留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羟乙基纤维素联合脲酶诱导碳酸盐沉淀固化粉砂的水稳定性

原华 孙放 李瑾 刘帅星 王凯

原华, 孙放, 李瑾, 等. 羟乙基纤维素联合脲酶诱导碳酸盐沉淀固化粉砂的水稳定性[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 原华, 孙放, 李瑾, 等. 羟乙基纤维素联合脲酶诱导碳酸盐沉淀固化粉砂的水稳定性[J]. 复合材料学报, 2024, 42(0): 1-11.
YUAN Hua, SUN Fang, LI Jin, et al. Water Stability of Silty Sand Solidified by Enzyme-induced Carbonate Precipitation Combined with Hydroxyethyl Cellulose[J]. Acta Materiae Compositae Sinica.
Citation: YUAN Hua, SUN Fang, LI Jin, et al. Water Stability of Silty Sand Solidified by Enzyme-induced Carbonate Precipitation Combined with Hydroxyethyl Cellulose[J]. Acta Materiae Compositae Sinica.

羟乙基纤维素联合脲酶诱导碳酸盐沉淀固化粉砂的水稳定性

基金项目: 国家自然科学基金面上项目(42177454);河南省2022年本科高校研究性教学改革研究与实践项目(2022SYJXLX010)
详细信息
    通讯作者:

    王凯,博士,讲师,硕士生导师,研究方向为采动岩石力学,注浆支护 E-mail: kwang@henu.edu.cn

  • 中图分类号: TB331

Water Stability of Silty Sand Solidified by Enzyme-induced Carbonate Precipitation Combined with Hydroxyethyl Cellulose

Funds: National Natural Science Foundation of China (42177454); Research and Practice Program on Research Teaching Reform in Undergraduate Colleges and Universities in Henan Province in 2022 (2022SYJXLX010)
  • 摘要: 为提高脲酶诱导碳酸盐沉淀(EICP)固化地基土的效果,本研究提出羟乙基纤维素(HEC)联合EICP固化粉砂的技术,并分析了该技术固化粉砂的水稳定性。以表面强度和水稳定性为考察指标(水稳定性通过崩解率与浸水强度损失率评估),进行四因素(HEC浓度、喷洒量、喷洒遍数、钙源浓度)四水平正交试验,通过微型贯入、崩解率测定、浸水强度损失率测定试验以及微观试验,从宏微观角度分析其固化机制。结果表明:对于不同考察指标,HEC浓度在各因素影响的主次顺序中均为第一位;HEC联合EICP固化粉砂的最佳固化参数组合为:HEC浓度为0.6 g/L、喷洒量为3 L/m2、喷洒遍数为4遍、钙源浓度为0.75 mol/L,此时固化粉砂的表面强度较传统EICP提高了57.47%、崩解率和浸水强度损失率较传统EICP分别降低了78.64%和83.75%;HEC的掺入改变了EICP单一的胶结模式,在土颗粒间产生“包裹”、“连接”效应,形成土颗粒-HEC-CaCO3的链式网状结构,提高了粉砂的表面强度和水稳定性。

     

  • 图  1  黄泛区粉砂的粒径级配及基本物理参数

    Figure  1.  Particle size grade and basic physical parameters of silty sand in Yellow River flooding area

    图  2  试验流程

    Figure  2.  Test process

    图  3  不同测试方案下土样的指标数据

    Figure  3.  Index data of soil samples under different testing schemes

    图  4  针对表面强度的极差分析

    Figure  4.  Range analysis for surface strength

    HC—HEC concentration; SA—Spray amount; SF—spray frequency; CSC—Calcium source concentration.

    图  5  针对崩解率的极差分析

    Figure  5.  Range analysis for disintegration rate

    图  6  针对浸水强度损失率的极差分析

    Figure  6.  Range analysis of strength loss rate after immersion

    图  7  不同方式处理后试样的特性指标

    Figure  7.  Characteristic indicators of samples treated with different methods

    图  8  不同方式固化试样的SEM图像

    Figure  8.  SEM images of specimens solidified by different methods

    图  9  不同方式固化试样的EDS图像

    Figure  9.  EDS images of specimens solidified by different methods

    图  10  不同方式处理土样的XRD图谱

    Figure  10.  XRD patterns of soil treated with different methods

    图  11  HEC联合EICP固化粉砂的机制

    Figure  11.  Mechanism of solidifying silty sand by HEC combined with EICP

    表  1  正交试验因素水平表

    Table  1.   Orthogonal experimental factor level table

    Level Factor
    HEC
    concentration/
    (g·L−1)
    Spray
    amount/
    (L·m−2)
    Spray
    frequency
    Calcium source
    concentration/
    (mol·L−1)
    1 0.2 1 1 0.25
    2 0.4 2 2 0.5
    3 0.6 3 3 0.75
    4 0.8 4 4 1
    下载: 导出CSV

    表  2  四因素正交试验方案

    Table  2.   Four factor orthogonal experimental scheme

    Test
    Number
    Factor
    HEC
    concentration/
    (g·L−1)
    Spray
    amount/
    (L·m−2)
    Spray
    frequency
    Calcium source
    concentration/
    (mol·L−1)
    1 0.2 1 1 0.25
    2 0.2 2 2 0.5
    3 0.2 3 3 0.75
    4 0.2 4 4 1
    5 0.4 1 2 0.75
    6 0.4 2 1 1
    7 0.4 3 4 0.25
    8 0.4 4 3 0.5
    9 0.6 1 3 1
    10 0.6 2 4 0.75
    11 0.6 3 1 0.5
    12 0.6 4 2 0.25
    13 0.8 1 4 0.5
    14 0.8 2 3 0.25
    15 0.8 3 2 1
    16 0.8 4 1 0.75
    下载: 导出CSV

    表  3  针对表面强度的方差分析

    Table  3.   Variance analysis for surface strength

    Source of variance Sv d S F P/(×10−2)
    HC 24.73 3 8.24 213.33 0.05
    SA 1.58 3 0.53 13.59 2.98
    SF 1.29 3 0.43 11.08 3.94
    CSC 0.49 3 0.16 4.18 13.53
    Error 0.17 3 0.04 1.00 50.00
    Notes: Sv—Sum of squares of deviations; d—degree of freedom; S—Square deviation; F—F-statistic; P—P-value.
    下载: 导出CSV

    表  4  针对崩解率的方差分析

    Table  4.   Variance analysis for disintegration rate

    Source of variance Sv d S F P/(×10−2)
    HC 80.98 3 26.99 223.24 0.05
    SA 8.91 3 2.97 24.55 1.30
    SF 10.70 3 3.57 29.49 1.00
    CSC 3.65 3 1.22 10.07 4.48
    Error 0.36 3 0.12 1.00 50.00
    下载: 导出CSV

    表  5  针对浸水强度损失率的方差分析

    Table  5.   Variance analysis for strength loss rate after immersion

    Source of variance Sv d S F P/(×10−2)
    HC 7.49 3 2.50 86.55 0.21
    SA 1.43 3 0.48 16.49 2.28
    SF 1.67 3 0.56 19.22 1.84
    CSC 0.84 3 0.28 9.69 4.72
    Error 0.09 3 0.03 1.00 50.00
    下载: 导出CSV
  • [1] XIAO Y, TONG L, CHE H, et al. Experimental studies on compressive and tensile strength of cement-stabilized soil reinforced with rice husks and polypropylene fibers[J]. Construction and Building Materials, 2022, 344: 128242. doi: 10.1016/j.conbuildmat.2022.128242
    [2] YING Z, CUI Y J, BENAHMED N, et al. Changes of small strain shear modulus and microstructure for a lime-treated silt subjected to wetting-drying cycles[J]. Engineering Geology, 2021, 293: 106334. doi: 10.1016/j.enggeo.2021.106334
    [3] 龙开荃, 方祥位, 申春妮, 等. 复合型早强土壤固化剂固化淤泥强度特性研究[J]. 岩土力学, 2023, 44(S1): 309-318.

    LONG Kaiquan, FANG Xiangwei, SHEN Chunni, et al. Strength characteristics of sludge solidified by composite rapid soil stabilizer[J]. Rock and Soil Mechanics, 2023, 44(S1): 309-318(in Chinese).
    [4] 王盛年, 高新群, 吴志坚, 等. 水泥偏高岭土复合稳定粉砂土渗透特性试验研究[J]. 岩土力学, 2022, 43(11): 3003-3014.

    Wang Shengnian, Gao Xinqun, WU Zhijian, et al. Permeability characteristics of cemented silty sand improved by metakaolin[J]. Rock and Soil Mechanics, 2022, 43(11): 3003-3014(in Chinese).
    [5] 李新明, 张浩扬, 武迪, 等. 石灰-偏高岭土改良遗址土强度劣化特性的冻融循环效应[J]. 岩土力学, 2023, 44(6): 1593-1603.

    LI Xinming, ZHANG Haoyang, WU Di, et al. Strength deterioration characteristics of lime-metakaolin improved earthen site soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2023, 44(6): 1593-1603(in Chinese).
    [6] GITANJALI A, JHUO Y S, YEH F H, et al. Bio-cementation of sand using enzyme-induced calcite precipitation: Mechanical behavior and microstructural analysis[J]. Construction and Building Materials, 2024, 417: 135360. doi: 10.1016/j.conbuildmat.2024.135360
    [7] HE J, GAO Y, GU Z, et al. Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020071. doi: 10.1061/(ASCE)MT.1943-5533.0003100
    [8] CHOI S G, CHANG I, LEE M, et al. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers[J]. Construction and Building Materials, 2020, 246: 118415. doi: 10.1016/j.conbuildmat.2020.118415
    [9] CUI M J, LAI H J, WU S F, et al. Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation[J]. Géotechnique, 2022, 74(1): 18-26.
    [10] GEBRU K A, KIDANEMARIAM T G, Gebretinsae H K. Bio-cement production using microbially induce $ \mathrm{d} $ calcite precipitation (MICP) method: A review[J]. Chemical Engineering Science, 2021, 238: 116610. doi: 10.1016/j.ces.2021.116610
    [11] 张茜, 叶为民, 刘樟荣, 等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357.

    ZHANG Qian, YE Weimin, LIU Zhangrong, et al. Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43(2): 345-357(in Chinese).
    [12] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14.

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14(in Chinese).
    [13] ZHANG J, WANG X J, SHI L, et al. Enzyme-induced carbonate precipitation (EICP) combined with lignin to solidify silt in the Yellow River flood area[J]. Construction and Building Materials, 2022, 339: 127792. doi: 10.1016/j.conbuildmat.2022.127792
    [14] 吴林玉, 缪林昌, 孙潇昊, 等. 植物源脲酶诱导碳酸钙固化砂土试验研究[J]. 岩土工程学报, 2020, 42(4): 714-720. doi: 10.11779/CJGE202004014

    WU Linyu, MIAO Linchang, SUN Xiaohao, et al. Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 714-720(in Chinese). doi: 10.11779/CJGE202004014
    [15] 董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114.

    DONG Bowen, LIU Shiyu, YU Jin, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114(in Chinese).
    [16] 彭丽云, 陈星, 齐吉琳, 等. 微生物加固粉土的强度特性及加固机理研究 [J/OL]. 材料导报: 1-12[2024-03-26]. http:// kns. cnki. net/kcms/detail/50. 1078. TB. 20230628. 1746. 022. html.

    PENG Liyun, CHEN Xing, QI Jilin, et al. Study on strength characteristics and strengthening mechanism of microbial reinforced silt [J/OL]. Materials Reports: 1-12[2024-03-26]. http:// kns. cnki. net/kcms/detail/50. 1078. TB. 20230628. 1746. 022. html(in Chinese).
    [17] WANG Y, SUN X, MIAO L, et al. State-of-the-art review of soil erosion control by MICP and EICP techniques: Problems, applications, and prospects[J]. Science of the Total Environment, 2023: 169016.
    [18] SUN X, MIAO L, YUAN J, et al. Application of enzymatic calcification for dust control and rainfall erosion resistance improvement[J]. Science of the Total Environment, 2021, 759: 143468. doi: 10.1016/j.scitotenv.2020.143468
    [19] LIU L, GAO Y, GENG W, et al. Comparison of jack bean and soybean crude ureases on surface stabilization of desert sand via enzyme-induced carbonate precipitation[J]. Geoderma, 2023, 435: 116504. doi: 10.1016/j.geoderma.2023.116504
    [20] 吴敏, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报, 2020, 42(10): 1914-1921. doi: 10.11779/CJGE202010017

    WU Min, GAO Yufeng, HE Jia, et al. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921(in Chinese). doi: 10.11779/CJGE202010017
    [21] SOHAIL M G, Al DISI Z, ZOUARI N, et al. Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil[J]. Construction and Building Materials, 2022, 328: 126943. doi: 10.1016/j.conbuildmat.2022.126943
    [22] SUN X, MIAO L, WU L, et al. Theoretical quantification for cracks repair based on microbially induced carbonate precipitation (MICP) method[J]. Cement and Concrete Composites, 2021, 118: 103950. doi: 10.1016/j.cemconcomp.2021.103950
    [23] 边汉亮, 吉培瑞, 王俊岭, 等. EICP修复重金属污染土的环境耐久性研究[J]. 岩土力学, 2023, 44(10): 2779-2788.

    BIAN Hanliang, JI Peirui, WANG Jumling, et al. Study on the environmental durability of heavy metal contaminated soil remediated by enzyme induced carbonate precipitation[J]. Rock and Soil Mechanics, 2023, 44(10): 2779-2788(in Chinese).
    [24] LIU S, YU J, PENG X, et al. Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation[J]. Construction and building materials, 2020, 248: 118611. doi: 10.1016/j.conbuildmat.2020.118611
    [25] YASUHARA H, NEUPANE D, HAYASHI K, et al. Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation[J]. Soils and Foundations, 2012, 52(3): 539-549. doi: 10.1016/j.sandf.2012.05.011
    [26] MARTIN K, TIRKOLAEI H K, KAVAZANJIAN E. Enhancing the strength of granular material with a modified enzyme-induced carbonate precipitation (EICP) treatment solution[J]. Construction and Building Materials, 2021, 271: 121529. doi: 10.1016/j.conbuildmat.2020.121529
    [27] HAMDAN N, ZHAO Z, MUJICA M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089. doi: 10.1061/(ASCE)MT.1943-5533.0001604
    [28] 张建伟, 李想, 韩智光, 等. 废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性[J]. 复合材料学报, 2024, 41(1): 426-437.

    ZHANG Jianwei, LI Xiang, HAN Zhiguang, et al. Shear strength characteristics of sand solidified by enzyme-induced carbonate precipitation with waste face mask reinforcement[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 426-437(in Chinese).
    [29] 曹光辉, 刘士雨, 蔡燕燕, 等. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究[J]. 岩土力学, 2022, 43(8): 2241-2252.

    Cao Guanghui, Liu Shiyu, Cai Yanyan, et al. Experimental study on solidification of land reclamation sea sand by EICP combined with targeting activation of microbes producing urease[J]. Rock and Soil Mechanics, 2022, 43(8): 2241-2252(in Chinese).
    [30] PAN Y, WANG J, YANG S, et al. Research progress of hydroxyethyl cellulose materials in oil and gas drilling and production[J]. Cellulose, 2023, 30(17): 10681-10700. doi: 10.1007/s10570-023-05564-3
    [31] LIU X, ZENG W, ZHAO J, et al. Preparation and anti-leakage properties of hydroxyethyl cellulose-g-poly (butyl acrylate-co-vinyl acetate) emulsion[J]. Carbohydrate Polymers, 2021, 255: 117467. doi: 10.1016/j.carbpol.2020.117467
    [32] 王荣博, 严从立, 王志强. 羟乙基纤维素对喷涂速凝橡胶沥青防水涂料耐热性能的影响研究[J]. 中国建筑防水, 2019, (S2): 18-21+32.

    Wang Rongbo, Yan Congli, Wang Zhiqiang. Influence of Hydroxyethyl Cellulose on Heat Resistance of Sprayed Quick-curing Rubber Modified Bitumen Waterproofing Coatings[J]. China Building Waterproofing, 2019, (S2): 18-21+32(in Chinese).
    [33] 中国建筑科学研究院. GB 50007-2011 建筑地基基础设计规范[S]. 北京: 中国建筑工业出版社, 2011.

    China Academy of Building Research. GB 50007-2011 Code for design of building foundation[S]. Beijing: China Architecture and Building Press, 2011(in Chinese).
    [34] 邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11): 133-139. doi: 10.11975/j.issn.1002-6819.2017.11.017

    Shao Guanghui, Feng Jianting, Zhao Zhifeng, et al. Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 133-139(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.11.017
    [35] 刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1): 191-204.

    LIU Shiyu, YU Jin, ZENG Weilong, et al. Repair effect of tabia cracks with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 191-204(in Chinese).
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2024-08-07
  • 录用日期:  2024-08-15
  • 网络出版日期:  2024-08-31

目录

    /

    返回文章
    返回