

    表  3  试验与有限元仿真结果对比

    Table  3.   Comparison of tests and finite element simulation results

    Tubest0/mmH/mmm/gPCF/kNMCF/kNSEA/(J·g−1)
    SimExpError%SimExpError%Sim
    TH1.8450 43.162 8.573 8.926 −3.9552.8413.011−5.6462.218
    VCBQH-02.0050 43.16010.83512.34 −12.1964.8694.429 9.9353.722
    VCBQH-11.0050 43.161 7.382 6.752 9.3313.27 3.332−1.8612.759
    VCBQH-20.8250 43.158 5.8 6.844−15.2543.6713.889−5.6062.940
    Notes: TH—Traditional honeycomb; VCBQH-0-0-layer novel variable cross-section bionic quasi-honeycomb structure;VCBQH-1—1-layer novel variable cross-section bionic quasi-honeycomb structure;VCBQH-2—2-layer novel variable cross-section bionic quasi-honeycomb structure; PCF—Peak collision force; MCF—Mean collision force; SEA-Specific energy absorption.
    下载: 导出CSV

    表  4  试验与有限元仿真结果对比

    Table  4.   Comparison of tests and finite element simulation results

    Tubest0/mmH/mmm/gPCF/kNMCF/kNSEA/(J·g−1)
    SimExpError%SimExpError%Sim
    TH1.8450 43.1570.2050.190 7.890.1370.132 3.790.1399
    VCBQH-02.0050 43.1600.3850.444-13.290.2560.266 -3.760.2095
    VCBQH-11.0050 43.1641.0781.026 5.070.5290.591-10.490.4223
    VCBQH-20.8250 43.1550.9110.838 8.710.7430.733 1.360.6096
    下载: 导出CSV

    表  5  不同角度对0-2级VCBQH耐撞性的影响

    Table  5.   Effect of different angles on the crashworthiness of 0-2 layers VCBQH

    Models θ/(°) m/g PCF/kN MCF/kN SEA/(J·g−1)
    VCBQH-0 20 53.52 136.77 67.53 41.39
    25 53.52 135.10 59.00 35.82
    30 53.52 132.51 60.35 35.84
    35 53.52 126.23 75.71 47.66
    40 53.52 118.02 65.30 38.62
    45 53.52 108.09 63.75 37.91
    50 53.52 96.68 62.53 37.29
    VCBQH-1 20 53.52 124.46 53.25 34.23
    25 53.52 122.48 52.55 33.51
    30 53.52 119.17 53.43 34.29
    35 53.52 118.95 55.38 34.90
    40 53.52 103.00 55.90 35.40
    45 53.52 108.93 56.04 35.04
    50 53.52 99.97 62.58 39.65
    VCBQH-2 20 53.52 126.60 63.59 41.34
    25 53.52 121.91 65.74 42.48
    30 53.52 120.29 68.54 44.39
    35 53.52 109.59 68.95 44.67
    40 53.52 98.26 70.09 45.37
    45 53.52 96.60 71.42 46.26
    50 53.52 93.63 77.44 50.23
    下载: 导出CSV

    表  6  不同壁厚与角度对VCBQH-2的耐撞性影响

    Table  6.   Effect of different wall thicknesses and angles on crashworthiness of VCBQH-2

    θ/(°) t0/mm m/g PCF/kN MCF/kN EA/J SEA/(J·g−1)
    20 0.75 41.06 96.40 41.73 1445.24 35.20
    1.00 53.93 125.76 63.37 2194.60 40.70
    1.25 66.39 153.31 90.15 3129.85 47.15
    1.50 78.44 183.01 139.82 4804.84 61.26
    25 0.75 40.39 92.62 41.51 1433.53 35.49
    1.00 53.03 122.88 64.76 2240.58 42.25
    1.25 65.27 147.98 91.30 3142.85 48.16
    1.50 77.09 176.37 135.36 4659.66 60.44
    30 0.75 39.71 84.49 41.59 1434.17 36.12
    1.00 52.13 113.52 64.47 2220.68 42.60
    1.25 64.13 140.69 90.95 3122.36 48.69
    1.50 75.73 174.30 132.52 4497.33 59.39
    35 0.75 39.02 77.05 40.99 1422.65 36.46
    1.00 51.21 104.85 63.57 2200.11 42.96
    1.25 64.86 135.93 96.94 3334.75 51.41
    1.50 74.37 163.08 130.49 4500.33 60.52
    40 0.75 38.33 69.49 40.47 1399.33 36.51
    1.00 50.29 94.47 63.07 2188.36 43.52
    1.25 61.84 118.91 89.52 3096.07 50.07
    1.50 72.98 154.50 131.07 4508.82 61.78
    45 0.75 37.63 63.90 41.42 1437.39 38.20
    1.00 49.36 83.94 60.71 2100.58 42.56
    1.25 60.67 113.86 92.30 3186.02 52.51
    1.50 71.58 143.28 132.40 4502.97 62.91
    50 0.75 36.92 58.04 40.18 1402.95 38.00
    1.00 48.41 81.71 58.07 2007.27 41.47
    1.25 59.49 103.52 86.10 2973.81 49.99
    1.50 70.16 136.46 130.60 4460.40 63.58
    Note: EA—Energy absorption.
    下载: 导出CSV
  • [1] Zhang L, Zhong Y, Tan W, et al. Crushing characteristics of bionic thin-walled tubes inspired by bamboo and beetle forewing[J]. Mechanics of Advanced Materials and Structures, 2022, 29(14): 2024-2039. doi: 10.1080/15376494.2020.1849880
    [2] Rahi A. Experimental and crash-worthiness optimization of end-capped conical tubes under quasi-static and dynamic loading[J]. Mechanics of advanced materials and structures, 2019, 26(17): 1437-1446. doi: 10.1080/15376494.2018.1432815
    [3] Smeets B J R, Fagan E M, Matthews K, et al. Structural testing of a shear web attachment point on a composite lattice cylinder for aerospace applications[J]. Composites Part B: Engineering, 2021, 212: 108691. doi: 10.1016/j.compositesb.2021.108691
    [4] Sun G, Huo X, Wang H, et al. On the structural parameters of honeycomb-core sandwich panels against low-velocity impact[J]. Composites Part B: Engineering, 2021, 216: 108881. doi: 10.1016/j.compositesb.2021.108881
    [5] 胡玲玲, 陈依骊. 三角形蜂窝在面内冲击荷载下的力学性能[J]. 振动与冲击, 2011, 30(5): 226-229+235. doi: 10.3969/j.issn.1000-3835.2011.05.047

    HU Lingling, CHEN Yili. Mechanical properties of triangular honeycombs under in-plane impact loading[J]. Journal of Vibration and Shock, 2011, 30(5): 226-229+235. doi: 10.3969/j.issn.1000-3835.2011.05.047
    [6] 李响, 王阳, 杨祉豪, 等. 新型类方形蜂窝夹芯结构泊松比研究[J]. 三峡大学学报(自然科学版), 2019, 41(3): 9196.

    LI Xiang, WANG Yang, YANG Zhihao, et al. Research on Poisson’s Ratio of Quasi-Square Honeycomb Sandwich Structure Core[J]. Journal of Three Gorges University(Natural Sciences), 2019, 41(3): 9196.
    [7] Wang A J, McDowell D L. In-plane stiffness and yield strength of periodic metal honeycombs[J]. Journal of Engineering Materials and Technology., 2004, 126(2): 137-156. doi: 10.1115/1.1646165
    [8] Gibson L J. Cellular solids[J]. Mrs Bulletin, 2003, 28(4): 270-274. doi: 10.1557/mrs2003.79
    [9] 何强, 马大为, 张震东. 含随机填充孔圆形蜂窝结构的面内冲击性能[J]. 爆炸与冲击, 2015, 35(3): 401-408.

    He Qiang, Ma Dawei, Zhang Zhendong. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions[J]. Explosion and Shock Waves, 2015, 35(3): 401-408.
    [10] Zhu H X, Yan L B, Zhang R, et al. Size-dependent and tunable elastic properties of hierarchical honeycombs with regular square and equilateral triangular cells[J]. Acta Materialia, 2012, 60(12): 4927-4939. doi: 10.1016/j.actamat.2012.05.009
    [11] Li X, Xu X, Wang Y, et al. Out-of-plane crashworthiness of the new combined quasi-honeycomb core[J]. International Journal of Crashworthiness, 2022, 27(3): 826-834. doi: 10.1080/13588265.2020.1858625
    [12] Li X, Cai M, He R, et al. Research on out-of-plane impact characteristics of self-similar gradient hierarchical quasi-honeycomb structure[J]. International Journal of crashworthiness, 2023, 28(5): 676-692. doi: 10.1080/13588265.2022.2116786
    [13] Wu Y, Fang J, He Y, et al. Crashworthiness of hierarchical circular-joint quadrangular honeycombs[J]. Thin-Walled Structures, 2018, 133: 180-191. doi: 10.1016/j.tws.2018.09.044
    [14] Huang W, Zhang Y, Zhou J, et al. Stabilized and efficient multi-crushing properties via face-centered hierarchical honeycomb[J]. International Journal of Mechanical Sciences, 2024, 266: 108918. doi: 10.1016/j.ijmecsci.2023.108918
    [15] Qin S, Deng X, Liu F. Energy absorption characteristics and crashworthiness of rhombic hierarchical gradient multicellular hexagonal tubes[J]. Mechanics of Advanced Materials and Structures, 2024, 31(4): 783-804. doi: 10.1080/15376494.2022.2122640
    [16] Deng X, Wei Q, Liu H, et al. Effect of cross-sectional shape evolvement on the energy absorption performances of multicellular square tube[J]. Mechanics of Advanced Materials and Structures, 2023: 1-17.
    [17] Wang P, Yang F, Fan H, et al. Bio-inspired multi-cell tubular structures approaching ideal energy absorption performance[J]. Materials & Design, 2023, 225: 111495.
    [18] Deng X, Yang F, Cao L, et al. Multi-objective optimization for a novel sandwich corrugated square tubes[J]. Alexandria Engineering Journal, 2023, 74: 611-626. doi: 10.1016/j.aej.2023.05.069
    [19] Lakes R. Materials with structural hierarchy[J]. Nature, 1993, 361(6412): 511-515. doi: 10.1038/361511a0
    [20] San Ha N, Pham T M, Tran T T, et al. Mechanical properties and energy absorption of bio-inspired hierarchical circular honeycomb[J]. Composites Part B: Engineering, 2022, 236: 109818. doi: 10.1016/j.compositesb.2022.109818
    [21] Wang Z, Deng J, He K, et al. Out-of-plane crushing behavior of hybrid hierarchical square honeycombs[J]. Thin-Walled Structures, 2022, 181: 110051. doi: 10.1016/j.tws.2022.110051
    [22] Huang H, Xu S. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads[J]. Thin-Walled Structures, 2019, 144: 106333. doi: 10.1016/j.tws.2019.106333
    [23] Huang F, Zhou X, Zhou D, et al. Crashworthiness analysis of bio-inspired hierarchical circular tube under axial crushing[J]. Journal of Materials Science, 2023, 58(1): 101-123. doi: 10.1007/s10853-022-07982-3
    [24] He Q, Feng J, Chen Y, et al. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading[J]. Journal of Sandwich Structures & Materials, 2020, 22(3): 771-796.
    [25] Cai Z, Deng X. Mechanical properties of the novel spider-web bionic hierarchical honeycomb under out-of-plane crushing[J]. Applied Physics A, 2024, 130(1): 57. doi: 10.1007/s00339-023-07248-y
    [26] Song J, Chen Y, Lu G. Light-weight thin-walled structures with patterned windows under axial crushing[J]. International journal of mechanical sciences, 2013, 66: 239-248. doi: 10.1016/j.ijmecsci.2012.11.014
    [27] Wu S, Li G, Sun G, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube[J]. Thin-Walled Structures, 2016, 105: 121-134. doi: 10.1016/j.tws.2016.03.029
    [28] Alkhatib S E, Tarlochan F, Eyvazian A. Collapse behavior of thin-walled corrugated tapered tubes[J]. Engineering Structures, 2017, 150: 674-692. doi: 10.1016/j.engstruct.2017.07.081
    [29] Hou S, Li Q, Long S, et al. Crashworthiness design for foam filled thin-wall structures[J]. Materials & design, 2009, 30(6): 2024-2032.
    [30] Baykasoğlu A, Baykasoğlu C, Cetin E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes[J]. Thin-Walled Structures, 2020, 149: 106630. doi: 10.1016/j.tws.2020.106630
    [31] Alghamdi A A A. Collapsible impact energy absorbers: an overview[J]. Thin-walled structures, 2001, 39(2): 189-213. doi: 10.1016/S0263-8231(00)00048-3
    [32] Ahmad Z, Thambiratnam D P. Crushing response of foam-filled conical tubes under quasi-static axial loading[J]. Materials & design, 2009, 30(7): 2393-2403.
    [33] Baroutaji A, Gilchrist M D, Smyth D, et al. Analysis and optimization of sandwich tubes energy absorbers under lateral loading[J]. International Journal of Impact Engineering, 2015, 82: 74-88. doi: 10.1016/j.ijimpeng.2015.01.005
  • 加载中
计量
  • 文章访问数:  72
  • HTML全文浏览量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-07-15
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回