留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接枝聚丙烯酸改性聚(3-羟基丁酸酯-co-3-羟基戊酸酯)抗氧化膜的制备与性能

王杰 丘晓琳 赵烨 朱喜成 刘鑫洋

王杰, 丘晓琳, 赵烨, 等. 接枝聚丙烯酸改性聚(3-羟基丁酸酯-co-3-羟基戊酸酯)抗氧化膜的制备与性能[J]. 复合材料学报, 2023, 40(6): 3529-3538. doi: 10.13801/j.cnki.fhclxb.20220802.002
引用本文: 王杰, 丘晓琳, 赵烨, 等. 接枝聚丙烯酸改性聚(3-羟基丁酸酯-co-3-羟基戊酸酯)抗氧化膜的制备与性能[J]. 复合材料学报, 2023, 40(6): 3529-3538. doi: 10.13801/j.cnki.fhclxb.20220802.002
WANG Jie, QIU Xiaolin, ZHAO Ye, et al. Preparation and properties of grafted polyacrylic acid modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) antioxidant film[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3529-3538. doi: 10.13801/j.cnki.fhclxb.20220802.002
Citation: WANG Jie, QIU Xiaolin, ZHAO Ye, et al. Preparation and properties of grafted polyacrylic acid modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) antioxidant film[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3529-3538. doi: 10.13801/j.cnki.fhclxb.20220802.002

接枝聚丙烯酸改性聚(3-羟基丁酸酯-co-3-羟基戊酸酯)抗氧化膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220802.002
基金项目: 江苏省产学研合作项目(BY2021130)
详细信息
    通讯作者:

    丘晓琳,博士,副教授,硕士生导师,研究方向为聚合物基复合材料、包装材料与制品、相变储能材料 E-mail: xiaolinqiu2005@126.com

  • 中图分类号: TS206.4;TB332

Preparation and properties of grafted polyacrylic acid modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) antioxidant film

Funds: Jiangsu University-Industry Research Cooperation Project (BY2021130)
  • 摘要: 脂质氧化将导致食品变质,因此开展抗氧包装膜的研究十分重要。本文以丙烯酸(AA)为金属螯合配体,以聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)为基材,通过紫外光接枝的方法将AA接枝聚合到PHBV薄膜表面,制得具备金属螯合能力的PHBV-g-PAA非释放型抗氧化膜,研究接枝时间对PHBV-g-PAA复合膜形貌结构、Cu2+螯合量和力学性能的影响。结果表明:通过傅里叶变换红外光谱仪与水接触角测试仪对复合膜进行结构表征,证明了聚丙烯酸(PAA)成功接枝到PHBV薄膜表面;通过SEM观察复合膜形貌结构发现,随着接枝时间的延长,接枝产物密度逐渐增大,接枝时间为20 min时,薄膜表面PAA接枝层的致密均匀性最佳;通过DSC和XRD测试复合膜结晶性能表明,结晶度从未接枝的63.97%下降至56.23%,有利于提高薄膜的韧性,接枝20 min时薄膜的韧性最好;采用甲苯胺蓝(TBO)染色法和火焰原子吸收光谱法测定复合膜表面羧基密度和Cu2+螯合量,当羧基密度为392.65 nmol/cm2时,对应的Cu2+螯合量为115.09 nmol/cm2,两者之比接近4,表明可以生成稳定的五元环螯合结构,从而起到抗氧化的作用;通过力学性能测试发现,接枝后薄膜拉伸强度和断裂伸长率均呈现先上升后下降的趋势,接枝20 min时拉伸强度和断裂伸长率分别提升27.51%和99.02%。所制备非释放型抗氧化膜的Cu2+螯合能力及力学性能均优于PHBV薄膜,在食品包装领域具有广阔的应用前景。

     

  • 图  1  聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)薄膜紫外(UV)光接枝反应过程

    Figure  1.  Ultra violet (UV) light grafting reaction process of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film

    h—Planck constant; v—Frequency; PAA—Polyacrylic acid

    图  2  接枝时间对PHBV-g-聚丙烯酸(PAA)复合膜表面组分的影响

    Figure  2.  Effect of grafting time on surface composition of PHBV-g-polyacrylic acid (PAA) composite membrane

    图  3  接枝时间对PHBV-g-PAA复合膜表面和截面形貌的影响:((a)~(d)) 接枝时间为0 min、10 min、20 min、30 min的表面形貌图;((e)~(h)) 接枝时间为0 min、10 min、20 min、30 min的截面形貌图

    Figure  3.  Effect of grafting time on the surface and cross-sectional morphology of PHBV-g-PAA composite membranes: ((a)-(d)) Surface topographies of grafting time of 0 min, 10 min, 20 min and 30 min; ((e)-(h)) Cross-sectional topography of the grafting time of 0 min, 10 min, 20 min and 30 min

    图  4  接枝时间对PHBV-g-PAA复合膜晶体结构的影响

    Figure  4.  Effect of grafting time on crystal structure of PHBV-g-PAA composite film

    图  5  不同接枝时间PHBV-g-PAA复合膜的DSC曲线:(a) 二次升温;(b) 降温

    Figure  5.  DSC curves of PHBV-g-PAA composite films with different grafting time: (a) Secondary heating; (b) Cooling

    图  6  接枝时间t对PHBV-g-PAA复合膜表面水接触角的影响

    Figure  6.  Effect of grafting time t on water contact angle of PHBV-g-PAA composite film surface

    图  7  接枝时间t对PHBV-g-PAA复合膜表面羧基含量的影响

    Figure  7.  Effect of grafting time t on carboxyl content on the surface of PHBV-g-PAA composite membrane

    图  8  甲苯胺蓝(TBO)染色前后PHBV-g-PAA复合膜表面颜色变化

    Figure  8.  Surface color change of PHBV-g-PAA composite film before and after toluidine blue (TBO) staining

    图  9  接枝时间t对PHBV-g-PAA复合膜拉伸强度和断裂伸长率的影响

    Figure  9.  Effect of grafting time t on tensile strength and elongation at break of PHBV-g-PAA composite film

    表  1  复合膜的DSC参数

    Table  1.   DSC parameters of composite membrane

    t/min$ {{T}}_{\text{c}} $/℃$ {{T}}_{\text{m1}} $/℃$ {{T}}_{\text{m2}} $/℃${{\Delta }{H} }_{\text{m} }$/(J·g−1)$ {{X}}_{\text{c}} $/%
    075.12165.78171.2393.7863.97
    584.34162.84170.3393.3563.68
    1086.65163.05171.6592.4863.08
    1588.08162.67171.0891.1562.18
    2091.46163.15171.2587.0659.39
    2586.57158.36168.4285.2158.12
    3080.55153.65164.3482.4456.23
    Notes: t—Grafting time; $ {{T}}_{\text{c}} $—Crystallization temperature; $ {{T}}_{\text{m}} $—Melting temperature of films; ${{\Delta }{H} }_{\text{m} }$—Melting enthalpy of films; $ {{X}}_{\text{c}} $—Crystallinity of films.
    下载: 导出CSV

    表  2  复合膜表面羧基含量和Cu2+螯合量的比值

    Table  2.   Ratio of carboxyl content to Cu2+ chelation on the surface of composite membrane

    t/minD/(nmol·cm−2)C/(nmol·cm−2)R
    0 0.00 0.00
    5 55.57±2.41 14.90±2.49 3.73
    10 183.38±16.54 47.18±4.28 3.89
    15 309.73±18.79 87.89±7.16 3.52
    20 392.65±27.69 115.09±7.53 3.41
    25 435.18±23.96 134.96±11.95 3.23
    30 496.28±46.50 155.45±21.80 3.19
    Notes: D—Density of carboxyl groups on the surface of the composite film; C—Amount of Cu2+ chelated; R—Ratio of the density of carboxyl groups on the surface of the composite film to the amount of Cu2+ chelated.
    下载: 导出CSV
  • [1] WILSON R, FERNIE C E, SCRIMGEOUR C M, et al. Dietary epoxy fatty acids are absorbed in healthy women[J]. European Journal of Clinical Investigation,2015,32(2):79-83.
    [2] GUILLEN M D, GOICOECHEA E. Formation of oxygenated α, β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles[J]. Food Chemistry,2008,111(1):157-164. doi: 10.1016/j.foodchem.2008.03.052
    [3] YEHYE W A, RAHMAN N A, ARIFFIN A, et al. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review[J]. European Journal of Medici-nal Chemistry,2015,101(41):295-312.
    [4] TIAN F. Controlling lipid oxidation of food by non-migratory metal-chelating active packaging films[D]. Massachusetts: University of Massachusetts Amherst, 2013.
    [5] BAO H, OHSHIMA T. Lipid oxidation: Challenges in food systems[M]. New York: Academic Press and AOCS Press, 2013.
    [6] HONG Seungmi, KIM Mija, PARK Sungkwon, et al. Effects of hydrogen-donating or metal-chelating antioxidants on the oxidative stabi-lity of organogels made of beeswax and grapeseed oil exposed to light irradiation[J]. Journal of Food Science,2018,83(4):885-891. doi: 10.1111/1750-3841.14085
    [7] MASTROMATTEO M, MASTROMATTEO M, CONTE A, et al. Advances in controlled release devices for food packaging applications[J]. Trends in Food Science & Technology,2010,21(12):591-598.
    [8] CHEN M, LI R, RUNGE T, et al. Degradable polymeric package from whole cell wall biomass[J]. Materials Today,2019,3-4:100008.
    [9] GUO C Y, GUO H G. Progress in the degradability of biodegradable film materials for packaging[J]. Membranes,2022,12(5):488-506. doi: 10.3390/membranes12050500
    [10] CHEN J, WU D, TAM K C, et al. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites[J]. Carbohydrate Polymers,2017,157:1821-1829. doi: 10.1016/j.carbpol.2016.11.071
    [11] ZHOU Z, YU H Y, ZHU M F, et al. Effects of microcrystalline cellulose on the thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[J]. Advanced Materials Research,2011,284-286:1778-1781. doi: 10.4028/www.scientific.net/AMR.284-286.1778
    [12] WANG Y J, KE Y, REN L, et al. Photografting polymerization of polyacrylamide on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films. II. Wettability and crystallization behaviors of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-graft-polyacrylamide films[J]. Journal of Applied Polymer Science,2008,107(6):3765-3772. doi: 10.1002/app.27415
    [13] HUANG J Y, LIU H R, ZHAO X, et al. A novel gelatin-AgNPs coating preparing method for fabrication of antibacterial and no inflammation inducible coatings on PHBV[J]. Reactive & Functional Polymers,2016,107:54-59.
    [14] LI F, YU H Y, WANG Y Y, et al. Natural biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites with multifunctional cellulose nanocrystals/graphene oxide hybrids for high-performance food packaging[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10954-10967. doi: 10.1021/acs.jafc.9b03110
    [15] ARRIETA M P, CASTRO-LÓPEZ M D, RAYÓN E, et al. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications[J]. Journal of Agricultural & Food Chemistry,2014,62(41):10170-10180.
    [16] LIU Y, LIANG X, WANG S, et al. Electrospun antimicrobial polylactic acid/tea polyphenol nanofibers for food-packaging applications[J]. Polymers (Basel),2018,10(5):561. doi: 10.3390/polym10050561
    [17] MELLINAS C, RAMOS M, GRAU-ATIENZA A, et al. Biodegradable poly(ε-caprolactone) active films loaded with msu-x mesoporous silica for the release of α-tocopherol[J]. Polymers,2020,12(1):1-19. doi: 10.3390/polym12010137
    [18] ARRUA D, STRUMIA M C, NAZARENO M A. Immobilization of caffeic acid on a polypropylene film: Synthesis and antioxidant properties[J]. Journal of Agricultural & Food Chemistry,2010,58(16):9228-9234.
    [19] SADEGHI K, SEO J. Photografting coating: an innovative approach to “non-migratory” active packaging[J]. Advanced Functional Materials,2021,31(28):2010759.
    [20] DING C A, ZHEN C A, GW B, et al. Plasma induced graft co-polymerized electrospun polyethylene terephalate membranes for removal of Cu2+ from aqueous solution[J]. Chemical Physics,2020,536:110832. doi: 10.1016/j.chemphys.2020.110832
    [21] TIAN F, DECKER E A, GODDARD J M. Development of an iron chelating polyethylene film for active packaging applications[J]. Journal of Agricultural & Food Chemistry,2012,60(8):2046.
    [22] LIN Z, GODDARD J. Photo-curable metal-chelating coatings offer a scalable approach to production of antioxidant active packaging[J]. Journal of Food Science,2018,83(1-3):367-376.
    [23] HERSKOVITZ J E, GODDARD J M. Reactive extrusion of nonmigratory antioxidant poly(lactic acid) packaging[J]. Journal of Agricultural and Food Chemistry,2020,68(7):2164-2173. doi: 10.1021/acs.jafc.9b06776
    [24] 中国国家标准化管理委员会. 塑料拉伸性能的测定第3部分: 薄膜和薄片的试验条件: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Determination of tensile properties of plastics Part 3: Test conditions for films and sheets: GB/T 1040.3—2006[S]. Beijing: China Standard Press, 2006(in Chinese).
    [25] YU K E, JIA H, GANG W U, et al. Biomimetic cap coatings on polyacrylic acid modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films[J]. Soft Materials,2013,11(1-4):448-456.
    [26] 于振, 卢莉璟, 卢立新, 等. 聚丙烯酸表面接枝改性聚丙烯抗氧化膜的制备与性能[J]. 高分子材料科学与工程, 2020, 36(7):134-148. doi: 10.16865/j.cnki.1000-7555.2020.0140

    YU Zhen, LU Lijing, LU Lixin, et al. Preparation and characterization of anti-oxidation packaging films based on poly (acrylic acid) grafting polypropylene surface[J]. Polymer Materials Science and Engineering,2020,36(7):134-148(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0140
    [27] WU C S. Comparative assessment of the interface between poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fish scales in composites: Preparation, characterization, and applications[J]. Materials Science & Engineering C,2019,104:109878.
    [28] LIU Q S, WU W H, QIN Z Y. Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability[J]. Polymer Degradation and Stability,2009,94(1):18-24. doi: 10.1016/j.polymdegradstab.2008.10.016
    [29] JUN D, GUOMIN Z, MINGZHU P, et al. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs[J]. Carbohydrate Polymers,2017,168:255-262. doi: 10.1016/j.carbpol.2017.03.076
    [30] YU H Y, QIN Z Y, WANG L F, et al. Crystallization behavior and hydrophobic properties of biodegradable ethyl cellulose-g-poly(3-hydroxybutyrate-co-3-hydroxyvalerate): The influence of the side-chain length and grafting density[J]. Carbohydrate Polymers,2012,87(4):2447-2454. doi: 10.1016/j.carbpol.2011.11.022
    [31] 高俊娜, 赵康, 崔国士, 等. 预辐射接枝制备聚乙烯接枝丙烯酸复合膜[J]. 复合材料学报, 2021, 39(6):2690-2697. doi: 10.13801/j.cnki.fhclxb.20210819.002

    GAO Junna, ZHAO Kang, CUI Guoshi, et al. Preparation of polyethylene grafted acrylic acid composite membrane by pre-irradiation grafting[J]. Acta Materiae Compositae Sinica,2021,39(6):2690-2697(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210819.002
    [32] HASSAINI L, KACI M, BENHAMIDA A, et al. The effects of PHBV-g-MA compatibilizer on morphology and properties of poly(3-hydroxybutyrate-Co-3-hydroxyvalerate)/olive husk flour composites[J]. Journal of Adhesion Science & Technology,2016,30(19):2061-2080.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  363
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 修回日期:  2022-07-14
  • 录用日期:  2022-07-15
  • 网络出版日期:  2022-08-02
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回