留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造用碳纤维预浸料制备技术研究进展

皮展鹏 杨磊 欧阳震 闫春泽 史玉升

皮展鹏, 杨磊, 欧阳震, 等. 增材制造用碳纤维预浸料制备技术研究进展[J]. 复合材料学报, 2024, 42(0): 1-20.
引用本文: 皮展鹏, 杨磊, 欧阳震, 等. 增材制造用碳纤维预浸料制备技术研究进展[J]. 复合材料学报, 2024, 42(0): 1-20.
PI Zhanpeng, YANG Lei, OUYANG Zhen, et al. Research progress on preparation technology of carbon fiber prepreg for additive manufacturing[J]. Acta Materiae Compositae Sinica.
Citation: PI Zhanpeng, YANG Lei, OUYANG Zhen, et al. Research progress on preparation technology of carbon fiber prepreg for additive manufacturing[J]. Acta Materiae Compositae Sinica.

增材制造用碳纤维预浸料制备技术研究进展

基金项目: 湖北省重点研发计划(2022BAA030); 2023年湖北省重大攻关项目(JD) (2023BAA023)
详细信息
    通讯作者:

    杨磊,博士,副教授,博士生导师,研究方向为纤维增强复合材料增材制造。 E-mail:lei.yang@whut.edu.cn

    闫春泽,博士,教授,博士生导师,研究方向为非金属材料增材制造。 E-mail:c_yan@hust.edu.cn

  • 中图分类号: TB332

Research progress on preparation technology of carbon fiber prepreg for additive manufacturing

Funds: Hubei Province key research and development plan (2022BAA030); Major Program(JD) of Hubei Province (2023BAA023)
  • 摘要: 碳纤维增强复合材料(Carbon Fiber Reinforced Composite,CFRP)具有力具有轻质、高强、耐高温、耐腐蚀、抗疲劳、热力学性能优异等特点,是航空航天、军工装备、医疗设备、轨道交通和新能源产业等领域理想的零部件原材料。碳纤维预浸料是CFRP制备过程的中间制品,其优劣决定了复合材料的最终性能。增材制造可以低成本快速成型复杂零件,因此针对增材制造技术的碳纤维预浸料研发成为研究热点。增材制造用碳纤维预浸料的制备可以分为放卷、展纱、改性、浸渍以及冷却收卷几部分。本文总结了增材制造用碳纤维预浸料的制备技术的研究现状,总结了不同工艺的原理特点并详细说明了不同工艺对增材制造用碳纤维预浸料乃至复合材料的影响,最后对目前增材制造用碳纤维预浸料的制备工艺存在的问题做了总结并对其发展方向做了展望。

     

  • 图  1  LA-LOM制备石墨烯增强碳纤维增强聚合物复合材料原理图[16]

    Figure  1.  Schematic of LA-LOM of graphene reinforced carbon fiber reinforced polymer composites[16]

    图  2  FDM制备CFRP原理图:(a)传统FDM打印;(b)原位浸渍工艺[18]

    Figure  2.  Schematic of FDM of CFRP: (a) Traditional FDM printing; (b) In situ impregnation process[18]

    图  3  R-LAM工艺设备图[13]

    Figure  3.  Equipment picture of R-LAM[13]

    图  4  微波3D打印原理[19]

    Figure  4.  Schematic diagram of the 3D microwave printing process[19]

    图  5  碳纤维预浸料浸渍流程

    Figure  5.  Carbon fiber prepreg impregnation process

    图  6  机械辊展纱原理示意图

    Figure  6.  Schematic diagram of mechanical roller yarn exhibition

    图  7  WILSON的机械棍展纱理论模型[30]

    Figure  7.  WILSON's theory model of rod yarn spreading[30]

    图  8  超声杆展纱示意图

    Figure  8.  Diagram of ultrasonic roller yarn spreading

    图  9  超声波展纱示意图

    Figure  9.  Diagram of ultrasonic yarn spreading

    图  10  不同展纱方式对纤维拉伸强度的影响[28]

    Figure  10.  Influence of different yarn spreading methods on tensile strength of fibers[28]

    图  11  气流展纱原理图[37]

    Figure  11.  Schematic diagram of air flow yarn spreading[37]

    图  12  两级气动展纱平台[35]

    Figure  12.  Two-Stage pneumatic yarn spreading platform[35]

    图  13  上浆处理示意图

    Figure  13.  Diagram of sizing process

    图  14  EPD法原理图[48]

    Figure  14.  Schematic diagram of the EPD[48]

    图  15  (a)制备CoNC@CF和CoNC@CF-PLA纳米复合长丝和(b) FDM打印的过程[51]

    Figure  15.  The process for (a) the preparation of CoNC@CF and (b) the preparation of CoNC@CF-PLA nanocomposite filaments and FDM printing. [51]

    图  16  浸渍方法分类

    Figure  16.  Classification of dipping methods

    图  17  熔融浸渍法原理示意图[65]

    Figure  17.  Schematic diagram of molten impregnation method[65]

    图  18  纤维拔出现象[68]

    Figure  18.  Fiber pulled-out phenomenon[68]

    图  19  纤维团聚现象[69]

    Figure  19.  Fiber aggregation phenomenon[69]

    图  20  湿法粉末浸渍示意图

    Figure  20.  Schematic diagram of wet powder impregnation method

    图  21  几种不同预浸料的SEM图像[71]:(a)自制;(b)美国;(c)英国;(d)国产

    Figure  21.  SEM images of several different prepregs[71]: (a)Self-restraint; (b)Made in US; (c)Made in UK; (d)Made in China

    图  22  干法粉末浸渍原理图[73]

    Figure  22.  Dry powder impregnation schematic[73]

    图  23  溶液浸渍原理图[78]

    Figure  23.  Solution impregnation schematic diagram impregnation schematic[78]

    图  24  纤维混编法成形方式[78]

    Figure  24.  Fiber blending forming method[78]

    图  25  两种增材制造用预浸丝模具[86]

    Figure  25.  Two kinds of prepreg wire die for additive manufacturing[86]

    图  26  分体式模具示意图

    Figure  26.  Schematic diagram of split mold

    图  27  分体式模具制备的预浸丝微观形貌图[87]

    Figure  27.  Micromorphology of prepreg wire prepared by split mold[87]

    图  28  分段式模具示意图

    Figure  28.  Schematic diagram of segmented mold

    表  1  展纱方法对比

    Table  1.   Comparison of yarn spreading methods

    Yarn spreading methodYarn spreading principleYarn spreading effectapplied range
    Mechanical roller spreadSpreader rolls are misalignedOrdinarywide
    Ultrasonic yarn spreadingUltrasonic vibration yarn spreadingGoodnarrow
    Air yarn spreadingCompressed air jet yarn spreadingGoodnarrow
    下载: 导出CSV

    表  2  不同碳纤维表面改性方法对比

    Table  2.   Comparison of different surface modification methods of carbon fibers

    Modification methodModification principlePeculiarity
    Sizing treatmentBinding fiber to resin matrixEasy to operate but solvent required
    Electrophoretic depositionElectric fields deposit charged particlesThe process is simple and improves the conductivity
    In situ growth technologyFree growth with initiator as mediumEasy to introduce functionality, complex operation
    Microwave irradiation modificationMicrowave heating breaks chemical bondsHighly effective but difficult to control
    下载: 导出CSV

    表  3  各种浸渍方法的比较

    Table  3.   Comparison of different impregnation methods

    Impregnation method Peculiarity Scope of application
    Melt impregnation Low energy consumption, short preparation cycle, low cost, fast cooling Widely used but not suitable for high viscosity resin impregnation
    Powder impregnation Wet powder impregnation The porosity of prepreg can be reduced effectively Powder material, spray, brush coating
    Dry powder impregnation Simpler materials and more efficient production processes Chargeable material, simple material impregnation
    Solution impregnation Can improve infiltration
    But there are limitations
    High viscosity resin impregnation
    Fiber blending method Easy to complete the dipping process Mixed fabric, complex shape forming
    下载: 导出CSV
  • [1] 孙洪霖. 连续碳纤维增强聚醚醚酮复合材料制备及性能研究 [D]. 东华大学, 2021.

    SUN Honglin. Study on Preparation and properties of continuous carbon fiber reinforced polyether ether ketone composites [D]. Donghua University, 2021. (in Chinese)
    [2] 周晶晶. 连续碳纤增强热塑性复合材料制备及性能研究 [D]. 大连理工大学, 2019.

    ZHOU Jingjing. Study onPreparation and properties of continuous carbon fiber reinforced thermoplastic composites [D]. Dalian University of Technology, 2019. (in Chinese)
    [3] 国家市场监督管理总局. 塑料 预浸料 术语定义和命名符号: GB/T 41488-2022 [S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation. Plastic prepreg term definition and naming symbol [S]. Beijing: China Standards Press. 2022(in Chinese)
    [4] 中华人民共和国国家质量监督检验检疫总局. 碳纤维预浸料: GB/T 28461-2012 [S]. 北京: 中国标准出版社, 2012.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Carbon fiber prepreg: GB/T 28461-2012 [S]. Beijing: China Standards Press, 2012. (in Chinese)
    [5] KöHLER T, RöDING T, GRIES T, et al. An overview of impregnation methods for carbon fibre reinforced thermoplastics[J]. Key Engineering Materials, 2017, 742: 473-481. doi: 10.4028/www.scientific.net/KEM.742.473
    [6] 日商环球讯息有限公司. 碳纤维预浸料市场: 2023-2028年全球行业趋势、份额、规模、增长、机会及预测[EB/OL]. (2023.7. 5)[2023.7. 5]https://cn.gii.tw/report/imarc1308355-carbon-fiber-prepreg-market-global-industry-trends.html

    Nicho Global Information Co. , LTD. Carbon fiber prepreg market: 2023-2028 global industry trends, share, scale, growth, opportunity, and predict [EB/OL]. (2023.7. 5) [2023.7. 5] https://cn.gii.tw/report/imarc1308355-carbon-fiber-prepreg-market-global-industry-trends.html(in Chinese)
    [7] 商业新知. 2023年热塑性预浸料行业需求现状分析与趋势预测[EB/OL]. [2023.6. 10] https://www.shangyexinzhi.com/article/8734706.html

    Commercial knowledge. 2023 thermoplastic presoak material industry demand present situation analysis and trend prediction [EB/OL]. (2023.6. 10)[2023.6. 10] https://www.shangyexinzhi.com/article/8734706.html (in Chinese)
    [8] 赵志斌, 王晨希, 张兴武, et al. 激光粉末床熔融增材制造过程智能监控研究进展与挑战[J]. 机械工程学报, 2023: 1-24.

    ZHAO Zhibin, WANG Chenxi, ZHANG Xingwu, et al. Research progress and challenges of intelligent monitoring of laser powder bed melting additive manufacturing process[J]. Journal of Mechanical Engineering, 2023: 1-24. (in Chinese)
    [9] FORD S, DESPEISSE M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges[J]. Journal of cleaner Production, 2016, 137: 1573-1587. doi: 10.1016/j.jclepro.2016.04.150
    [10] ELAMBASSERIL J, ROGERS J, WALLBRINK C, et al. Laser powder bed fusion additive manufacturing (LPBF-AM): the influence of design features and LPBF variables on surface topography and effect on fatigue properties[J]. Critical reviews in solid state and materials sciences, 2023, 48(1): 132-168. doi: 10.1080/10408436.2022.2041396
    [11] KRISTIAWAN R B, IMADUDDIN F, ARIAWAN D, et al. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters[J]. Open Engineering, 2021, 11(1): 639-649. doi: 10.1515/eng-2021-0063
    [12] JADHAV A, JADHAV V S. A review on 3D printing: An additive manufacturing technology[J]. Materials Today: Proceedings, 2022, 62: 2094-2099. doi: 10.1016/j.matpr.2022.02.558
    [13] ZHANG G, WANG Y, CHEN Z, et al. Robot-assisted conformal additive manufacturing for continuous fibre-reinforced grid-stiffened shell structures[J]. Virtual Physical Prototyping, 2023, 18(1): e2203695. doi: 10.1080/17452759.2023.2203695
    [14] LI N, LINK G, JELONNEK J. 3D microwave printing temperature control of continuous carbon fiber reinforced composites[J]. Composites Science and Technology, 2020, 187: 107939. doi: 10.1016/j.compscitech.2019.107939
    [15] TOFAIL S A, KOUMOULOS E P, BANDYOPADHYAY A, et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities[J]. Materials today, 2018, 21(1): 22-37. doi: 10.1016/j.mattod.2017.07.001
    [16] PARANDOUSH P, LI X, CHANG B, et al. Additive manufacturing of continuous carbon fiber reinforced epoxy composite with graphene enhanced interlayer bond toward ultra-high mechanical properties[J]. Polymer Composites, 2022, 43(2): 934-945. doi: 10.1002/pc.26423
    [17] PENG Y, WU Y, WANG K, et al. Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication[J]. Composite Structures, 2019, 207: 232-239. doi: 10.1016/j.compstruct.2018.09.014
    [18] 孟云聪, 周光明, 蔡登安, 等. 连续芳纶纤维增强PLA复合材料3D打印技术成型缺陷及工艺优化方法研究[J]. 复合材料科学与工程, 2023: 1-8.

    MENG Yuncong, ZHOU Guangming, CAI Dengan, et al. Study on Forming Defects and process Optimization of Continuous aramid fiber reinforced PLA composite by 3D printing Technology[J]. Composite Materials Science and Engineering, 2023: 1-8. (in Chinese)
    [19] LI N, LINK G, JELONNEK J. Rapid 3D microwave printing of continuous carbon fiber reinforced plastics[J]. CIRP Annals, 2020, 69(1): 221-224. doi: 10.1016/j.cirp.2020.04.057
    [20] 屈李端, 陈书华, 沈镇, 等. 连续CF/PEEK预浸料制造技术研究进展[J]. 航空制造技术, 2020, 63(5): 87-92.

    QU Liduan, CHEN Shuhua, SHEN Zhen, et al. Research Progress in manufacturing technology of continuous CF/PEEK prepreg[J]. Aeronautical Manufacturing Technology, 2020, 63(5): 87-92(in Chinese).
    [21] 邓海, 王超, 杨京浩, 等. 碳纤维增强热塑性复合材料研究进展[J]. 吉林大学学报(工学版), 2023, 53(1): 18-30.

    DENG Hai, WANG Chao, YANG Jinghao, et al. Research progress of carbon fiber reinforced thermoplastic composites[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 18-30(in Chinese).
    [22] 杨一飞, 王明欢, 李杰, 等. 熔融浸渍工艺参数对纤维束渗透率影响的研究[J]. 中国塑料, 2022, 36(7): 85-92.

    YANG Yifei, WANG Minghuan, LI Jie, et al. Study on the influence of melt impregnation parameters on the permeability of fiber bundles[J]. China Plastics, 2022, 36(7): 85-92(in Chinese).
    [23] HU Q, DUAN Y, ZHANG H, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science, 2017, 53(3): 1887-1898.
    [24] CHANG B, LI X, PARANDOUSH P, et al. Additive manufacturing of continuous carbon fiber reinforced poly-ether-ether-ketone with ultrahigh mechanical properties[J]. Polymer Testing, 2020, 88: 106563. doi: 10.1016/j.polymertesting.2020.106563
    [25] SUN Z, MEI Z, HUANG Z, et al. Preparation and Mechanical Properties of Flexible Prepreg Resin with High Strength and Low Creep[J]. Polymers, 2024, 16(4): 558. doi: 10.3390/polym16040558
    [26] 李蓓蓓, 朱家强, 李炜. 国内外展纱技术及设备研究进展[J]. 玻璃钢/复合材料, 2014, (11): 91-95.

    LI Beibei, ZHU Jiaqiang, LI Wei. Research progress of yarn display technology and equipment at home and abroad[J]. Glass Fiber Reinforced Plastic/Composite Materials, 2014, (11): 91-95(in Chinese).
    [27] WILSON S D R. Lateral spreading of fibre tows[J]. Journal of engineering mathematics, 1997, 32(1): 19-26. doi: 10.1023/A:1004253531061
    [28] 徐挺, 肖军, 闫西涛, 等. 超声辅助纤维束展纱效果研究[J]. 玻璃纤维, 2015, (5): 10-14. doi: 10.3969/j.issn.1005-6262.2015.05.003

    XU Ting, XIAO Jun, YAN Xitao, et al. Study on the yarn spreading effect of Ultrasonic Assisted fiber bundle[J]. Glass fiber, 2015, (5): 10-14(in Chinese). doi: 10.3969/j.issn.1005-6262.2015.05.003
    [29] 石业琦. 连续碳纤维气流展纱流场仿真及装置研究 [D]. 北京化工大学, 2021.

    SHI Yeqi. Study on flow field simulation and device of continuous carbon Fiber Air sprouting [D]. Beijing University of Chemical Technology, 2021. (in Chinese)
    [30] IRFAN M S, MACHAVARAM V R, MAHENDRAN R S, et al. Lateral spreading of a fiber bundle via mechanical means[J]. Journal of Composite Materials, 2011, 46(3): 311-330.
    [31] 张仁钦, 颜金本. 一种带多面展纱辊的碳纤维预浸布生产的展纱装置 [P]. 中国专利, CN201721319755.3, 2018-5-4

    ZHANG Renqin, YAN Jinben. A yarn spreading device for production of carbon fiber prepreg cloth with multi-sided yarn spreading roller [P]. Chinese patent, CN201721319755.3, 2018-5-4(in Chinese)
    [32] 赵强, 蒲俊文. 超声波处理对植物纤维的影响研究进展[J]. 中华纸业, 2008, (15): 62-67. doi: 10.3969/j.issn.1007-9211.2008.15.012

    ZHAO Qiang, PU Junwen. Research progress on the effect of ultrasonic treatment on plant fiber[J]. Zhonghua Paper, 2008, (15): 62-67(in Chinese). doi: 10.3969/j.issn.1007-9211.2008.15.012
    [33] Zhang C, Zhang X, Ling Y, et al. Chitosan-doped carbon nanotubes encapsulating spread carbon fiber composites with superior mechanical, thermal, and electrical properties[J]. Composites Science and Technology, 2022, 230: 109755. doi: 10.1016/j.compscitech.2022.109755
    [34] 徐挺. 轨道飞行器自动铺丝制造用预浸纱制备关键技术研究 [D]. 南京航空航天大学, 2016.

    XU Ting. Research on Key Technology of prepreg yarn preparation for automatic silk laying of Orbiter [D]. Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [35] NIU X, CHEN J, ZHANG Z J F, et al. An Analysis of Lateral-Spreading Mechanism of Fiber Bundle for a Two-Stage Pneumatic Platform[J]. Fibers Polymers, 2023, 24(8): 2891-2901. doi: 10.1007/s12221-023-00239-z
    [36] EL-DESSOUKY H M, LAWRENCE C A. Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology[J]. Composites Part B: Engineering, 2013, 50: 91-97. doi: 10.1016/j.compositesb.2013.01.026
    [37] SIHN S, KIM R Y, KAWABE K, et al. Experimental studies of thin-ply laminated composites[J]. Composites Science, 2007, 67(6): 996-1008. doi: 10.1016/j.compscitech.2006.06.008
    [38] 张杰. 碳纤维改性及其复合材料性能研究 [D]. 天津工业大学, 2016.

    ZHANG Jie. Study on modification of Carbon fiber and Properties of composite materials [D]. Tianjin Polytechnic University, 2016. (in Chinese)
    [39] 杨超, 邱高. 等离子体表面技术和在有机材料改性应用中的新进展[J]. 高分子材料科学与工程, 2001, (6): 30-34. doi: 10.3321/j.issn:1000-7555.2001.06.007

    YANG Chao, QIU Gao. New Advances in plasma surface Technology and its application in organic material modification[J]. Polymer Materials Science and Engineering, 2001, (6): 30-34(in Chinese). doi: 10.3321/j.issn:1000-7555.2001.06.007
    [40] 牛燕辉. 化学气相沉积技术的研究与应用进展[J]. 科技风, 2020, (13): 161.

    NIU Yanhui. Research and application progress of chemical vapor deposition technology[J]. Science & Technology Wind, 2020, (13): 161(in Chinese).
    [41] 焦恒洋. 电接枝改性碳纤维/尼龙复合材料的制备及其性能研究 [D]. 中国石油大学(北京), 2021.

    JIAO Hengyang. Preparation and properties of carbon fiber/nylon composites modified by electrical grafting [D]. China University of Petroleum (Beijing), 2021. (in Chinese)
    [42] WU B, ZHENG G, WANG R, et al. Synergistic modification of carbon fiber by electrochemical oxidation and sizing treatment and its effect on the mechanical properties of carbon fiber reinforced composites[J]. Applied Polymer Science, 2019, 136(41): 48028. doi: 10.1002/app.48028
    [43] 王博, 贺辛亥, 张婷, 等. 碳纤维用上浆剂的研究进展[J]. 棉纺织技术, 2022, 50(S1): 57-62. doi: 10.3969/j.issn.1001-7415.2022.z1.012

    WANG Bo, HE Xinhai, ZHANG Ting, et al. Research Progress of sizing agents for Carbon fiber[J]. Cotton Textile Technology, 2022, 50(S1): 57-62(in Chinese). doi: 10.3969/j.issn.1001-7415.2022.z1.012
    [44] 史惠枝. 改性环氧树脂碳纤维上浆剂的制备及应用研究 [D]. 东华大学, 2022.

    SHI Huizhi. Preparation and application of modified epoxy resin carbon fiber sizing agent [D]. Donghua University, 2022. (in Chinese)
    [45] YANG X, LUO J, REN H, et al. Simultaneously improving the EMI shielding performances and mechanical properties of CF/PEKK composites via MXene interfacial modification[J]. Journal of Materials Science & Technology, 2023, 154: 202-209.
    [46] 李娜. 碳纤维表面碳纳米材料修饰及其复合材料界面性能研究 [D]. 辽宁石油化工大学, 2021.

    LI Na. Study on Modification of Carbon nanomaterials on Carbon Fiber Surface and Interface Properties of Composite Materials [D]. Liaoning Shihua University, 2021.
    [47] YAN F, LIU L, LI M, et al. Preparation of carbon nanotube/copper/carbon fiber hierarchical composites by electrophoretic deposition for enhanced thermal conductivity and interfacial properties[J]. Journal of materials science, 2018, 53: 8108-8119. doi: 10.1007/s10853-018-2115-9
    [48] 田艳红, 魏旭峰, 张学军. 电泳沉积海藻酸钠/碳纳米管修饰高模碳纤维表面[J]. 北京化工大学学报(自然科学版), 2022, 49(3): 16-21.

    TIAN Yanhong, WEI Xufeng, ZHANG Xuejun. Electrodeposition of sodium alginate/carbon nanotubes on the surface of high-mold carbon fibers[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2022, 49(3): 16-21(in Chinese).
    [49] PAPPAS J M, DONG X. Nanoporous Carbon Nanotube Coating for 3D Printing of High-Performance Continuous Fiber Reinforced Polymer Composites[J]. //International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022, 85802: V001T01A035
    [50] GAO B, ZHANG J, HAO Z, et al. In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites[J]. Carbon, 2017, 123: 548-557. doi: 10.1016/j.carbon.2017.08.008
    [51] WU T, HUAN X, JIA X, et al. 3D printing nanocomposites with enhanced mechanical property and excellent electromagnetic wave absorption capability via the introduction of ZIF-derivative modified carbon fibers[J]. Composites Part B: Engineering, 2022, 233: 109658. doi: 10.1016/j.compositesb.2022.109658
    [52] WANG B, DUAN Y, ZHANG J, et al. Microwave radiation effects on carbon fibres interfacial performance[J]. Composites Part B: Engineering, 2016, 99: 398-406. doi: 10.1016/j.compositesb.2016.06.032
    [53] FUKUNAGA A, UEDA S. Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices[J]. Composites Science and Technology, 2000, 60(2): 249-254. doi: 10.1016/S0266-3538(99)00118-9
    [54] HUANG Y D, LIU L, QIU J H, et al. Influence of ultrasonic treatment on the characteristics of epoxy resin and the interfacial property of its carbon fiber composites[J]. Composites Science and Technology, 2002, 62(16): 2153-2159. doi: 10.1016/S0266-3538(02)00148-3
    [55] 李根. 连续碳纤维-聚醚醚酮预浸带熔融浸渍制备方法研究 [D]. 哈尔滨工业大学, 2021.

    LI Gen. Study on preparation method of melt impregnation of continuous carbon fiber polyether ether ketone prepreg belt [D]. Harbin Institute of Technology, 2021. (in Chinese)
    [56] 黄明君, 翟建广. 热塑性树脂熔融浸渍连续碳纤维装置及工艺研究[J]. 塑料工业, 2016, 44(11): 74-78. doi: 10.3969/j.issn.1005-5770.2016.11.017

    HUANG Mingjun, ZHAI Jianguang. Device and process for impregnating continuous carbon fiber with thermoplastic resin[J]. Plastics Industry, 2016, 44(11): 74-78(in Chinese). doi: 10.3969/j.issn.1005-5770.2016.11.017
    [57] 华泽天, 薛平, 贾明印, 等. 粉末浸渍法制备连续纤维增强热塑性复合材料研究进展[J]. 塑料科技, 2022, 50(10): 118-122.

    HUA Zetian, XUE Ping, JIA Mingyin, et al. Research progress in preparation of continuous fiber reinforced thermoplastic composites by powder impregnation method[J]. Plastic Science and Technology, 2022, 50(10): 118-122(in Chinese).
    [58] 张哲. 液相浸渍-碳化法制备碳/碳复合材料的工艺优化及力学性能研究 [D]. 长安大学, 2019.

    ZHANG Zhe. Study on process optimization and mechanical properties of carbon/carbon composites prepared by liquid-phase impregnation-carbonization method [D]. Chang 'an University, 2019. (in Chinese)
    [59] 许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程 2020, (8): 123-128.

    XU Yunpeng, YAN Chun, LIU Dong, et al. Research progress on preparation technology of thermoplastic prepreg for continuous fiber reinforcement[J]. Composite Materials Science and Engineering, 2020, (8): 123-128. (in Chinese)
    [60] CHEN J, WANG K, DONG A, et al. A comprehensive study on controlling the porosity of CCF 300/PEEK composites by optimizing the impregnation parameters[J]. Polymer Composites, 2018, 39(10): 3765-3779. doi: 10.1002/pc.24407
    [61] GOUD V, ALAGIRUSAMY R, DAS A, et al. Dry electrostatic spray coated towpregs for thermoplastic composites[J]. Fibers Polymers, 2018, 19: 364-374. doi: 10.1007/s12221-018-7470-7
    [62] 咸贵军, 益小苏, 潘颐. 热塑性树脂熔融浸渍连续纤维装置[J]. 塑料工业, 2000, (5): 15-17. doi: 10.3321/j.issn:1005-5770.2000.05.007

    XIAN Guijun, YI Xiaosu, PAN Yi. Thermoplastic resin melt impregnating continuous fiber device[J]. Plastics Industry, 2000, (5): 15-17(in Chinese). doi: 10.3321/j.issn:1005-5770.2000.05.007
    [63] 张晓明, 崔秀镐, 金允正, 刘其贤. 热塑性树脂基复合材料熔融浸渍技术研究[J]. 纤维复合材料, 1995, (1): 9-15.

    ZHANG Xiaoming, CHOI Soo-ho, Kim Yun-jung, LIU Qi-xian. Research on melt impregnation technology of thermoplastic resin matrix composites[J]. Fiber Composites, 1995, (1): 9-15(in Chinese).
    [64] 杨卫疆. 聚丙烯树脂熔融浸渍连续玻璃纤维毡过程的研究[J]. 纤维复合材料, 1999, (3): 17-23. doi: 10.3969/j.issn.1003-6423.1999.03.005

    YANG Weijiang. Study on melt impregnation process of continuous glass fiber felt with polypropylene resin[J]. Fiber composite materials, 1999, (3): 17-23(in Chinese). doi: 10.3969/j.issn.1003-6423.1999.03.005
    [65] 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(03): 1229-1247.

    CAO Jianfan, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Journal of Composite Materials, 202: 1-15. (in Chinese)
    [66] 李学宽, 肇研, 王凯, 等. 热熔法制备连续纤维增强热塑性预浸料的浸渍模型和研究进展[J]. 航空制造技术, 2018, 61(14): 74-8+90.

    LI Xuekuan, ZHAO Yan, WANG Kai, et al. Impregnation model and research progress of continuous fiber reinforced thermoplastic prepreg prepared by hot melt method[J]. Aeronautical Manufacturing Technology, 2018, 61(14): 74-8+90(in Chinese).
    [67] 张志成, 金泽宇, 杨建军, 等. 玻纤布增强聚丙烯复合材料浸渍理论及实验研究[J]. 北京化工大学学报(自然科学版), 2016, 43(2): 27-34.

    ZHANG Zhicheng, JIN Zeyu, YANG Jianjun, et al. Theoretical and Experimental Research on impregnation of glass fiber cloth reinforced Polypropylene Composites[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2016, 43(2): 27-34(in Chinese).
    [68] UŞUN A, GüMRüK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing, 2021, 46: 102112. doi: 10.1016/j.addma.2021.102112
    [69] ZHUANG Y, ZOU B, DING S, et al. Preparation of pre-impregnated continuous carbon fiber reinforced nylon6 filaments and the mechanical properties of 3D printed composites[J]. Materials Today Communications, 2023, 35: 106163. doi: 10.1016/j.mtcomm.2023.106163
    [70] 石业琦, 崔永辉, 薛平, 等. 连续碳纤维增强热塑性树脂预浸片材制备技术的研究进展[J]. 塑料工业, 2019, 47(11): 1-4+25. doi: 10.3969/j.issn.1005-5770.2019.11.001

    SHI Yeqi, CUI Yonghui, XUE Ping, et al. Research progress in preparation technology of continuous carbon Fiber reinforced thermoplastic resin prepreg sheet[J]. Plastics Industry, 2019, 47(11): 1-4+25(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.11.001
    [71] 陈浩然. T700/PEEK预浸纱制备的浸渍机理及工艺优化 [D]. 南京航空航天大学, 2018.

    CHEN Haoran. Impregnation mechanism and process optimization of T700/PEEK prepreg yarn preparation [D]. Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [72] ZHANG J, SHEN H, YANG L, et al. Two-Step Preparation of CCF/PEEK Wrapped Yarn for 3D Printing Composites with Enhanced Mechanical Properties[J]. Materials 2023, 16(3): 1168.
    [73] 季涛, 黄晓梅, 余进, 等. 流化床粉未浸渍法中影响复合材料纤维含量因素的研究[J]. 玻璃钢/复合材料 2009, (5): 14-17.

    JI Tao, HUANG Xiaomei, YU Jin, et al. Study on Factors affecting fiber content of composite materials in fluidized bed powder unimpregnated method[J]. Glass fiber Reinforced Plastic/Composite materials 2009, (5): 14-17. (in Chinese)
    [74] JABER A A, OBAID A A, ADVANI S G, et al. Experimental investigation of dry powder coating processing parameters on the polystyrene particle's distribution on the surface of carbon fibers[J]. Powder Technology, 2021, 393: 461-470. doi: 10.1016/j.powtec.2021.07.089
    [75] 周晓东, 周成玉, 张胜勇, 等. 连续玻璃纤维增强聚丙烯预浸料粉末法浸渍过程及界面控制[J]. 玻璃钢/复合材料, 2000, (2): 5-8.

    ZHOU Xiaodong, ZHOU Chengyu, ZHANG Shengyong, et al. Powder impregnation process and interface control of continuous glass fiber reinforced polypropylene prepreg[J]. Glass fiber Reinforced plastic/Composite materials, 2000, (2): 5-8(in Chinese).
    [76] 余剑英, 周祖福. 连续纤维增强热塑性复合材料的制备成型技术及其应用前景[J]. 武汉工业大学学报, 1998, (4): 22-4+31.

    YU Jianying, ZHOU Zufu. Preparation and molding technology of continuous fiber reinforced thermoplastic composites and its application prospect[J]. Journal of Wuhan University of Technology, 1998, (4): 22-4+31(in Chinese).
    [77] LEE H M, CHOI S-Y, JUNG A. Direct Deposition of Highly Conductive Aluminum Thin Film on Substrate by Solution-Dipping Process[J]. ACS applied materials & interfaces, 2013, 5(11): 4581-4585.
    [78] 刘延宽, 顾子琛, 王志平. 连续纤维增强热塑性预浸料制备工艺与发展趋势[J]. 中国塑料, 2022, 36(2): 172-181.

    LIU Yankuan, GU Zichen, WANG Zhiping. Preparation technology and development trend of continuous fiber reinforced thermoplastic prepreg[J]. China Plastics, 2022, 36(2): 172-181(in Chinese).
    [79] WU G, SCHULTZ J. Processing and properties of solution impregnated carbon fiber reinforced polyethersulfone composites[J]. Polymer composites, 2000, 21(2): 223-230. doi: 10.1002/pc.10179
    [80] 李博澜. 碳纤维增强聚醚酮酮复合材料的溶液法制备技术及其拉伸性能研究 [D]. 东华大学, 2022.

    LI Bolan. Preparation technology and tensile properties of carbon fiber reinforced polyether ketone ketone composites by solution method [D]. Donghua University, 2022. (in Chinese)
    [81] 郑亮. 连续纤维增强杂萘联苯聚芳醚树脂基复合材料的研究 [D]. 大连理工大学, 2009.

    ZHENG Liang. Study on continuous fiber reinforced naphthalene biphenyl polyaryl ether resin composites [D]. Dalian University of Technology, 2009. (in Chinese)
    [82] RIMAŠAUSKAS M, KUNCIUS T, RIMAŠAUSKIENĖ R. Processing of carbon fiber for 3D printed continuous composite structures[J]. Materials Manufacturing Processes, 2019, 34(13): 1528-1536. doi: 10.1080/10426914.2019.1655152
    [83] SCHNEEBERGER C, WONG J C, ERMANNI P. Hybrid bicomponent fibres for thermoplastic composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 69-73. doi: 10.1016/j.compositesa.2017.09.008
    [84] 刘川. 连续碳纤维增强聚醚醚酮复合材料的制备及性能研究 [D]. 吉林大学, 2015.

    LIU Chuan. Preparation and properties of continuous carbon fiber reinforced polyether ether ketone composites [D]. Jilin University, 2015. (in Chinese)
    [85] ONO M, YAMANE M, TANOUE S, et al. Mechanical Properties of Thermoplastic Composites Made of Commingled Carbon Fiber/Nylon Fiber[J]. Polymers, 2021, 13(19): 3206. doi: 10.3390/polym13193206
    [86] LIU X, SHAN Z, LIU J, et al. Mechanical and dielectric properties of continuous glass fiber reinforced poly-ether-ether-ketone composite components prepared by additive manufacturing[J]. Additive Manufacturing, 2024, 81: 103978. doi: 10.1016/j.addma.2024.103978
    [87] BAHRI B V, UŞUN A, YıLDıZ N, et al. Additive manufacturing of PEEK-based continuous fiber reinforced thermoplastic composites with high mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2023, 167: 107434. doi: 10.1016/j.compositesa.2023.107434
  • 加载中
计量
  • 文章访问数:  169
  • HTML全文浏览量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-05-05
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-14

目录

    /

    返回文章
    返回