Green preparation of boron nitride nanosheets and their application in thermal conductivity composites
-
摘要: 聚偏氟乙烯(PVDF)等聚合物因具有较低的热导率限制了其使用范围,添加高导热填料可以提升聚合物材料的导热性能,所制备的聚合物基导热复合材料在热管理领域具有重要的应用价值。本文采用六方氮化硼纳米片(BNNS)和球形氧化铝(Al2O3)作为导热填料,通过热压的方法制备出Al2O3-BNNS/PVDF导热复合材料。首先,在氯化胆碱(ChCl)与植酸(PA)水溶液组成的绿色溶剂中,高效剥离制备得到厚度3~5 nm、直径1~5 μm的BNNS纳米填料。再利用BNNS、Al2O3杂化填料的协同作用,采用溶液共混-热压的方式制得具有类似豌豆荚结构的导热复合材料,构建出良好的导热网络。当添加30wt%Al2O3与20wt%BNNS时,复合材料面内热导率高达11.54 W/(m·K),垂直热导率为5.70 W/(m·K),复合材料的热导率大幅提升,用作热界面材料表现出优异的散热性能。Abstract: Polymers such as polyvinylidene fluoride (PVDF) are limited by their low thermal conductivity, and it is important to enhance the thermal conductivity of polymer-based composites by adding thermally conductive fillers. In this paper, Al2O3-BNNS/PVDF composites with enhanced thermal conductivity were prepared by hot-compaction process using hexagonal boron nitride nanosheets (BNNS) and spherical alumina (Al2O3) as thermally conductive fillers. Firstly, BNNS nanofillers with thickness of 3-5 nm and diameter of 1-5 μm were prepared by exfoliation in green solvents consisting of choline chloride (ChCl) and aqueous phytic acid (PA). Then, based on the synergistic effect of BNNS and Al2O3 hybrid fillers, the thermally conductive composites with a pea pod-like structure were fabricated by solution blending-hot pressing, and a good three-dimensional heat conduction network was constructed. When 30wt%Al2O3 and 20wt%BNNS were added, the in-plane thermal conductivity of the composite was as high as 11.54 W/(m·K) and the vertical thermal conductivity was 5.70 W/(m·K). The thermal conductivity of the composite was greatly improved, showing excellent thermal performance.
-
Key words:
- green solvent /
- h-BN /
- exfoliation /
- polyvinylidene fluoride /
- thermal conductivity
-
图 2 不同氯化胆碱(ChCl)-植酸(PA)摩尔比时h-BN剥离效果:((a)、(b)) BNNS分散液放置3天前后的数码照片;(c) BNNS产率;(d) 不同ChCl-PA摩尔比时溶剂体系的表面张力
Figure 2. Exfoliation of h-BN with different choline chloride (ChCl)-phytic acid (PA) molar ratio: ((a), (b)) Digital photographs of BNNS dispersion before and after standing for 3 days; (c) Yields of BNNS; (d) Surface tension of the solvents with different ChCl-PA molar ratio
图 5 PVDF基复合材料脆断面的SEM图像:(a) PVDF;(b) Al2O3;(c) Al2O3/PVDF;(d) Al2O3-BNNS5/PVDF;(e) Al2O3-BNNS10/PVDF;(f) Al2O3-BNNS15/PVDF;(g) Al2O3-BNNS20/PVDF;(h) BNNS20/PVDF
Figure 5. SEM images for the fracture surfaces of PVDF based composites: (a) PVDF; (b) Al2O3; (c) Al2O3/PVDF; (d) Al2O3-BNNS5/PVDF; (e) Al2O3-BNNS10/PVDF; (f) Al2O3-BNNS15/PVDF; (g) Al2O3-BNNS20/PVDF; (h) BNNS20/PVDF
图 7 Al2O3-BNNS/PVDF复合材料红外热成像分析:(a) 红外热成像图像;(b) LED灯表面温度随加热时间的变化;(c)自制散热装置图
A-G are PVDF, Al2O3/PVDF, Al2O3-BNNS5/PVDF, Al2O3-BNNS10/PVDF, Al2O3-BNNS15/PVDF, Al2O3-BNNS20/PVDF and BNNS20/PVDF, respectively
Figure 7. Infrared thermal imaging of Al2O3-BNNS/PVDF composites: (a) Infrared thermal images; (b) Surface temperature variation with heating time of LED; (c) Illustration of self-made heat dissipation device
表 1 Al2O3-BNNS/PVDF复合材料物料配比
Table 1. Formulation of Al2O3-BNNS/PVDF composites
Sample Al2O3/wt% BNNS/wt% PVDF/wt% Al2O3/PVDF 30 0 70 Al2O3-BNNS5/PVDF 30 5 65 Al2O3-BNNS10/PVDF 30 10 60 Al2O3-BNNS15/PVDF 30 15 55 Al2O3-BNNS20/PVDF 30 20 50 BNNS20/PVDF 0 20 80 表 2 h-BN与BNNS的XPS元素含量分析
Table 2. Analysis of the XPS element content about h-BN and BNNS
C/at% N/at% B/at% O/at% BN 14.34 30.97 52.52 2.16 BNNS 45.40 19.44 29.09 6.07 表 3 Al2O3-BNNS/PVDF复合材料比热、密度及热扩散系数
Table 3. Heat capacity, density and thermal diffusivity of Al2O3-BNNS/PVDF composites
Sample Cp/(J·g−1·K−1) ρ/(g·cm−3) In-plane α/(mm2·s−1) Out-of-plane α/(mm2·s−1) PVDF 1.342 1.800 0.091 0.091 Al2O3/PVDF 1.099 2.107 2.639 0.925 Al2O3-BNNS5/PVDF 1.060 2.128 3.054 1.289 Al2O3-BNNS10/PVDF 1.013 2.151 4.075 1.387 Al2O3-BNNS15/PVDF 0.978 2.174 4.758 2.424 Al2O3-BNNS20/PVDF 1.035 2.197 5.073 2.507 BNNS20/PVDF 0.990 1.869 3.920 0.194 Note: Cp, ρ and α are the heat capacity, density and thermal diffusivity of the composites, respectively. 表 4 文献中BN填充PVDF基导热复合材料热导率比较
Table 4. Comparison for the thermal conductivity of BN-filled PVDF based composites in literature
Materials BN Loading Other filler loading In-plane TC/(W·m−1·K−1) Ref. BN-f-SiC/PVDF 20wt%BN 26wt%f-SiC 1.41 [25] BNNS/PVDF 4wt%BNNS — 4.69 [26] GNP-BN/PVDF 30wt%BN 2.5wt%GNP 0.72 [27] BN-CNT/PVDF 30wt%BN 2.5wt%CNT 2.18 [28] Al2O3-BNNS/PVDF 20wt%BNNS 30wt%Al2O3 11.54 This work Notes: TC—Thermal conductivity; f-SiC—Surface functionalized silicon carbide; GNP—Graphite nanoplatelets; CNT—Carbon nanotube. -
[1] 何立发, 文伟峰, 朱贵娥, 等. 5G通讯对移动通讯终端用电路板技术的新挑战[J]. 电子元器件与信息技术, 2019(3):43-45.HE Lifa, WEN Weifeng, ZHU Gui'e, et al. New challenge of 5G communication to PCB technology for mobile communication terminal[J]. Electronic Components and Information Technology,2019(3):43-45(in Chinese). [2] XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials,2018,30(17):1705544. doi: 10.1002/adma.201705544 [3] FENG C P, BAI L, BAO R Y, et al. Superior thermal interface materials for thermal management[J]. Composites Communications,2019,12:80-85. doi: 10.1016/j.coco.2019.01.003 [4] YU Y, CHEN H, LIU Y, et al. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup[J]. Advanced Materials Interfaces,2015,2:1400267. doi: 10.1002/admi.201400267 [5] ABADI R, UMA R P, IZADIFAR M, et al. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets[J]. Computational Materials Science,2017,131:86-99. doi: 10.1016/j.commatsci.2016.12.046 [6] 孙川, 邱学青, 覃发梅, 等. 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展[J]. 材料工程, 2019(47): 21-32.SUN Chuan, QIU Xueqing, QIN Famei, et al. Research progress in liquid phase exfoliation of boron nitride and their applications in thermal management of electronic devices[J]. Journal of Materials Engineering, 2019(47): 21-32(in Chinese). [7] LUO W, WANG Y, HITZ E, et al. Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications[J]. Advanced Functional Materials,2017,27:1701450. doi: 10.1002/adfm.201701450 [8] 石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J]. 复合材料学报, 2022, 39(10):4531-4539.SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica,2022,39(10):4531-4539(in Chinese). [9] 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7):3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica,2022,39(7):3131-3143(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210906.001 [10] 王绪彬, 张昌海, 张天栋, 等. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能研究[J]. 复合材料学报, 2023, 40(6): 3341-3349.WANG Xubin, ZHANG Changhai, ZHANG Tiandong, et al. Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3341-3349(in Chinese). [11] CHEN Y P, HOU X, LIAO M Z, et al. Constructing a "pea-pod-like" alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite[J]. Chemical Engineering Journal, 2020, 381: 122690. [12] TENG C, SU L, CHEN J, et al. Flexible, thermally conduc-tive layered composite films from massively exfoliated boron nitride nanosheets[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105498. doi: 10.1016/j.compositesa.2019.105498 [13] RIZVI R, NGUYEN E P, KOWAL M D, et al. High-throughput continuous production of shear-exfoliated 2D layered materials using compressible flows[J]. Advanced Materials,2018,30(30):1800200. doi: 10.1002/adma.201800200 [14] HAN G, ZHAO X, FENG Y, et al. Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling[J]. Chemical Engineering Journal,2020,7:127099. [15] HU C X, SHIN Y, READ O, et al. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene[J]. Nanoscale,2021,13:460-484. doi: 10.1039/D0NR05514J [16] BO Y, TIAN M, YUN L, et al. The stirring-assisted liquid exfoliation of hexagonal boron nitride and the performance of h-BN/cellulose aerogel[J]. IOP Conference Series Earth and Environmental Science,2020,585:012175. doi: 10.1088/1755-1315/585/1/012175 [17] MUKHOPADHYAY T K, DATTA A. Deciphering the role of solvents in the liquid phase exfoliation of hexagonal boron nitride: A molecular dynamics simulation study[J]. Jour-nal of Physical Chemistry C,2017,121:811-822. doi: 10.1021/acs.jpcc.6b09446 [18] WANG H, SU X, SONG T, et al. Scalable exfoliation and dispersion of few-layer hexagonal boron nitride nanosheets in NMP-salt solutions[J]. Applied Surface Science,2019,488:656-661. doi: 10.1016/j.apsusc.2019.05.296 [19] LIU A, SHI Z, REDDY R G. Mechanism study of Cu-Zn alloys electrodeposition in deep eutectic solvents[J]. Ionics,2020,26:3161-3172. doi: 10.1007/s11581-019-03418-2 [20] LIN H, GONG K, HYKYS P, et al. Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation[J]. Chemical Engineering Journal,2021,405:126961. doi: 10.1016/j.cej.2020.126961 [21] SERT M. Catalytic effect of acidic deep eutectic solvents for the conversion of levulinic acid to ethyl levulinate[J]. Renewable Energy,2020,153:1155-1162. doi: 10.1016/j.renene.2020.02.070 [22] WANG J, XUE J, DONG X Q, et al. Antimicrobial properties of benzalkonium chloride derived polymerizable deep eutectic solvent[J]. International Journal of Pharmaceutics,2020,575:119005. doi: 10.1016/j.ijpharm.2019.119005 [23] SHEN J, HE Y, WU J, et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components[J]. Nano Letters,2015,15:5449-5454. doi: 10.1021/acs.nanolett.5b01842 [24] LIN Y, CONNELL J W. Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene[J]. Nanoscale,2012,4:6908. doi: 10.1039/c2nr32201c [25] WANG B, YIN X, PENG D, et al. Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks[J]. Composites Part B: Engineering,2020,191:107978. doi: 10.1016/j.compositesb.2020.107978 [26] WANG M, JIAO Z, CHEN Y, et al. Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content[J]. Composites Part A: Applied Science & Manufacturing,2018,109:321-329. [27] SONG Q, ZHU W, DENG Y, et al. Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite nanoplatelets insulation films with high breakdown strength and reliability[J]. Composites Science and Technology,2018,168:381-387. doi: 10.1016/j.compscitech.2018.10.015 [28] QI X D, WANG W Y, XIAO Y J, et al. Tailoring the hybrid network structure of boron nitride/carbon nanotube to achieve thermally conductive poly(vinylidene fluoride) composites[J]. Composites Communications,2019,13:30-36. doi: 10.1016/j.coco.2019.02.004 [29] 贾奇博, 刘宇, 张先宏, 等. 甲基乙烯基硅橡胶和氧化铝的干燥温度对其复合材料导热性能的影响[J]. 合成橡胶工业, 2011, 34(2):147-151. doi: 10.3969/j.issn.1000-1255.2011.02.016JIA Qibo, LIU Yu, ZHANG Xianhong, et al. Effect of drying temperature of methyl vinyl silicone rubber and aluminium oxide on thermal conductivity of methyl vinyl silicone rubber/aluminium oxide composites[J]. China Synthetic Rubber Industry,2011,34(2):147-151(in Chinese). doi: 10.3969/j.issn.1000-1255.2011.02.016 [30] 王天伦, 秦文波, 黄飞, 等. 热界面材料可靠性能研究进展[J]. 高分子材料科学与工程, 2022, 38(7):183-190. doi: 10.16865/j.cnki.1000-7555.2022.0157WANG Tianlun, QIN Wenbo, HUANG Fei, et al. Progress on research of reliability of thermal interface materials[J]. Polymer Materials Science and Engineering,2022,38(7):183-190(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0157 -