留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ-Fe2O3/ZnO@CNTs催化光耦合臭氧降解水体中2,4-二氯苯酚

曹玲 贾子钰 杨誉名 孙威 杨春维

曹玲, 贾子钰, 杨誉名, 等. γ-Fe2O3/ZnO@CNTs催化光耦合臭氧降解水体中2,4-二氯苯酚[J]. 复合材料学报, 2024, 42(0): 1-8.
引用本文: 曹玲, 贾子钰, 杨誉名, 等. γ-Fe2O3/ZnO@CNTs催化光耦合臭氧降解水体中2,4-二氯苯酚[J]. 复合材料学报, 2024, 42(0): 1-8.
CAO Ling, JIA Ziyu, YANG Yuming, et al. γ-Fe2O3/ZnO@CNTs catalyzes photocoupled ozone degradation of2, 4-dichlorophenol in water[J]. Acta Materiae Compositae Sinica.
Citation: CAO Ling, JIA Ziyu, YANG Yuming, et al. γ-Fe2O3/ZnO@CNTs catalyzes photocoupled ozone degradation of2, 4-dichlorophenol in water[J]. Acta Materiae Compositae Sinica.

γ-Fe2O3/ZnO@CNTs催化光耦合臭氧降解水体中2,4-二氯苯酚

基金项目: 吉林省发展与改革委员会项目(2023C032-5);吉林省科技厅项目(2023101213JC)
详细信息
    通讯作者:

    孙威,博士,副教授,研究方向为水污染控制技术 E-mail:weiwei081295@sina.com

    杨春维,博士,教授,硕士生导师,研究方向为水污染控制技术 E-mail:yangchunwei1995@163.com

  • 中图分类号: X703;TB333

γ-Fe2O3/ZnO@CNTs catalyzes photocoupled ozone degradation of2, 4-dichlorophenol in water

Funds: Jilin Province Development and Reform Commission (No. 2023C032-5); Jilin Provincial Science and Technology Department Project (No.2023101213JC)
  • 摘要: 内分泌干扰物2,4-二氯苯酚(DCP)化学结构较稳定,传统水处理技术降解效率不高。光耦合臭氧高级氧化技术(PCO)具有高效快速处理水中有机污染物的能力,可能成为DCP有效处理技术之一。本研究将γ-Fe2O3与ZnO结合共负载于多壁碳纳米管(CNTs)之上,开发出γ-Fe2O3/ZnO@CNTs催化剂用于催化PCO降解水中DCP,结果表明,该催化剂可以有效促进DCP的降解,当DCP初始浓度为20 mg/L,O3投加量为72 mg/L/h,催化剂投加量为1 g/L,模拟太阳光光源功率密度为5000 W/cm2时,反应90 min DCP去除率可达98.9%,降解过程遵循准一级动力学规律。研究还探究了DCP降解路径,并确定了羟基自由基(·OH)、电子空穴(h+)和超氧自由基(${\text{•}}{\rm{O}}_2^ - $)是主要氧化基团。本研究为DCP及其他难降解有机污染物的有效处理提供了一种新的处理方案。

     

  • 图  1  催化剂的SEM分析结果(a)ZnO;(b)γ-Fe2O3;(c)γ-Fe2O3/ZnO@多壁碳纳米管(CNTs);(d)五次循环反应后的γ-Fe2O3/ZnO@CNTs;(e)γ-Fe2O3/ZnO@CNTs的EDS分析结果

    Figure  1.  SEM analysis results of the catalyst: (a) ZnO; (b) γ - Fe2O3; (c) γ - Fe2O3/ZnO@ multi-walled carbon nanotubes (CNTs); (d) γ - Fe2O3/ZnO@CNTs after five cyclic reactions; (e) EDS analysis results of γ - Fe2O3/ZnO@CNTs

    图  2  γ-Fe2O3/ZnO@CNTs的TEM图像

    Figure  2.  TEM image of γ - Fe2O3/ZnO@CNTs

    图  3  γ - Fe2O3/ZnO@CNTs的XRD图谱

    Figure  3.  XRD pattern of γ - Fe2O3/ZnO@CNTs

    图  4  γ - Fe2O3/ZnO@CNTs的FTIR图谱

    Figure  4.  FTIR spectrum of γ - Fe2O3/ZnO@CNTs

    图  5  不同条件下DCP的降解效果(反应条件:曝气流速= 60 mL·min−1,氙灯光源光功率密度 = 5000 W·cm−2,DCP浓度20 mg·L−1,O3投加量为72 mg·L−1h−1,温度 = 20℃)(a) 不同γ-Fe2O3/ZnO@CNTs投加量的降解效果;(b) 不同pH的降解效果;(c)不同反应体系的降解效果;(d)不同循环次数下的降解效果

    Figure  5.  Degradation effects of DCP under different conditions (Reaction conditions: aeration flow rate = 60 mL·min−1, light power density of xenon lamp light source = 5000 W·cm−2, DCP concentration of 20 mg·L−1, O3 dosage of 72 mg·L−1h−1, temperature = 20℃). (a) Degradation effects with different dosages of γ-Fe2O3/ZnO@CNTs; (b) Degradation effects at different pH values; (c) Degradation effects in different reaction systems; (d) Degradation effects under different cycle numbers

    图  6  不同猝灭剂对γ-Fe2O3/ZnO@CNTs催化光耦合臭氧降解DCP的影响(反应条件:O3投加量 = 72 mg·L−1·h−1, 曝气流速= 60 mL·min−1,DCP浓度= 20 mg·L−1,催化剂投加量= 1 g·L−1,氙灯光源光功率密度 = 5000 W·cm−2,温度 = 20℃)

    Figure  6.  Influence of different quenchers on the degradation of DCP by catalytic photo-coupled ozone over γ-Fe₂O₃/ZnO@CNTs. (Reaction conditions: O3 dosage =72 mg·L−1·h−1, aeration flow rate = 60 mL·min−1, DCP concentration =20 mg·L−1, catalyst dosage = 1 g·L−1, light power density of the xenon lamp light source = 5000 W·cm−2,temperature = 20℃)

    图  7  DCP降解路径图

    Figure  7.  DCP degradation path diagram

    图  8  γ-Fe2O3/ZnO@CNTs催化降解DCP过程模型

    Figure  8.  γ-Fe2O3/ZnO@CNTs catalyzed degradation DCP process model

    表  1  DCP 降解的动力学拟合结果

    Table  1.   The kinetic fitting results of DCP degradation.

    Reaction conditionln(C0/Ct)=kt1/Ct=k2t
    k1/min−1Standard errorR2k2/L·(mg−1·min−1)Standard errorR2
    O30.00200.01220.88670.00010.05050.8967
    Light0.00930.03710.98730.00070.04390.9451
    O3+Light0.01340.11940.91300.00130.03120.7762
    O3+Light+1.0 g·L−1 γ-Fe2O3/ZnO@CNTs0.04850.30230.82320.053181.02800.6801
    Notes:γ-Fe2O3/ZnO@CNTs is a composite material in which γ-Fe₂O₃ and ZnO are co-loaded on carbon nanotubes;k1 is the first-order reaction rate constant; k2 is the second-order reaction rate constant; R² is the coefficient of determination.
    下载: 导出CSV
  • [1] ROSHANI M, NEMATOLLAHI D, ANSARI A, et al. Boosted electrocatalytic oxidation of organophosphorus pesticides by a novel high-efficiency CeO2-Doped PbO2 anode: An electrochemical study, parameter optimization and degradation mechanisms[J]. Chemosphere, 2024, 346.
    [2] 马晓雁, 高乃云, 李青松, 等. 黄浦江原水及水处理过程中内分泌干扰物状况调查[J]. 中国给水排水, 2006, 22(19): 1-4. doi: 10.3321/j.issn:1000-4602.2006.19.001

    MA X Y, GAO N Y, LI Q S, et al. Investigation on endocrine disruptors in raw water and water treatment in Huangpu River[J]. China Water Supply and Drainage, 2006, 22(19): 1-4(in Chinese). doi: 10.3321/j.issn:1000-4602.2006.19.001
    [3] 杨廷政, 桑宇驰, 吕禾源, 等. 环境中典型内分泌干扰物(EDCs)去除技术研究进展[J]. 当代化工研究, 2024, (3): 6-8.

    YANG T Z, SANG Y C, LV H Y, et al. Research progress of removal technology of typical endocrine disruptors (EDCs) in environment[J]. Contemporary Chemical Research, 2024, (3): 6-8(in Chinese).
    [4] 江传春, 肖蓉蓉, 杨平. 高级氧化技术在水处理中的研究进展[J]. 水处理技术, 2011, 37(7): 12-16.

    JIANG C C, XIAO R R, YANG P. Research progress of advanced oxidation technology in water treatment[J]. Water Treatment Technology, 2011, 37(7): 12-16(in Chinese).
    [5] DIMITROPOULOS M, AGGELOPOULOS C A, SYGELLOU L, et al. Unveiling the photocorrosion mechanism of zinc oxide photocatalyst: Interplay between surface corrosion and regeneration[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112102. doi: 10.1016/j.jece.2024.112102
    [6] ASGARi E, SHEIKHMOHAMMADI A, NOURMORADI H, et al. Degradation of ciprofloxacin by photocatalytic ozonation process under irradiation with UVA: comparative study, performance and mechanism[J]. Process Safety and Environmental Protection, 2021, 147: 356-366. doi: 10.1016/j.psep.2020.09.041
    [7] TYRPEKL V, VEJPRAVOVÁ J P, ROCA A G, et al. Magnetically separable photocatalytic composite γ-Fe2O3@ TiO2 synthesized by heterogeneous precipitation[J]. Applied Surface Science, 2011, 257(11): 4844-4848. doi: 10.1016/j.apsusc.2010.12.110
    [8] MAJHI D, DAS K, MISHRA A, et al. One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine[J]. Applied Catalysis B: Environmental, 2020, 260: 118222. doi: 10.1016/j.apcatb.2019.118222
    [9] MIAO W, LI S, CAO X, et al. Wood-derived porous carbon supported γ-Fe2O3 nanoparticles as efficient catalyst for oxygen reduction reaction[J]. Applied Surface Science, 2022, 604: 154471. doi: 10.1016/j.apsusc.2022.154471
    [10] JIA Z Y, YANG Y M, YANG C W, et al. Magnetic γ-Fe2O3/ZnO@ CNTs synthesized by a green precipitation method for the degradation of aniline through photocatalysis coupling catalytic ozonation[J]. Applied Surface Science, 2024, 659: 159866. doi: 10.1016/j.apsusc.2024.159866
    [11] XIAO H, LIU R P, ZHAO X, et al. Effect of manganese ion on the mineralization of 2, 4-dichlorophenol by ozone[J]. Chemosphere, 2008, 72(7): 1006-1012. doi: 10.1016/j.chemosphere.2008.04.030
    [12] CHU Y Y, ZHENG X L, FAN J R. Preparation of sodium and boron co-doped graphitic carbon nitride for the enhanced production of H2O2 via two-electron oxygen reduction and the degradation of 2, 4-DCP via photocatalytic oxidation coupled with Fenton oxidation[J]. Chemical Engineering Journal, 2022, 431: 134020. doi: 10.1016/j.cej.2021.134020
    [13] ZHOU Z F, LU J H, ZHANG R X, et al. Construction and differential growth mechanism of uniform and controllable CNTs and CNWs by ZIF-67 precursor[J]. Applied Surface Science, 2023, 640: 158342. doi: 10.1016/j.apsusc.2023.158342
    [14] WU S X, YANG Z, WANG F, et al. Effect of γ-Fe2O3 nanoparticles on the composition of montmorillonite and its sorption capacity for pyrene[J]. Science of The Total Environment, 2022, 813: 151893. doi: 10.1016/j.scitotenv.2021.151893
    [15] 罗灵芝, 俞俊, 罗豪, 等. 带状 γ-Fe 2 O 3/ZnO 异质结光催化剂 光催化降解四环素[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1535-1542.

    LUO L Z, YU J, LUO H, et al. Photocatalytic degradation of tetracycline by banded γ - Fe₂O₃/ZnO heterojunction photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1535-1542 (in Chinese).
    [16] YU J L, ZHANG X X, ZHAO X D, et al. Heterogeneous Fenton oxidation of 2, 4-dichlorophenol catalyzed by PEGylated nanoscale zero-valent iron supported by biochar[J]. Environmental Science and Pollution Research, 2023, 30(14): 41333-41347. doi: 10.1007/s11356-023-25182-7
    [17] WANG C L, KONG X W, YU Z X, et al. Construction of g-C3N4/Fe-MOFs Type-Ⅱ heterojunction promotes photo-Fenton degradation of doxycycline[J]. Separation and Purification Technology, 2023, 326: 124790. doi: 10.1016/j.seppur.2023.124790
    [18] CHAI H, YANG C Y, XU P, et al. Enhanced visible-light photocatalytic activity with Fe2O3–ZnO@ C/g-C3N4 heterojunction: characterization, kinetics, and mechanisms[J]. Journal of Cleaner Production, 2022, 377: 134511. doi: 10.1016/j.jclepro.2022.134511
    [19] KUZHAROV A A, GRITSAI M A, BUTOVA V V, et al. One-step electrochemical synthesis of γ-Fe2O3@ MIL-88a magnetic composite for heterogeneous Fenton-like catalysis[J]. Ceramics International, 2022, 48(23): 34864-34876. doi: 10.1016/j.ceramint.2022.08.076
    [20] MECHA A C, ONYANGO M S, OCHIENG A, et al. Synergistic effect of UV–vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: A comparative study[J]. Journal of Catalysis, 2016, 341: 116-125. doi: 10.1016/j.jcat.2016.06.015
    [21] HUMAYUN M, HU Z, KHAN A, et al. Highly efficient degradation of 2, 4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism[J]. Journal of hazardous materials, 2019, 364: 635-644. doi: 10.1016/j.jhazmat.2018.10.088
    [22] FERREIRO C, SANZ J, VILLOTA N, et al. Kinetic modelling for concentration and toxicity changes during the oxidation of 4-chlorophenol by UV/H2O2[J]. Scientific Reports, 2021, 11(1): 15726. doi: 10.1038/s41598-021-95083-7
    [23] RAMOS-RAMÍREZ E, GUTIÉRREZ-ORTEGA N, TZOMPANTZI-MORALES F, et al. Photocatalytic Degradation of 2, 4-Dichlorophenol in Water Using MgAl Activated Hydrotalcites as Photocatalyst[J]. Topics in Catalysis, 2022, 65(13): 1469-1481.
    [24] VADIVEL S, HARIGANESH S, PAUL B, et al. Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592: 124583. doi: 10.1016/j.colsurfa.2020.124583
    [25] LI J D, ZHANG X L, RAZIQ F, et al. Improved photocatalytic activities of g-C3N4 nanosheets by effectively trapping holes with halogen-induced surface polarization and 2, 4-dichlorophenol decomposition mechanism[J]. Applied Catalysis B: Environmental, 2017, 218: 60-67. doi: 10.1016/j.apcatb.2017.06.038
    [26] YU J, ZHANG X, ZHAO X, et al. Heterogeneous Fenton oxidation of 2, 4-dichlorophenol catalyzed by PEGylated nanoscale zero-valent iron supported by biochar[J]. Environmental Science and Pollution Research, 2023, 30(14): 41333-41347. doi: 10.1007/s11356-023-25182-7
    [27] PAN X X, WEI J Y, ZOU M T, et al. Products distribution and contribution of (de) chlorination, hydroxylation and coupling reactions to 2, 4-dichlorophenol removal in seven oxidation systems[J]. Water research, 2021, 194: 116916. doi: 10.1016/j.watres.2021.116916
    [28] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme photocatalyst[J]. Advanced materials, 2022, 34(11): 2107668. doi: 10.1002/adma.202107668
    [29] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1): 9-20. doi: 10.1016/S1872-2067(19)63382-6
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-09-09
  • 录用日期:  2024-09-15
  • 网络出版日期:  2024-09-26

目录

    /

    返回文章
    返回