留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiCf/TC18复合材料界面热稳定性及元素扩散规律

陈维龙 张育铭 杨青 姚红蕊 王玉敏

陈维龙, 张育铭, 杨青, 等. SiCf/TC18复合材料界面热稳定性及元素扩散规律[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 陈维龙, 张育铭, 杨青, 等. SiCf/TC18复合材料界面热稳定性及元素扩散规律[J]. 复合材料学报, 2024, 42(0): 1-10.
CHEN Weilong, ZHANG Yuming, YANG Qing, et al. Interface thermal stability and element diffusion law of SiCf/TC18 composites[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Weilong, ZHANG Yuming, YANG Qing, et al. Interface thermal stability and element diffusion law of SiCf/TC18 composites[J]. Acta Materiae Compositae Sinica.

SiCf/TC18复合材料界面热稳定性及元素扩散规律

基金项目: 基础加强计划重点基础研究项目(TMC-00-02)
详细信息
    通讯作者:

    杨青,硕士,高级工程师,硕士生导师,研究方向为金属基复合材料 E-mail:qingyang@imr.ac.cn

    王玉敏,博士,研究员,博士生导师,研究方向为金属基复合材料 E-mail:yuminwang@imr.ac.cn

  • 中图分类号: TG146.23;TB331

Interface thermal stability and element diffusion law of SiCf/TC18 composites

Funds: Key basic research projects of foundation strengthening plan (No. TMC-00-02)
  • 摘要: 界面反应会对钛基复合材料的力学性能产生显著影响,为确定SiCf/TC18复合材料的元素扩散及界面反应层长大规律,采用磁控溅射先驱丝法+热等静压工艺制备了SiCf/TC18复合材料,并在不同温度(400、600、800 ℃)和时间(50、100、150、200 h)下进行热暴露实验,分析了热等静压态和热暴露态SiCf/TC18复合材料的界面反应层厚度变化、元素分布及扩散规律。更为重要的是,本文阐明了元素互扩散的机制,总结了界面反应层厚度随热暴露时间的长大规律,揭示了SiCf/TC18复合材料界面反应层产物主要为TiC。经计算,SiCf/TC18复合材料界面指数因子为4.0 × 10−6 m/s1/2,反应层长大激活能为80.31 kJ/mol,该材料在400 ℃以下时界面热稳定性优异。

     

  • 图  1  SiCf/TC18复合材料先驱丝横截面SEM图像及EDS元素扫描选取的位置

    Figure  1.  Cross section SEM image of SiCf/TC18 composites precursor wire and selected positions for EDS element scanning

    图  2  SiCf/TC18复合材料热等静压态整体及界面组织形貌

    Figure  2.  Overall and interface morphology of SiCf/TC18 composites in hot isostatic pressing state

    图  3  SiCf/TC18复合材料热等静压态界面区域SEM像(a)和EPMA元素面分布图(b-i)

    Figure  3.  SEM image(a) and EPMA element maps of the hot isostatic pressing interface region(b-i) of SiCf/TC18 composites

    图  4  SiCf/TC18复合材料不同热暴露条件下的界面反应层形貌

    Figure  4.  Morphology of interface reaction layer in SiCf/TC18 composites at different heat exposure conditions

    图  5  SiCf/TC18复合材料热等静压态与200 h热暴露实验后的EBSD图像

    Figure  5.  EBSD images of SiCf/TC18 composites in hot isostatic pressing state and after 200 h heat exposure experiment

    图  6  SiCf/TC18复合材料800℃/200 h热暴露态SEM像和EPMA元素面分布图

    Figure  6.  SEM image(a) and EPMA element maps in heat exposure(b-i) of SiCf/TC18 composites at 800℃/200 h

    图  7  EPMA元素扫描选取位置

    Figure  7.  Schematic diagram of EPMA point scanning positions

    图  8  SiCf/TC18复合材料热等静压态XRD图谱

    Figure  8.  XRD pattern of SiCf/TC18 composites in hot isostatic pressing

    图  9  SiCf/TC18复合材料在不同热暴露条件下的XRD图谱

    Figure  9.  XRD pattern of SiCf/TC18 composites under different thermal exposure conditions

    图  10  SiCf/TC18复合材料各元素热压及热暴露过程中元素扩散示意图

    Figure  10.  Schematic diagram of element diffusion during hot pressing and exposure of SiCf/TC18 composites

    图  11  SiCf/TC18复合材料界面反应动力学曲线

    Figure  11.  Interfacial reaction kinetic curves of SiCf/TC18 composites

    图  12  SiCf/TC18复合材料反应层长大Arrhenius关系图

    Figure  12.  Arrhenius diagram of the interfacial reaction layer growth in SiCf/TC18 composites

    表  1  SiCf/TC18复合材料先驱丝EDS元素定量分析结果

    Table  1.   Quantitative analysis results of EDS elements in SiCf/TC18 composites precursor wire (Mass fraction/%)

    PositionCSiTiAlMoVFeCrTotal
    144.2255.350.200.080.080.030.020.02100.00
    278.0221.540.350.050.000.030.000.01100.00
    37.500.1776.584.314.375.201.010.86100.00
    47.260.1777.344.544.164.870.900.76100.00
    58.020.1476.454.534.274.930.920.74100.00
    下载: 导出CSV

    表  2  SiCf/TC18复合材料热暴露后的界面反应层厚度

    Table  2.   The thickness of the interface reaction layer of SiCf/TC18 composites after heat exposure

    Temperature /℃ Thickness of interfacial reaction layer / μm
    50 h 100 h 150 h 200 h
    400 0.61±0.26 0.61±0.27 0.61±0.32 0.61±0.26
    600 0.62±0.17 0.64±0.21 0.65±0.33 0.67±0.25
    800 1.28±0.30 1.48±0.37 1.62±0.39 1.90±0.29
    下载: 导出CSV

    表  3  SiCf/TC18复合材料热等静压态与200 h热暴露实验后的晶粒尺寸大小

    Table  3.   Grain size of SiCf/TC18 composites in hot isostatic pressing state and after 200 h heat exposure experiment

    Temperature /℃ Grain size /μm2
    α phase β phase Overall size
    RT 0.30 0.14 0.22
    400 0.37 0.28 0.33
    600 0.48 0.30 0.39
    800 1.02 1.24 1.12
    下载: 导出CSV

    表  4  SiCf/TC18复合材料元素原子半径

    Table  4.   Element atomic radius of SiCf/TC18 composites

    Element symbolCSiTiAlMoVFeCr
    Atomic radius/nm0.0770.1340.1440.1430.1390.1320.1240.128
    下载: 导出CSV

    表  5  热等静压态反应层EPMA元素定量分析结果

    Table  5.   Quantitative analysis results of EPMA elements in the reaction layer of hot isostatic pressing state (Mass fraction/%)

    PositionCSiTiAlMoVFeCrTotal
    131.675.0059.970.841.010.990.210.31100.00
    223.682.9467.751.591.671.480.380.51100.00
    317.511.6471.182.522.972.530.770.88100.00
    下载: 导出CSV

    表  6  热暴露态800℃/200 h反应层EPMA元素定量分析结果

    Table  6.   Quantitative analysis results of EPMA elements in the reaction layer at 800℃/200 h under thermal exposure (Mass fraction/%)

    PositionCSiTiAlMoVFeCrTotal
    120.982.4876.070.070.040.330.010.02100.00
    212.450.3286.570.210.040.390.010.01100.00
    310.130.1887.181.540.260.620.030.06100.00
    下载: 导出CSV
  • [1] 王玉敏, 张国兴, 张旭, 等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52(10): 1153-1170. doi: 10.11900/0412.1961.2016.00347

    WANG Yumin, ZHANG Guoxing, ZHANG Xu, et al. Research Progress in Continuous SiC Fiber Reinforced Titanium Matrix Composites[J]. Journal of Metals, 2016, 52(10): 1153-1170(in Chinese). doi: 10.11900/0412.1961.2016.00347
    [2] 张汝光, 许守勃. 纤维增强复合材料的基体和界面控制破坏的强度理论[J]. 复合材料学报, 1985, 2(4): 40-Ⅴ.

    ZHANG Ruguang, XU Shoubo. A Failure Theory Predomenated by Matrix and Interface for Fibrous Composites[J]. Acta Materiae Compositae Sinica, 1985, 2(4): 40-Ⅴ(in Chinese).
    [3] CLYNE T W, WITHERS P J. An Introduction to Metal Matrix Composites [M]. New York: Cambridge University Press, 1993.
    [4] 符跃春, 韦泽麒, 杨丽娜, 等. SiCf/Ti2AlNb复合材料的界面反应及热稳定性[J]. 东北大学学报(自然科学版), 2022, 43(8): 1105-1112. doi: 10.12068/j.issn.1005-3026.2022.08.006

    FU Yuechun, WEI Zeqi, YANG Lina, et al. Interface reaction and thermal stability of SiCf/Ti2AlNb composite materials[J]. Journal of Northeast University (Natural Science Edition), 2022, 43(8): 1105-1112(in Chinese). doi: 10.12068/j.issn.1005-3026.2022.08.006
    [5] 罗贤, 李超, 杨延清, 等. SiC/C/Mo/Ti-43Al-9V复合材料的界面热稳定性研究[C]. 中国机械工程学会热处理分会. 第十一次全国热处理大会论文集. 中国机械工程学会热处理分会: 中国机械工程学会, 2015: 7.

    LUO Xian, LI Chao, YANG Yanqing, et al. Study on Interface Thermal Stability of SiC/C/Mo/Ti-43Al-9V Composite Materials [C]. Heat Treatment Branch of the Chinese Society of Mechanical Engineering. Proceedings of the 11th National Heat Treatment Conference. Heat Treatment Branch of the Chinese Society of Mechanical Engineering: Chinese Society of Mechanical Engineering, 2015: 7(in Chinese).
    [6] 李虎, 黄旭, 黄浩, 等. 连续SiC纤维增强钛基复合材料界面反应研究[J]. 锻压技术, 2016, 41(4): 103-108.

    LI Hu, HUANG Xu, HUANG Hao, et al. Study on Interface Reaction of Continuous SiC Fiber Reinforced Titanium Matrix Composite Materials[J]. Forging Technology, 2016, 41(4): 103-108(in Chinese).
    [7] 曾科军, 金展鹏. SiC纤维增强钛基复合材料界面反应机理[J]. 复合材料学报, 1989, 6(4): 92-Ⅵ.

    ZENG Kejun, JIN Zhanpeng. Mechanism of The Interfacial Reaction in SiC Filament Reinforced Titanium Matrix Composites[J]. Acta Materiae Compositae Sinica, 1989, 6(4): 92-Ⅵ(in Chinese).
    [8] 吕祥鸿, 杨延清, 马志军. SiC连续纤维增强Ti基复合材料界面反应扩散研究进展[J]. 稀有金属材料与工程, 2006, (1): 164-168. doi: 10.3321/j.issn:1002-185X.2006.01.042

    LV Xianghong, YANG Yanqing, MA Zhijun. Research progress on interfacial reaction diffusion of SiC continuous fiber reinforced Ti matrix composites[J]. Rare Metal Materials and Engineering, 2006, (1): 164-168(in Chinese). doi: 10.3321/j.issn:1002-185X.2006.01.042
    [9] 王超, 张旭, 王玉敏, 等. SiCf/Ti65 复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.

    WANG Chao, ZHANG Xu, WANG Yumin, et al. Interface Reaction and Matrix Phase Transformation Mechanism of SiCf/Ti65 Composite Materials[J]. Journal of Metals, 2020, 56(9): 1275-1285(in Chinese).
    [10] GRANT B P S. Chemical interaction between sigma 1140+ SiC fibre and Ti-6Al-4V[J]. Scripta Materialia, 2001, 44(4): 607-612 . doi: 10.1016/S1359-6462(00)00649-7
    [11] JONES C, KIELY C J, WANG S S. The characterization of an SCS6/Ti–6Al–4V MMC interphase[J]. Journal of Materials Research, 1989, 4(2): 327-335. doi: 10.1557/JMR.1989.0327
    [12] B. A. LERCH, HULL D R, LEONHARDT T A. Microstructure of a SiC/Ti-15-3 composite[J]. Composites, 1990, 21(3): 216-224. doi: 10.1016/0010-4361(90)90236-P
    [13] FINE M E , CONLEY J G. Discussion of "On the free energy of formation of TiC and Al4C3"[J]. 1990, 21: 2609–2610.
    [14] GOO G K, GRAVES J A , MECARTNEY M L. Interfacial reaction of coated SiC fibers with gamma-TiAl[J]. Scripta Metallurgica Et Materialia, 1992, 26(7): 1043-1048.
    [15] XUN Y W, TAN M J, ZHOU J T. Processing and interface stability of SiC fiber reinforced Ti-15V-3Cr matrix composites[J]. Journal of Material Processing Technology, 2000, 102(sl-3): 215-220.
    [16] UPADHYAYA D, WOOD M, WARD-CLOSE C M, et al. Coating and fiber effects on SiC-reinforced titanium[J]. 1994, 46(11): 62-67.
    [17] 李渭清, 冯永琦, 王鼎春, 等. 镦粗变形工艺对Tc18组织和性能的影响[J]. 钛工业进展, 2008, 25(4): 24-26. doi: 10.3969/j.issn.1009-9964.2008.04.006

    LI Weiqing, FENG Yongqi, WANG Dingchun, et al. The effect of upsetting deformation process on the microstructure and properties of Tc18[J]. Progress in Titanium Industry, 2008, 25(4): 24-26(in Chinese). doi: 10.3969/j.issn.1009-9964.2008.04.006
    [18] 何磊. Tc18钛合金低倍缺陷分析[J]. 热处理技术与制备, 2022, 43(1): 27-30.

    HE Lei. Analysis of Macroscopic Defects in Tc18 Titanium Alloy[J]. Heat Treatment Technology in Preparation, 2022, 43(1): 27-30(in Chinese).
    [19] 韩栋, 张鹏省, 毛小南, 等. 两种典型热处理工艺对TC18钛合金组织性能的影响[J]. 钛工业进展, 2009, 26(6): 23-26. doi: 10.3969/j.issn.1009-9964.2009.06.007

    HAN Dong, ZHANG Pengsheng, MAO Xiaonan, et al. The effect of two typical heat treatment processes on the microstructure and properties of TC18 titanium alloy[J]. Progress in Titanium Industry, 2009, 26(6): 23-26(in Chinese). doi: 10.3969/j.issn.1009-9964.2009.06.007
    [20] X. J, NING, P, et al. The microstructure of SCS-6 SiC fiber[J]. Journal of Materials Research, 1991, 6(10): 2234-2248. doi: 10.1557/JMR.1991.2234
    [21] 张旭, 王玉敏, 雷家峰, 等. SiCf/TC17复合材料界面热稳定性及元素扩散机理[J]. 金属学报, 2012, 11(11): 1306-1314.

    ZHANG Xu, WANG Yumin, LEI Jiafeng, et al. Interface thermal stability and element diffusion mechanism of SiCf/TC17 composite materials[J]. Journal of Metals, 2012, 11(11): 1306-1314(in Chinese).
    [22] 沈莹莹, 张国兴, 贾清, 等. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 9(9): 1150-1158.

    SHEN Yingying, ZHANG Guoxing, JIA Qing, et al. Interface Reaction and Thermal Stability of SiCf/TiAl Composite Materials[J]. Journal of Metals, 2022, 9(9): 1150-1158(in Chinese).
    [23] DYBKOV V I. Reaction diffusion in heterogeneous binary systems[J]. Journal of Materials Science, 1986, 21(9): 3078-3084. doi: 10.1007/BF00553339
    [24] P, MARTINEAU, M, et al. SiC filament/titanium matrix composites regarded as model composites[J]. Journal of Materials Science, 1984, 19: 2731-2748. doi: 10.1007/BF00550831
    [25] MARTINEAU P, LAHAYE M, PAILLER R, et al. SiC filament/titanium matrix composites regarded as model composites[J]. Journal of Materials Science, 1984, 19(8): 2731-2748. doi: 10.1007/BF00550831
    [26] BILBA K, MANAUD J P, PETITCORPS Y L, et al. Investigation of diffusion barrier coatings on SiC monofilaments for use in titanium-based composites[J]. Materials Science & Engineering A, 1991, 135(none): 141-144.
    [27] NAKA M, FENG J C, SCHUSTER J C. Phase reaction and diffusion path of the SiC/Ti system[J]. Metallurgical & Materials Transactions A, 1997, 28(6): 1385-1390.
    [28] DE-JUN M. Northwestern Polytechnical University [D]. College & Universuty Admission, 2004.
    [29] 吕祥鸿. SiC连续纤维增强Ti基复合材料的界面扩散行为研究[D]. 西安: 西北工业大学, 2006.

    LV Xianghong. Study on Interface Diffusion Behavior of SiC Continuous Fiber Reinforced Ti Matrix Composite Materials [D]. Xi'an: Northwest University of Technology, 2006(in Chinese).
    [30] 朱艳. SiC纤维增强Ti基复合材料界面反应研究[D]. 西北工业大学, 2003.

    ZHU Yan, Research on Interface Reaction of SiC Fiber Reinforced Ti Matrix Composite Materials [D]. Northwestern Polytechnical University, 2003(in Chinese).
  • 加载中
计量
  • 文章访问数:  70
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 修回日期:  2024-01-28
  • 录用日期:  2024-02-03
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回