留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化硼纳米片的绿色制备及其在导热复合材料中的应用

石贤斌 张帅 陈超 聂向导 班露露 赵亚星 刘仁 桑欣欣

石贤斌, 张帅, 陈超, 等. 氮化硼纳米片的绿色制备及其在导热复合材料中的应用[J]. 复合材料学报, 2023, 40(8): 4558-4567. doi: 10.13801/j.cnki.fhclxb.20221103.001
引用本文: 石贤斌, 张帅, 陈超, 等. 氮化硼纳米片的绿色制备及其在导热复合材料中的应用[J]. 复合材料学报, 2023, 40(8): 4558-4567. doi: 10.13801/j.cnki.fhclxb.20221103.001
SHI Xianbin, ZHANG Shuai, CHEN Chao, et al. Green preparation of boron nitride nanosheets and their application in thermal conductivity composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4558-4567. doi: 10.13801/j.cnki.fhclxb.20221103.001
Citation: SHI Xianbin, ZHANG Shuai, CHEN Chao, et al. Green preparation of boron nitride nanosheets and their application in thermal conductivity composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4558-4567. doi: 10.13801/j.cnki.fhclxb.20221103.001

氮化硼纳米片的绿色制备及其在导热复合材料中的应用

doi: 10.13801/j.cnki.fhclxb.20221103.001
基金项目: 国家自然科学基金(21803025);江苏省科技支撑计划(BE2022087)National Natural Science Foundation of China (21803025); Science and Technology Support Program of Jiangsu Province (BE2022087)
详细信息
    通讯作者:

    张帅,博士,高级工程师,研究方向为高性能复合材料 E-mail: zhangs1003@126.com

    桑欣欣,博士,副教授,硕士生导师,研究方向为高分子纳米复合材料 E-mail: sangxx@jiangnan.edu.cn

  • 中图分类号: TB332

Green preparation of boron nitride nanosheets and their application in thermal conductivity composites

  • 摘要: 聚偏氟乙烯(PVDF)等聚合物因具有较低的热导率限制了其使用范围,添加高导热填料可以提升聚合物材料的导热性能,所制备的聚合物基导热复合材料在热管理领域具有重要的应用价值。本文采用六方氮化硼纳米片(BNNS)和球形氧化铝(Al2O3)作为导热填料,通过热压的方法制备出Al2O3-BNNS/PVDF导热复合材料。首先,在氯化胆碱(ChCl)与植酸(PA)水溶液组成的绿色溶剂中,高效剥离制备得到厚度3~5 nm、直径1~5 μm的BNNS纳米填料。再利用BNNS、Al2O3杂化填料的协同作用,采用溶液共混-热压的方式制得具有类似豌豆荚结构的导热复合材料,构建出良好的导热网络。当添加30wt%Al2O3与20wt%BNNS时,复合材料面内热导率高达11.54 W/(m·K),垂直热导率为5.70 W/(m·K),复合材料的热导率大幅提升,用作热界面材料表现出优异的散热性能。

     

  • 图  1  Al2O3-六方氮化硼纳米片(BNNS)/聚偏氟乙烯(PVDF)复合材料制备示意图

    DMF—N, N-dimethylformamide

    Figure  1.  Schematic diagram of the preparation of Al2O3-hexagonal boron nitride nanosheets (BNNS)/polyvinylidene fluoride (PVDF) composite

    图  2  不同氯化胆碱(ChCl)-植酸(PA)摩尔比时h-BN剥离效果:((a)、(b)) BNNS分散液放置3天前后的数码照片;(c) BNNS产率;(d) 不同ChCl-PA摩尔比时溶剂体系的表面张力

    Figure  2.  Exfoliation of h-BN with different choline chloride (ChCl)-phytic acid (PA) molar ratio: ((a), (b)) Digital photographs of BNNS dispersion before and after standing for 3 days; (c) Yields of BNNS; (d) Surface tension of the solvents with different ChCl-PA molar ratio

    图  3  h-BN (a)与BNNS (b)的SEM图像;(c) BNNS的TEM图像;BNNS的AFM图像(d)及相应的厚度曲线(e);(f) h-BN与BNNS的XRD图谱

    H—Height; X—Distance

    Figure  3.  SEM images of h-BN (a) and BNNS (b); (c) TEM image of BNNS; AFM image (d) and corresponding height profile (e) of the BNNS; (f) XRD patterns of h-BN and BNNS

    图  4  h-BN及BNNS的XPS图谱:(a) XPS全谱;(b) B1s图谱

    Figure  4.  XPS spectra of h-BN and BNNS: (a) Full spectra; (b) B1s

    图  5  PVDF基复合材料脆断面的SEM图像:(a) PVDF;(b) Al2O3;(c) Al2O3/PVDF;(d) Al2O3-BNNS5/PVDF;(e) Al2O3-BNNS10/PVDF;(f) Al2O3-BNNS15/PVDF;(g) Al2O3-BNNS20/PVDF;(h) BNNS20/PVDF

    Figure  5.  SEM images for the fracture surfaces of PVDF based composites: (a) PVDF; (b) Al2O3; (c) Al2O3/PVDF; (d) Al2O3-BNNS5/PVDF; (e) Al2O3-BNNS10/PVDF; (f) Al2O3-BNNS15/PVDF; (g) Al2O3-BNNS20/PVDF; (h) BNNS20/PVDF

    图  6  Al2O3-BNNS/PVDF复合材料的面内(a)和垂直方向(b)热导率

    Figure  6.  Thermal conductivity of Al2O3-BNNS/PVDF composites in-plane (a) and out-of-plane (b)

    图  7  Al2O3-BNNS/PVDF复合材料红外热成像分析:(a) 红外热成像图像;(b) LED灯表面温度随加热时间的变化;(c)自制散热装置图

    A-G are PVDF, Al2O3/PVDF, Al2O3-BNNS5/PVDF, Al2O3-BNNS10/PVDF, Al2O3-BNNS15/PVDF, Al2O3-BNNS20/PVDF and BNNS20/PVDF, respectively

    Figure  7.  Infrared thermal imaging of Al2O3-BNNS/PVDF composites: (a) Infrared thermal images; (b) Surface temperature variation with heating time of LED; (c) Illustration of self-made heat dissipation device

    表  1  Al2O3-BNNS/PVDF复合材料物料配比

    Table  1.   Formulation of Al2O3-BNNS/PVDF composites

    SampleAl2O3/wt%BNNS/wt%PVDF/wt%
    Al2O3/PVDF30070
    Al2O3-BNNS5/PVDF30565
    Al2O3-BNNS10/PVDF301060
    Al2O3-BNNS15/PVDF301555
    Al2O3-BNNS20/PVDF302050
    BNNS20/PVDF02080
    下载: 导出CSV

    表  2  h-BN与BNNS的XPS元素含量分析

    Table  2.   Analysis of the XPS element content about h-BN and BNNS

    C/at%N/at%B/at%O/at%
    BN14.3430.9752.522.16
    BNNS45.4019.4429.096.07
    下载: 导出CSV

    表  3  Al2O3-BNNS/PVDF复合材料比热、密度及热扩散系数

    Table  3.   Heat capacity, density and thermal diffusivity of Al2O3-BNNS/PVDF composites

    SampleCp/(J·g−1·K−1)ρ/(g·cm−3)In-plane α/(mm2·s−1)Out-of-plane α/(mm2·s−1)
    PVDF1.3421.8000.0910.091
    Al2O3/PVDF1.0992.1072.6390.925
    Al2O3-BNNS5/PVDF1.0602.1283.0541.289
    Al2O3-BNNS10/PVDF1.0132.1514.0751.387
    Al2O3-BNNS15/PVDF0.9782.1744.7582.424
    Al2O3-BNNS20/PVDF1.0352.1975.0732.507
    BNNS20/PVDF0.9901.8693.9200.194
    Note: Cp, ρ and α are the heat capacity, density and thermal diffusivity of the composites, respectively.
    下载: 导出CSV

    表  4  文献中BN填充PVDF基导热复合材料热导率比较

    Table  4.   Comparison for the thermal conductivity of BN-filled PVDF based composites in literature

    MaterialsBN LoadingOther filler loadingIn-plane TC/(W·m−1·K−1)Ref.
    BN-f-SiC/PVDF20wt%BN26wt%f-SiC1.41[25]
    BNNS/PVDF4wt%BNNS4.69[26]
    GNP-BN/PVDF30wt%BN2.5wt%GNP0.72[27]
    BN-CNT/PVDF30wt%BN2.5wt%CNT2.18[28]
    Al2O3-BNNS/PVDF20wt%BNNS30wt%Al2O311.54This work
    Notes: TC—Thermal conductivity; f-SiC—Surface functionalized silicon carbide; GNP—Graphite nanoplatelets; CNT—Carbon nanotube.
    下载: 导出CSV
  • [1] 何立发, 文伟峰, 朱贵娥, 等. 5G通讯对移动通讯终端用电路板技术的新挑战[J]. 电子元器件与信息技术, 2019(3):43-45.

    HE Lifa, WEN Weifeng, ZHU Gui'e, et al. New challenge of 5G communication to PCB technology for mobile communication terminal[J]. Electronic Components and Information Technology,2019(3):43-45(in Chinese).
    [2] XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials,2018,30(17):1705544. doi: 10.1002/adma.201705544
    [3] FENG C P, BAI L, BAO R Y, et al. Superior thermal interface materials for thermal management[J]. Composites Communications,2019,12:80-85. doi: 10.1016/j.coco.2019.01.003
    [4] YU Y, CHEN H, LIU Y, et al. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup[J]. Advanced Materials Interfaces,2015,2:1400267. doi: 10.1002/admi.201400267
    [5] ABADI R, UMA R P, IZADIFAR M, et al. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets[J]. Computational Materials Science,2017,131:86-99. doi: 10.1016/j.commatsci.2016.12.046
    [6] 孙川, 邱学青, 覃发梅, 等. 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展[J]. 材料工程, 2019(47): 21-32.

    SUN Chuan, QIU Xueqing, QIN Famei, et al. Research progress in liquid phase exfoliation of boron nitride and their applications in thermal management of electronic devices[J]. Journal of Materials Engineering, 2019(47): 21-32(in Chinese).
    [7] LUO W, WANG Y, HITZ E, et al. Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications[J]. Advanced Functional Materials,2017,27:1701450. doi: 10.1002/adfm.201701450
    [8] 石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J]. 复合材料学报, 2022, 39(10):4531-4539.

    SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica,2022,39(10):4531-4539(in Chinese).
    [9] 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7):3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001

    WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica,2022,39(7):3131-3143(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210906.001
    [10] 王绪彬, 张昌海, 张天栋, 等. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能研究[J]. 复合材料学报, 2023, 40(6): 3341-3349.

    WANG Xubin, ZHANG Changhai, ZHANG Tiandong, et al. Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3341-3349(in Chinese).
    [11] CHEN Y P, HOU X, LIAO M Z, et al. Constructing a "pea-pod-like" alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite[J]. Chemical Engineering Journal, 2020, 381: 122690.
    [12] TENG C, SU L, CHEN J, et al. Flexible, thermally conduc-tive layered composite films from massively exfoliated boron nitride nanosheets[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105498. doi: 10.1016/j.compositesa.2019.105498
    [13] RIZVI R, NGUYEN E P, KOWAL M D, et al. High-throughput continuous production of shear-exfoliated 2D layered materials using compressible flows[J]. Advanced Materials,2018,30(30):1800200. doi: 10.1002/adma.201800200
    [14] HAN G, ZHAO X, FENG Y, et al. Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling[J]. Chemical Engineering Journal,2020,7:127099.
    [15] HU C X, SHIN Y, READ O, et al. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene[J]. Nanoscale,2021,13:460-484. doi: 10.1039/D0NR05514J
    [16] BO Y, TIAN M, YUN L, et al. The stirring-assisted liquid exfoliation of hexagonal boron nitride and the performance of h-BN/cellulose aerogel[J]. IOP Conference Series Earth and Environmental Science,2020,585:012175. doi: 10.1088/1755-1315/585/1/012175
    [17] MUKHOPADHYAY T K, DATTA A. Deciphering the role of solvents in the liquid phase exfoliation of hexagonal boron nitride: A molecular dynamics simulation study[J]. Jour-nal of Physical Chemistry C,2017,121:811-822. doi: 10.1021/acs.jpcc.6b09446
    [18] WANG H, SU X, SONG T, et al. Scalable exfoliation and dispersion of few-layer hexagonal boron nitride nanosheets in NMP-salt solutions[J]. Applied Surface Science,2019,488:656-661. doi: 10.1016/j.apsusc.2019.05.296
    [19] LIU A, SHI Z, REDDY R G. Mechanism study of Cu-Zn alloys electrodeposition in deep eutectic solvents[J]. Ionics,2020,26:3161-3172. doi: 10.1007/s11581-019-03418-2
    [20] LIN H, GONG K, HYKYS P, et al. Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation[J]. Chemical Engineering Journal,2021,405:126961. doi: 10.1016/j.cej.2020.126961
    [21] SERT M. Catalytic effect of acidic deep eutectic solvents for the conversion of levulinic acid to ethyl levulinate[J]. Renewable Energy,2020,153:1155-1162. doi: 10.1016/j.renene.2020.02.070
    [22] WANG J, XUE J, DONG X Q, et al. Antimicrobial properties of benzalkonium chloride derived polymerizable deep eutectic solvent[J]. International Journal of Pharmaceutics,2020,575:119005. doi: 10.1016/j.ijpharm.2019.119005
    [23] SHEN J, HE Y, WU J, et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components[J]. Nano Letters,2015,15:5449-5454. doi: 10.1021/acs.nanolett.5b01842
    [24] LIN Y, CONNELL J W. Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene[J]. Nanoscale,2012,4:6908. doi: 10.1039/c2nr32201c
    [25] WANG B, YIN X, PENG D, et al. Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks[J]. Composites Part B: Engineering,2020,191:107978. doi: 10.1016/j.compositesb.2020.107978
    [26] WANG M, JIAO Z, CHEN Y, et al. Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content[J]. Composites Part A: Applied Science & Manufacturing,2018,109:321-329.
    [27] SONG Q, ZHU W, DENG Y, et al. Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite nanoplatelets insulation films with high breakdown strength and reliability[J]. Composites Science and Technology,2018,168:381-387. doi: 10.1016/j.compscitech.2018.10.015
    [28] QI X D, WANG W Y, XIAO Y J, et al. Tailoring the hybrid network structure of boron nitride/carbon nanotube to achieve thermally conductive poly(vinylidene fluoride) composites[J]. Composites Communications,2019,13:30-36. doi: 10.1016/j.coco.2019.02.004
    [29] 贾奇博, 刘宇, 张先宏, 等. 甲基乙烯基硅橡胶和氧化铝的干燥温度对其复合材料导热性能的影响[J]. 合成橡胶工业, 2011, 34(2):147-151. doi: 10.3969/j.issn.1000-1255.2011.02.016

    JIA Qibo, LIU Yu, ZHANG Xianhong, et al. Effect of drying temperature of methyl vinyl silicone rubber and aluminium oxide on thermal conductivity of methyl vinyl silicone rubber/aluminium oxide composites[J]. China Synthetic Rubber Industry,2011,34(2):147-151(in Chinese). doi: 10.3969/j.issn.1000-1255.2011.02.016
    [30] 王天伦, 秦文波, 黄飞, 等. 热界面材料可靠性能研究进展[J]. 高分子材料科学与工程, 2022, 38(7):183-190. doi: 10.16865/j.cnki.1000-7555.2022.0157

    WANG Tianlun, QIN Wenbo, HUANG Fei, et al. Progress on research of reliability of thermal interface materials[J]. Polymer Materials Science and Engineering,2022,38(7):183-190(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0157
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  475
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 修回日期:  2022-10-08
  • 录用日期:  2022-10-16
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回