留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁锰层状双氢氧化物的制备及其对废水中Sb(III)的吸附行为

杨金辉 李聪 谢水波 杨斌 魏柏 田追

杨金辉, 李聪, 谢水波, 等. 铁锰层状双氢氧化物的制备及其对废水中Sb(III)的吸附行为[J]. 复合材料学报, 2022, 39(8): 3871-3881. doi: 10.13801/j.cnki.fhclxb.20210910.002
引用本文: 杨金辉, 李聪, 谢水波, 等. 铁锰层状双氢氧化物的制备及其对废水中Sb(III)的吸附行为[J]. 复合材料学报, 2022, 39(8): 3871-3881. doi: 10.13801/j.cnki.fhclxb.20210910.002
YANG Jinhui, LI Cong, XIE Shuibo, et al. Preparation of Fe-Mn layered double hydroxides andits adsorption behavior of antimony(III) from wastewater[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3871-3881. doi: 10.13801/j.cnki.fhclxb.20210910.002
Citation: YANG Jinhui, LI Cong, XIE Shuibo, et al. Preparation of Fe-Mn layered double hydroxides andits adsorption behavior of antimony(III) from wastewater[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3871-3881. doi: 10.13801/j.cnki.fhclxb.20210910.002

铁锰层状双氢氧化物的制备及其对废水中Sb(III)的吸附行为

doi: 10.13801/j.cnki.fhclxb.20210910.002
基金项目: 国家自然科学基金(21177053)
详细信息
    通讯作者:

    杨斌,本科,助理工程师,研究方向为水处理理论与技术 E-mail: 932936624@qq.com

  • 中图分类号: X172

Preparation of Fe-Mn layered double hydroxides andits adsorption behavior of antimony(III) from wastewater

  • 摘要: 为更好地处理水环境中的锑(III)污染问题,本论文采用超声共沉淀法制备了铁锰层状双氢氧化物(Fe-Mn LDH),并研究初始pH、投加量、共存离子、吸附时间及温度等因素对Fe-Mn LDH去除废水中Sb(III)的影响。通过SEM、EDS、XRD、XPS和FTIR等表征手段对材料晶体结构、形貌、吸附机制等进行了表征及分析。结果表明,Fe-Mn LDH去除Sb(III)的适宜条件为:pH=5、投加量为0.4 g/L、吸附时间150 min;在此条件下,在温度45℃时最大吸附量为77.39 mg/g。吸附过程符合拟二级动力学模型,Freundich吸附等温线模型能够很好地描述Fe-Mn LDH对Sb(III)的吸附行为。Sb(III)吸附去除机制主要为离子交换、配位络合和静电吸附。通过四次吸附-解析实验发现,Sb(III)去除率在83.03%以上,表明Fe-Mn LDH具备处理与修复含Sb(III)废水污染的潜力。

     

  • 图  1  初始pH对铁锰层状双氢氧化物(Fe-Mn LDH)吸附去除Sb(III)的影响

    Figure  1.  Effect of initial pH value on Sb(III) adsorption removal of Fe-Mn layered double hydroxides (Fe-Mn LDH)

    图  2  投加量对Fe-Mn LDH吸附Sb(III)的影响

    Figure  2.  Effect of dosage on Sb(III) adsorption by Fe-Mn LDH

    图  3  共存离子对Fe-Mn LDH吸附Sb(III)的影响

    Figure  3.  Effect of coexisting ions on Sb(III) adsorption by Fe-Mn LDH

    图  4  时间对Fe-Mn LDH吸附Sb(III)的影响

    Figure  4.  Effect of time on Sb(III) adsorption by Fe-Mn LDH

    图  5  Fe-Mn LDH对Sb(III)的吸附拟一级动力学曲线 (a) 和拟二级动力学曲线 (b)

    Figure  5.  Quasi-first (a) and quasi-second (b) kinetic fitting curves of Sb(III) adsorption by Fe-Mn LDH

    qt—Adsorption capacity at the moment

    图  6  Fe-Mn LDH对Sb(III)的Langmuir吸附等温线拟合曲线 (a) 和Freundlich吸附等温线拟合曲线 (b)

    Figure  6.  Langmuir (a) and Freundlich (b) isotherm fitting curves of Fe-Mn LDH adsorption of Sb(III)

    图  7  Fe-Mn LDH的吸附-解析试验

    Figure  7.  Adsorption-desorption experiments of Fe-Mn LDH

    图  8  Fe-Mn LDH吸附Sb(III) 前和吸附Sb(III)后的SEM图像 ((a), (c)) 和EDS图像 ((b), (d))

    Figure  8.  SEM images of Fe-Mn LDH before (a) and after (c) adsorption of Sb(III); EDS diagrams of Fe-Mn LDH before (b) and after (d) adsorption of Sb(III)

    图  9  Fe-Mn LDH吸附Sb(III)前和吸附Sb(III)后的XRD图谱 (a) 和FTIR图谱 (b)

    Figure  9.  XRD pattern (a) and FTIR spectra (b) of Fe-Mn LDH before and after Sb(III) adsorption

    图  10  Fe-Mn LDH吸附Sb(III)前和吸附Sb(III)后的XPS图谱

    Figure  10.  XPS spectra of Fe-Mn LDH before and after Sb(III) adsorption

    表  1  Fe-Mn LDH对Sb(III)吸附的动力学拟合参数

    Table  1.   Fitting parameters of the kinetic equation for Fe-Mn LDH adsorption of Sb(III)

    C0/(mg·L−1)Quasi-first order dynamic modelQuasi-second order dynamic model
    qe,exp/(mg·g−1)qe/(mg·g−1)k1/min−1R2qe/(mg·g−1)k2/(g·mg−1·min−1)R2
    10 24.97 5.09 0.035 0.946 25.05 0.019 0.999
    20 49.34 14.13 0.009 0.878 49.73 0.002 0.999
    Notes: qe—Equilibrium adsorption capacity; k1—Quasi-first order adsorption rate constant; k2—Quasi-second order adsorption rate constant; R2—Linear correlation coefficient; qe, exp—Experimental adsorption capacity of Fe-Mn LDH.
    下载: 导出CSV

    表  2  Fe-Mn LDH对Sb(III)的吸附等温线拟合参数

    Table  2.   Isotherms parameters of Sb(III) adsorption by Fe-Mn LDH

    Temperature/℃LangmiurFreundich
    qmax/(mg·g−1)KL/(L·mg−1)R2KF/(mg(1+n)·(Ln·g)−1)1/nR2
    25 73.31 4.30 0.879 53.022 0.45 0.974
    35 71.89 8.97 0.945 57.944 0.31 0.976
    45 77.39 6.49 0.891 72.692 0.51 0.981
    Notes: KL—Adsorption equilibrium constant of the Langmuir model; KF—Adsorption equilibrium constant of Freundlich model; 1/n—An empirical parameter related to the adsorption strength; qmax—Maximum sorption capacity of Fe-Mn LDH ; n—Freundlich exponent.
    下载: 导出CSV
  • [1] AMARASIRIWARDENA D, WU F. Antimony: Emerging toxic contaminant in the environment[J]. Preface Microchemical Journal,2011,97(1):1-3. doi: 10.1016/j.microc.2010.07.009
    [2] 宁增平, 肖唐付. 锑的表生地球化学行为与环境危害效应[J]. 地球与环境, 2007(2): 176-182.

    NING Zengping, XIAO Tangfu. Epigenetic geochemical behavior and environmental hazard effect of antimony[J]. Earth and Environment, 2007(2): 176-182(in Chinese).
    [3] FILELLA M, BELZILE N, CHEN Y W. Antimony in the envi-ronment: A review focused on natural waters. Part 2. Rele-vant solution chemistry[J]. ChemInform,2003,34(23):23280.
    [4] MONDAL P, BHOWMICK S, CHATTERJEE D, et al. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions[J]. Chemosphere,2013,92(2):157-170. doi: 10.1016/j.chemosphere.2013.01.097
    [5] 陈京晶, 张国平, 李海霞, 等. 电化学氢化物发生法处理含锑废水及对锑的回收[J]. 环境科学, 2015, 36(4):1338-1344.

    CHEN Jingjing, ZHANG Guoping, LI Haixia, et al. Treatment of antimony containing wastewater by electrochemi-cal hydride generation and recovery of antimony[J]. Envi-ronmental Science,2015,36(4):1338-1344(in Chinese).
    [6] DU X, QU F, LIANG H, et al. Removal of antimony(III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process[J]. Chemical Engi-neering Journal,2014,254:293-301. doi: 10.1016/j.cej.2014.05.126
    [7] LENG Y, GUO W, SU S, et al. Removal of antimony(III) from aqueous solution by graphene as an adsorbent[J]. Chemi-cal Engineering Journal,2012(211-212):406-411. doi: 10.1016/j.cej.2012.09.078
    [8] SALAM M A, MOHAMED R M. Removal of antimony(III) by multi-walled carbon nanotubes from model solution and environmental samples[J]. Chemical Engineering Research and Design, 2013, 91(7): 1352-1360.
    [9] TIAN W, KONG X, JIANG M, et al. Hierarchical layered double hydroxide epitaxially grown on vermiculite for Cr(VI) removal[J]. Materials Letters,2016,175:110-113. doi: 10.1016/j.matlet.2016.03.141
    [10] WU X, HUANG B, WANG Q, et al. High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: Understanding the role of interlayer ions and hydration[J]. Chemical Engineering Journal,2020,380:122456. doi: 10.1016/j.cej.2019.122456
    [11] EVANS D, SLADE R. Structural aspects of layered double hydroxides[J]. Structure and Bonding,2006,119:1-87.
    [12] GONG M, LI Y, WANG H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society,2013,135(23):8452-8455. doi: 10.1021/ja4027715
    [13] THEISS F L, COUPERTHWAITE S J, AYOKO G A, et al. A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides[J]. Journal of Colloid and Interface Science,2014,417:356-368. doi: 10.1016/j.jcis.2013.11.040
    [14] GAO Y, ZHANG Y, WILLIAMS G R, et al. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene[J]. Scientific Reports,2016,6(1):35502. doi: 10.1038/srep35502
    [15] LI L, GU W, CHEN J, et al. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles[J]. Biomaterials,2014,35(10):3331-3339. doi: 10.1016/j.biomaterials.2013.12.095
    [16] WANG W, ZHOU J, ACHARI G, et al. Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,457(1):33-40.
    [17] MANDAL S, MAYADEVI S. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution[J]. Chemosphere,2008,72(6):995-998. doi: 10.1016/j.chemosphere.2008.03.053
    [18] XIE Y, CHEN C, REN X, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science,2019,103:180-234. doi: 10.1016/j.pmatsci.2019.01.005
    [19] ZHANG C, JIANG H, DENG Y, et al. Adsorption perfor-mance of antimony by modified iron powder[J]. RSC Advances,2019,9(54):31645-31653. doi: 10.1039/C9RA05646G
    [20] UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arse-nic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management,2015,151:326-342.
    [21] DENG R J, JIN C S, REN B Z, et al. The potential for the treatment of antimony-containing wastewater by iron-based adsorbents[J]. Water,2017,9(10):794-811. doi: 10.3390/w9100794
    [22] HU S, SHI Q, JING C. Groundwater arsenic adsorption on granular TiO2: Integrating atomic structure, filtration, and health impact[J]. Environmental Science & Technology,2015,49(16):9707-9713.
    [23] WANG L, WAN C, LEE D J, et al. Biosorption of antimony(V) onto Fe(III)-treated aerobic granules[J]. Bioresource Technology,2014,158:351-354. doi: 10.1016/j.biortech.2014.02.046
    [24] MISHRA S, DWIVEDI J, KUMAR A, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes[J]. RSC Advances,2016,6(98):95865-95878. doi: 10.1039/C6RA18965B
    [25] LI Y, HU X, REN B, et al. Preparation of iron-copper binary oxide and its effective removal on antimony(V) from water[J]. Desalination and Water Treatment,2016,57(55):26461-26471. doi: 10.1080/19443994.2016.1175971
    [26] ZHANG W, ZHANG S, WANG J, et al. Hybrid functiona-lized chitosan-Al2O3@SiO2 composite for enhanced Cr(VI) adsorption[J]. Chemosphere,2018,203:188-198. doi: 10.1016/j.chemosphere.2018.03.188
    [27] WANG Y Y, JI H Y, LU H H, et al. Simultaneous removal of Sb(III) and Cd(II) in water by adsorption onto a MnFe2O4 biochar nanocomposite[J]. RSC Advances,2018,8(6):3264-3273. doi: 10.1039/C7RA13151H
    [28] LU Q, ZHENG J, YU J, et al. Synthesis and adsorption pro-perties for cationic dyes of acrylic acid/vermiculite hydrogel initiated by glow-discharge-electrolysis plasma[J]. Advances in Polymer Technology,2018,37(4):996-1007. doi: 10.1002/adv.21748
    [29] FAN H T, SUN W, JIANG B, et al. Adsorption of antimony(III) from aqueous solution by mercapto-functionalized silica-supported organic-inorganic hybrid sorbent: Mechanism insights[J]. Chemical Engineering Journal,2016,286:128-138. doi: 10.1016/j.cej.2015.10.048
    [30] CHMIELEWSKA E, TYLUS W, DRABIK M, et al. Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal[J]. Microporous and Mesoporous Materials,2017,248:222-233. doi: 10.1016/j.micromeso.2017.04.022
    [31] ROOYGAR A A, MALLAH M H, ABOLGHASEMI H, et al. New "magmolecular" process for the separation of antimony(III) from aqueous solution[J]. Journal of Chemical & Engineering Data,2014,59(11):3545-3554.
    [32] ZHU J, BAIG S A, SHENG T, et al. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arse-nic removal from aqueous solutions[J]. Journal of Hazardous Materials, 2015, 286: 220-228.
    [33] GUO X, RUAN Y, DIAO Z, et al. Environmental-friendly preparation of Ni-Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium (VI)[J]. Journal of Cleaner Production,2021,308:127384. doi: 10.1016/j.jclepro.2021.127384
    [34] CHENG F, GUO H, CUI J, et al. Coupling of methanol and ethanol over CuMgAlOx catalysts: The roles of copper species and alkalinity[J]. Reaction Kinetics, Mechanisms and Catalysis,2019,126(1):119-136. doi: 10.1007/s11144-018-1476-z
    [35] SARI A, CITAK D, TUZEN M. Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite[J]. Chemical Engineering Journal,2010,162(2):521-527. doi: 10.1016/j.cej.2010.05.054
    [36] 刘星群, 谢水波, 曾凡勇, 等. 亚铁铝类水滑石吸附铀的性能与吸附机制[J]. 复合材料学报, 2017, 34(1):183-190.

    LIU Xingqun, XIE Shuibo, ZENG Fanyong, et al. Adsorption properties and mechanism of ferrous aluminum hydrotalcite for uranium[J]. Acta Materiae Compositae Sinica,2017,34(1):183-190(in Chinese).
    [37] LEFEVRE G. In situ fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides[J]. Advances in Colloid and Interface Science,2004,107(2-3):109-123. doi: 10.1016/j.cis.2003.11.002
    [38] TAN L, WANG Y, LIU Q, et al. Enhanced adsorption of uranium(VI) using a three-dimensional layered double hydroxide/graphene hybrid material[J]. Chemical Engi-neering Journal,2015,259:752-760. doi: 10.1016/j.cej.2014.08.015
    [39] 蒋云霞, 钟国清. 酒石酸锑钾的制备[J]. 精细化工, 2011, 28(5):488-491.

    JIANG Yunxia, ZHONG Guoqing. Preparation of potassium antimony tartrate[J]. Fine Chemical Industry,2011,28(5):488-491(in Chinese).
    [40] WANG Y, GAO Y, ZHU Z, et al. Enhanced arsenic removal from aqueous solution by Fe/Mn-C layered double hydro-xide composite[J]. Adsorption Science & Technology, 2021, 2021: 8891643.
    [41] SHAFIQ M, ALAZBA A A, AMIN M T. Application of Zn-Fe layered double hydroxide and its composites with biochar and carbon nanotubes to the adsorption of lead in a batch system: Kinetics and isotherms[J]. Arabian Journal for Science and Engineering, 2022, 47: 5613-5627.
    [42] DOU R, MA J, HUANG D, et al. Bisulfite assisted photocatalytic degradation of methylene blue by Ni-Fe-Mn oxide from MnO4 intercalated LDH[J]. Applied Clay Science,2018,161:235-241. doi: 10.1016/j.clay.2018.04.020
    [43] YU Y, ZHANG C, YANG L, et al. Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms[J]. Chemical Engineering Journal,2017,315:630-638. doi: 10.1016/j.cej.2016.09.068
    [44] ZHAO W, REN B, HURSTHOUSE A, et al. Facile synthesis of nanosheet-assembled gamma-Fe2O3 magnetic microspheres and enhanced Sb(III) removal environmental[J]. Science and Pollution Research,2021,28(16):19822-19837. doi: 10.1007/s11356-020-11727-7
    [45] BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science,2011,257(7):2717-2730. doi: 10.1016/j.apsusc.2010.10.051
    [46] BAI Y, WU F, GONG Y. Oxidation and adsorption of antimony(III) from surface water using novel Al2O3-supported Fe-Mn binary oxide nanoparticles: Effectiveness, dynamic quantitative mechanisms, and life cycle analysis[J]. Envi-ronmental Science: Nano,2020,7(10):3047-3061. doi: 10.1039/D0EN00609B
    [47] LIU Z, DENG Y, WANG L, et al. A facile topochemical preparation of Ni-Fe LDH nanosheets array on nickel foam using in situ generated Ni2+ for electrochemical oxygen evolution[J]. Journal of the Electrochemical Society, 2020, 167(4): 046502.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1042
  • HTML全文浏览量:  592
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-08-17
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回