Preparation and properties of grafted polyacrylic acid modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) antioxidant film
-
摘要: 脂质氧化将导致食品变质,因此开展抗氧包装膜的研究十分重要。本文以丙烯酸(AA)为金属螯合配体,以聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)为基材,通过紫外光接枝的方法将AA接枝聚合到PHBV薄膜表面,制得具备金属螯合能力的PHBV-g-PAA非释放型抗氧化膜,研究接枝时间对PHBV-g-PAA复合膜形貌结构、Cu2+螯合量和力学性能的影响。结果表明:通过傅里叶变换红外光谱仪与水接触角测试仪对复合膜进行结构表征,证明了聚丙烯酸(PAA)成功接枝到PHBV薄膜表面;通过SEM观察复合膜形貌结构发现,随着接枝时间的延长,接枝产物密度逐渐增大,接枝时间为20 min时,薄膜表面PAA接枝层的致密均匀性最佳;通过DSC和XRD测试复合膜结晶性能表明,结晶度从未接枝的63.97%下降至56.23%,有利于提高薄膜的韧性,接枝20 min时薄膜的韧性最好;采用甲苯胺蓝(TBO)染色法和火焰原子吸收光谱法测定复合膜表面羧基密度和Cu2+螯合量,当羧基密度为392.65 nmol/cm2时,对应的Cu2+螯合量为115.09 nmol/cm2,两者之比接近4,表明可以生成稳定的五元环螯合结构,从而起到抗氧化的作用;通过力学性能测试发现,接枝后薄膜拉伸强度和断裂伸长率均呈现先上升后下降的趋势,接枝20 min时拉伸强度和断裂伸长率分别提升27.51%和99.02%。所制备非释放型抗氧化膜的Cu2+螯合能力及力学性能均优于PHBV薄膜,在食品包装领域具有广阔的应用前景。
-
关键词:
- 聚(3-羟基丁酸酯-co-3-羟基戊酸酯) /
- 丙烯酸 /
- 光接枝 /
- 金属螯合 /
- 抗氧化
Abstract: To reduce the need to add metal chelators to lipid-based foods to prevent their oxidation, antioxidant packaging is receiving increasing attention. In this study, acrylic acid (AA) was used as the metal chelating ligand and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was used as the substrate. AA was covalently immobi-lised onto the surface of PHBV films by UV grafting to produce the non-releasing PHBV-g-PAA anti-oxidant film with metal chelating ability. The results show that the successful grafting of polyacrylic acid (PAA) onto the surface of PHBV films was demonstrated by structural tests on the composite films. Observation of the composite film morphology and structure by SEM revealed that the density of graft products gradually increased as the grafting time increased. When the grafting time was 20 minutes, the dense uniformity of the PAA grafted layer on the film surface was the best. The crystalline properties of the composite film were tested by DSC and XRD. It showed that the crystallinity decreased from 63.97% to 56.23%, which was conducive to improving the toughness of the film, and the best toughness of the film was achieved at 20 minutes of grafting. Toluidine blue (TBO) staining and flame atomic absorption spectrometry were used to determine the carboxyl density and Cu2+ chelation on the surface of the composite membrane. When the carboxyl density was 392.65 nmol/cm2, the corresponding Cu2+ chelating amount was 115.09 nmol/cm2. The ratio of the two was close to 4, indicating that a stable five-membered ring chelating structure could be generated, thus acting as an antioxidant. Through the mechanical properties test, it was found that the tensile strength and elongation at break of the grafted films both increased first and then decreased. Tensile strength and elongation at break increased by 27.51% and 99.02% respectively at 20 minutes of grafting. The Cu2+ chelating ability and mechanical properties of the prepared non-release antioxidant film are better than those of the PHBV film, which has promising applications in the food packaging field. -
图 3 接枝时间对PHBV-g-PAA复合膜表面和截面形貌的影响:((a)~(d)) 接枝时间为0 min、10 min、20 min、30 min的表面形貌图;((e)~(h)) 接枝时间为0 min、10 min、20 min、30 min的截面形貌图
Figure 3. Effect of grafting time on the surface and cross-sectional morphology of PHBV-g-PAA composite membranes: ((a)-(d)) Surface topographies of grafting time of 0 min, 10 min, 20 min and 30 min; ((e)-(h)) Cross-sectional topography of the grafting time of 0 min, 10 min, 20 min and 30 min
表 1 复合膜的DSC参数
Table 1. DSC parameters of composite membrane
t/min $ {{T}}_{\text{c}} $/℃ $ {{T}}_{\text{m1}} $/℃ $ {{T}}_{\text{m2}} $/℃ ${{\Delta }{H} }_{\text{m} }$/(J·g−1) $ {{X}}_{\text{c}} $/% 0 75.12 165.78 171.23 93.78 63.97 5 84.34 162.84 170.33 93.35 63.68 10 86.65 163.05 171.65 92.48 63.08 15 88.08 162.67 171.08 91.15 62.18 20 91.46 163.15 171.25 87.06 59.39 25 86.57 158.36 168.42 85.21 58.12 30 80.55 153.65 164.34 82.44 56.23 Notes: t—Grafting time; $ {{T}}_{\text{c}} $—Crystallization temperature; $ {{T}}_{\text{m}} $—Melting temperature of films; ${{\Delta }{H} }_{\text{m} }$—Melting enthalpy of films; $ {{X}}_{\text{c}} $—Crystallinity of films. 表 2 复合膜表面羧基含量和Cu2+螯合量的比值
Table 2. Ratio of carboxyl content to Cu2+ chelation on the surface of composite membrane
t/min D/(nmol·cm−2) C/(nmol·cm−2) R 0 0.00 0.00 — 5 55.57±2.41 14.90±2.49 3.73 10 183.38±16.54 47.18±4.28 3.89 15 309.73±18.79 87.89±7.16 3.52 20 392.65±27.69 115.09±7.53 3.41 25 435.18±23.96 134.96±11.95 3.23 30 496.28±46.50 155.45±21.80 3.19 Notes: D—Density of carboxyl groups on the surface of the composite film; C—Amount of Cu2+ chelated; R—Ratio of the density of carboxyl groups on the surface of the composite film to the amount of Cu2+ chelated. -
[1] WILSON R, FERNIE C E, SCRIMGEOUR C M, et al. Dietary epoxy fatty acids are absorbed in healthy women[J]. European Journal of Clinical Investigation,2015,32(2):79-83. [2] GUILLEN M D, GOICOECHEA E. Formation of oxygenated α, β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles[J]. Food Chemistry,2008,111(1):157-164. doi: 10.1016/j.foodchem.2008.03.052 [3] YEHYE W A, RAHMAN N A, ARIFFIN A, et al. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review[J]. European Journal of Medici-nal Chemistry,2015,101(41):295-312. [4] TIAN F. Controlling lipid oxidation of food by non-migratory metal-chelating active packaging films[D]. Massachusetts: University of Massachusetts Amherst, 2013. [5] BAO H, OHSHIMA T. Lipid oxidation: Challenges in food systems[M]. New York: Academic Press and AOCS Press, 2013. [6] HONG Seungmi, KIM Mija, PARK Sungkwon, et al. Effects of hydrogen-donating or metal-chelating antioxidants on the oxidative stabi-lity of organogels made of beeswax and grapeseed oil exposed to light irradiation[J]. Journal of Food Science,2018,83(4):885-891. doi: 10.1111/1750-3841.14085 [7] MASTROMATTEO M, MASTROMATTEO M, CONTE A, et al. Advances in controlled release devices for food packaging applications[J]. Trends in Food Science & Technology,2010,21(12):591-598. [8] CHEN M, LI R, RUNGE T, et al. Degradable polymeric package from whole cell wall biomass[J]. Materials Today,2019,3-4:100008. [9] GUO C Y, GUO H G. Progress in the degradability of biodegradable film materials for packaging[J]. Membranes,2022,12(5):488-506. doi: 10.3390/membranes12050500 [10] CHEN J, WU D, TAM K C, et al. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites[J]. Carbohydrate Polymers,2017,157:1821-1829. doi: 10.1016/j.carbpol.2016.11.071 [11] ZHOU Z, YU H Y, ZHU M F, et al. Effects of microcrystalline cellulose on the thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[J]. Advanced Materials Research,2011,284-286:1778-1781. doi: 10.4028/www.scientific.net/AMR.284-286.1778 [12] WANG Y J, KE Y, REN L, et al. Photografting polymerization of polyacrylamide on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films. II. Wettability and crystallization behaviors of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-graft-polyacrylamide films[J]. Journal of Applied Polymer Science,2008,107(6):3765-3772. doi: 10.1002/app.27415 [13] HUANG J Y, LIU H R, ZHAO X, et al. A novel gelatin-AgNPs coating preparing method for fabrication of antibacterial and no inflammation inducible coatings on PHBV[J]. Reactive & Functional Polymers,2016,107:54-59. [14] LI F, YU H Y, WANG Y Y, et al. Natural biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites with multifunctional cellulose nanocrystals/graphene oxide hybrids for high-performance food packaging[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10954-10967. doi: 10.1021/acs.jafc.9b03110 [15] ARRIETA M P, CASTRO-LÓPEZ M D, RAYÓN E, et al. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications[J]. Journal of Agricultural & Food Chemistry,2014,62(41):10170-10180. [16] LIU Y, LIANG X, WANG S, et al. Electrospun antimicrobial polylactic acid/tea polyphenol nanofibers for food-packaging applications[J]. Polymers (Basel),2018,10(5):561. doi: 10.3390/polym10050561 [17] MELLINAS C, RAMOS M, GRAU-ATIENZA A, et al. Biodegradable poly(ε-caprolactone) active films loaded with msu-x mesoporous silica for the release of α-tocopherol[J]. Polymers,2020,12(1):1-19. doi: 10.3390/polym12010137 [18] ARRUA D, STRUMIA M C, NAZARENO M A. Immobilization of caffeic acid on a polypropylene film: Synthesis and antioxidant properties[J]. Journal of Agricultural & Food Chemistry,2010,58(16):9228-9234. [19] SADEGHI K, SEO J. Photografting coating: an innovative approach to “non-migratory” active packaging[J]. Advanced Functional Materials,2021,31(28):2010759. [20] DING C A, ZHEN C A, GW B, et al. Plasma induced graft co-polymerized electrospun polyethylene terephalate membranes for removal of Cu2+ from aqueous solution[J]. Chemical Physics,2020,536:110832. doi: 10.1016/j.chemphys.2020.110832 [21] TIAN F, DECKER E A, GODDARD J M. Development of an iron chelating polyethylene film for active packaging applications[J]. Journal of Agricultural & Food Chemistry,2012,60(8):2046. [22] LIN Z, GODDARD J. Photo-curable metal-chelating coatings offer a scalable approach to production of antioxidant active packaging[J]. Journal of Food Science,2018,83(1-3):367-376. [23] HERSKOVITZ J E, GODDARD J M. Reactive extrusion of nonmigratory antioxidant poly(lactic acid) packaging[J]. Journal of Agricultural and Food Chemistry,2020,68(7):2164-2173. doi: 10.1021/acs.jafc.9b06776 [24] 中国国家标准化管理委员会. 塑料拉伸性能的测定第3部分: 薄膜和薄片的试验条件: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.Standardization Administration of the People’s Republic of China. Determination of tensile properties of plastics Part 3: Test conditions for films and sheets: GB/T 1040.3—2006[S]. Beijing: China Standard Press, 2006(in Chinese). [25] YU K E, JIA H, GANG W U, et al. Biomimetic cap coatings on polyacrylic acid modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films[J]. Soft Materials,2013,11(1-4):448-456. [26] 于振, 卢莉璟, 卢立新, 等. 聚丙烯酸表面接枝改性聚丙烯抗氧化膜的制备与性能[J]. 高分子材料科学与工程, 2020, 36(7):134-148. doi: 10.16865/j.cnki.1000-7555.2020.0140YU Zhen, LU Lijing, LU Lixin, et al. Preparation and characterization of anti-oxidation packaging films based on poly (acrylic acid) grafting polypropylene surface[J]. Polymer Materials Science and Engineering,2020,36(7):134-148(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0140 [27] WU C S. Comparative assessment of the interface between poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fish scales in composites: Preparation, characterization, and applications[J]. Materials Science & Engineering C,2019,104:109878. [28] LIU Q S, WU W H, QIN Z Y. Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability[J]. Polymer Degradation and Stability,2009,94(1):18-24. doi: 10.1016/j.polymdegradstab.2008.10.016 [29] JUN D, GUOMIN Z, MINGZHU P, et al. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs[J]. Carbohydrate Polymers,2017,168:255-262. doi: 10.1016/j.carbpol.2017.03.076 [30] YU H Y, QIN Z Y, WANG L F, et al. Crystallization behavior and hydrophobic properties of biodegradable ethyl cellulose-g-poly(3-hydroxybutyrate-co-3-hydroxyvalerate): The influence of the side-chain length and grafting density[J]. Carbohydrate Polymers,2012,87(4):2447-2454. doi: 10.1016/j.carbpol.2011.11.022 [31] 高俊娜, 赵康, 崔国士, 等. 预辐射接枝制备聚乙烯接枝丙烯酸复合膜[J]. 复合材料学报, 2021, 39(6):2690-2697. doi: 10.13801/j.cnki.fhclxb.20210819.002GAO Junna, ZHAO Kang, CUI Guoshi, et al. Preparation of polyethylene grafted acrylic acid composite membrane by pre-irradiation grafting[J]. Acta Materiae Compositae Sinica,2021,39(6):2690-2697(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210819.002 [32] HASSAINI L, KACI M, BENHAMIDA A, et al. The effects of PHBV-g-MA compatibilizer on morphology and properties of poly(3-hydroxybutyrate-Co-3-hydroxyvalerate)/olive husk flour composites[J]. Journal of Adhesion Science & Technology,2016,30(19):2061-2080. -

计量
- 文章访问数: 199
- HTML全文浏览量: 138
- 被引次数: 0