Green Preparation of Boron Nitride Nanosheets and Their Application in Thermal Conductivity Composites
-
摘要:
目的 聚合物基导热复合材料优异的可加工性、耐腐蚀性和电绝缘性使其在热管理领域广泛应用。然而,聚合物材料导热系数低,通常需添加大量的导热填料提高其导热性能,易导致聚合物自身的流动性和力学强度等性能劣变。通过构建有效的导热网络能够在减少填料用量的同时提升材料导热性能。六方氮化硼(h-BN)是一种常用的导热填料,将h-BN剥离制备成氮化硼纳米片(BNNS),不仅可以大幅度提升其热导率,且大的横纵比及比表面积有利于其在聚合物基体中形成热传导通路。但传统制备BNNS的方法主要采用有机溶剂辅助液相剥离,存在剥离效率低、环境污染大等问题。因此,发展BNNS的绿色、高效制备方法,通过构建导热网络,实现BNNS填充的聚合物复合材料在较低填料填充时达到较高的导热系数,具有重要意义。 方法 本文以氯化胆碱(ChCl)与植酸(PA)组成低共熔溶剂,采用液相超声的方法,对六方氮化硼进行插层剥离,通过调节溶剂组成调控BNNS的剥离效果,研究不同溶剂组成时所得BNNS分散液的产率及稳定性。通过SEM、TEM、AFM表征剥离所得BNNS的形貌,利用XRD、XPS分析BNNS的结构和组成。将剥离所得BNNS与AlO共同用作导热填料,采用溶液共混-热压的方法与PVDF进行复合。采用SEM观察复合材料的微观结构;利用激光导热仪测试复合材料热扩散系数,进一步计算复合材料的导热系数;通过自制的散热装置测试复合材料的散热性能,系统研究了材料结构与性能之间的关系。 结果 采用氯化胆碱与植酸形成的低共熔溶剂为绿色溶剂辅助剥离六方氮化硼,当氯化胆碱与植酸摩尔比为4:1时,可制备得到横向尺寸1-5 μm,厚度3-5 nm的BNNS,剥离效率高达47.9 %。XRD测试结果表明,剥离后BNNS具有良好的结晶结构,且其002晶面衍射峰向低角度偏移,且半峰宽变宽,层间距变大,该绿色溶剂体系成功实现了h-BN的插层剥离;XPS结果显示,BNNS表面在B元素周围发生了功能化,功能化的BNNS有助于其在聚合物基体中的良好分散。以制备的高质量BNNS为导热填料,与AlO填料协同,通过溶液共混-热压制备PVDF复合材料。复合材料的断面SEM照片显示,热压作用下,基体内BNNS形成明显的取向结构,BNNS薄片之间由AlO连接,形成类似豌豆荚结构。热导率测试及散热性能结果表明,当添加30 wt% AlO与20 wt% BNNS时,复合材料的面内热导率达到11.54 W/(m·K),垂直热导率达到5.70 W/(m·K),作为热界面材料较纯的PVDF散热性能提升约23%。 结论 利用氯化胆碱与植酸形成的低共熔溶剂代替传统有机溶剂,可以实现BNNS的绿色、高效制备,为制备大径厚比的BNNS导热填料提供了一种新方法。利用AlO与BNNS双填料的协同作用,通过构建豌豆荚结构,形成有效的导热网络,通过“导热填料-网络结构”协同提高复合材料的导热性能,制备得到导热性能优异的PVDF基复合材料,作为热界面材料能有效降低电子器件的表面温度。本研究为制备高导热界面材料提供了新颖、简单的途径。 Abstract: Polymers such as polyvinylidene fluoride (PVDF) are limited by their low thermal conductivity, and it is important to enhance the thermal conductivity of polymer-based composites by adding thermally conductive fillers. In this paper, Al2O3-BNNS/PVDF composites with enhanced thermal conductivity were prepared by hot-compaction process using hexagonal boron nitride nanosheets (BNNS) and spherical alumina (Al2O3) as thermally conductive fillers. Firstly, BNNS nanofillers with thickness of 3~5 nm and diameter of 1~5 μm were prepared by exfoliation in green solvents consisting of choline chloride (ChCl) and aqueous phytic acid (PA). Then, based on the synergistic effect of BNNS and Al2O3 hybrid fillers, the thermally conductive composites with a pea pod-like structure were fabricated by solution blending-hot pressing, and a good three-dimensional heat conduction network was constructed. When 30wt% Al2O3 and 20wt% BNNS were added, the in-plane thermal conductivity of the composite was as high as 11.54 W/(m·K) and the vertical thermal conductivity was 5.70 W/(m·K). The thermal conductivity of the composite was greatly improved, showing excellent thermal performance.-
Key words:
- green solvent /
- h-BN /
- exfoliation /
- polyvinylidene fluoride /
- thermal conductivity
-
图 2 不同ChCl-PA摩尔比时h-BN剥离效果: (a)和(b)分别为BNNS分散液放置3天前后的数码照片,(c) 不同氯化胆碱-植酸摩尔比时的剥离效率,(d) 不同氯化胆碱-植酸摩尔比时溶剂体系的表面张力。
Figure 2. The exfoliation of h-BN with different ChCl-PA molar ratio: Digital photographs of BNNS dispersion before (a) and after (b) standing for 3 days; (c) Yields of BNNS and (d) surface tension of the solvents with different ChCl-PA molar ratio.
图 5 PVDF基复合材料脆断面的SEM照片:(a) PVDF、(b) Al2O3、(c) Al2O3/PVDF、(d) Al2O3-BNNS5/PVDF、(e) Al2O3-BNNS10/PVDF、(f) Al2O3-BNNS15/PVDF、(g) Al2O3-BNNS20/PVDF以及(h) BNNS20/PVDF。
Figure 5. SEM images for the fracture surfaces of Al2O3-BNNS/PVDF composites: (a) PVDF, (b) Al2O3,(c) Al2O3/PVDF, (d) Al2O3-BNNS5/PVDF, (e) Al2O3-BNNS10/PVDF, (f) Al2O3-BNNS15/PVDF, (g) Al2O3-BNNS20/PVDF and (h) BNNS20/PVDF.
图 7 Al2O3-BNNS/PVDF复合材料红外热成像分析
(a) Al2O3-BNNS/PVDF复合材料红外热成像,其中A~G分别为PVDF、Al2O3/PVDF、Al2O3-BNNS5/PVDF、Al2O3-BNNS10/PVDF、Al2O3-BNNS15/PVDF、Al2O3-BNNS20/PVDF以及BNNS20/PVDF。(b)复合材料表面温度随加热时间的变化,(c)自制散热装置图
Figure 7. Infrared thermal imaging analysis of Al2O3-BNNS/PVDFF composites, Surface temperature variation with heating time of Al2O3-BNNS/PVDF composites
表 1 Al2O3-六方氮化硼纳米片(BNNS)/PVDF复合材料物料配比
Table 1. Formulation of Al2O3- hexagonal boron nitride nanosheets (BNNS)/PVDF composites
Sample Al2O3/wt% BNNS/wt% PVDF/wt% Al2O3/PVDF 30 0 70 Al2O3-BNNS5/PVDF 30 5 65 Al2O3-BNNS10/PVDF 30 10 60 Al2O3-BNNS15/PVDF 30 15 55 Al2O3-BNNS20/PVDF 30 20 50 BNNS20/PVDF 0 20 80 表 2 h-BN与BNNS的XPS元素含量分析
Table 2. Analysis of the XPS element content about h-BN and BNNS
Element C1 s N1 s B1 s O1 s At Conc./% BN 14.34 30.97 52.52 2.16 BNNS 45.40 19.44 29.09 6.07 表 3 Al2O3-BNNS/PVDF复合材料比热、密度以及热扩散系数
Table 3. Heat capacity, density and thermal diffusivity of Al2O3-BNNS/PVDF composites
Sample Cp/(J·g−1·K−1) ρ/(g·cm−3) In-planeα/(mm2·s−1) Out-of-planeα/(mm2·s−1) PVDF 1.342 1.800 0.091 0.091 Al2O3/PVDF 1.099 2.107 2.639 0.925 Al2O3−BNNS5/PVDF 1.060 2.128 3.054 1.289 Al2O3−BNNS10/PVDF 1.013 2.151 4.075 1.387 Al2O3−BNNS15/PVDF 0.978 2.174 4.758 2.424 Al2O3−BNNS20/PVDF 1.035 2.197 5.073 2.507 BNNS20/PVDF 0.990 1.869 3.920 0.194 Notes: Cp, ρ, In-plane α and Out-of-plane α are the heat capacity, density, In-plane thermal diffusivity and Out-of-plane thermal diffusivity of the composites. 表 4 BN填充PVDF导热复合材料热导率比较
Table 4. Comparison for the thermal conductivity of PVDF based composites in literature
-
[1] 何立发, 文伟峰, 朱贵娥, 等. 5 G通讯对移动通讯终端用电路板技术的新挑战[J]. 电子元器件与信息技术, 2019, 3:43-45.HE Lifa, WEN Weifeng, ZHU Guie, et al. New challenge of 5 G communication to PCB technology for mobile communication terminal[J]. Electronic Components and Information Technology,2019,3:43-45(in Chinese). [2] XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials,2018,30(17):1705544. doi: 10.1002/adma.201705544 [3] FENG C P, BAI L, BAO R Y, et al. Superior Thermal Interface Materials for Thermal Management[J]. Composites Communications,2019,12:80-85. doi: 10.1016/j.coco.2019.01.003 [4] YU Y, CHEN H, LIU Y, et al. Superhydrophobic and Superoleophilic Porous Boron Nitride Nanosheet/Polyvinylidene Fluoride Composite Material for Oil-Polluted Water Cleanup[J]. Advanced Materials Interfaces,2015,2:1400267. doi: 10.1002/admi.201400267 [5] ABADI R, UMA R P, IZADIFAR M, et al. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets[J]. Computational Materials Science,2017,131:86-99. doi: 10.1016/j.commatsci.2016.12.046 [6] 孙川, 邱学青, 覃发梅, 等. 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展[J]. 材料工程, 2019, 47: 21-32.SUN Chuan, QIU Xueqing, QIN Famei, Research progress in liquid phase exfoliation of boron nitride and their applications in thermal management of electronic devices[J]. Journal of Materials Engineering, 2019, 47: 21-32 (in Chinese). [7] LUO W, WANG Y, HITZ E, et al. Solution processed boron nitride nanosheets: synthesis, assemblies and emerging applications[J]. Advanced Functional Materials,2017,27:1701450. doi: 10.1002/adfm.201701450 [8] 石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J]. 复合材料学报, 2022, 39(10):1-9.SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica,2022,39(10):1-9(in Chinese). [9] 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7):3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica,2022,39(7):3131-3143(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210906.001 [10] 王绪彬, 张昌海, 张天栋, 等. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能研究[J]. 复合材料学报, 2022, 40(0):1-9.WANG Xubin, ZHANG Changhai, ZHANG Tiandong, et al. Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites[J]. Acta Materiae Compositae Sinica,2022,40(0):1-9(in Chinese). [11] CHEN Y P, HOU X, LIAO M Z, et al. Constructing a "pea-pod-like" alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite[J]. Chemical Engineering Journal 2020, 381: 122690. [12] TENG C, SU L, CHEN J, et al. Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets[J]. Composites Part A:Applied Science and Manufacturing,2019,124:105498. doi: 10.1016/j.compositesa.2019.105498 [13] RIZVI R, NGUYEN E P, KOWAL M D, et al. K, High-Throughput Continuous Production of Shear-Exfoliated 2 D Layered Materials using Compressible Flows[J]. Advanced Materials,2018,30(30):1800200. doi: 10.1002/adma.201800200 [14] HAN G, ZHAO X, FENG Y, et al. Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling[J]. Chemical Engineering Journal,2020,7:127099. [15] HU C X, SHIN Y, READ O, et al. Dispersant-assisted liquid-phase exfoliation of 2 D materials beyond graphene[J]. Nanoscale,2021,13:460-484. doi: 10.1039/D0NR05514J [16] BO Y, TIAN M, YUN L, et al. The Stirring-assisted Liquid Exfoliation of Hexagonal Boron Nitride and the Performance of h-BN/Cellulose Aerogel[J]. IOP Conference Series Earth and Environmental Science,2020,585:012175. doi: 10.1088/1755-1315/585/1/012175 [17] MUKHOPADHYAY T K, DATTA A. Deciphering the Role of Solvents in the Liquid Phase Exfoliation of Hexagonal Boron Nitride: A Molecular Dynamics Simulation Study[J]. Journal of Physical Chemistry C,2017,121:811-822. doi: 10.1021/acs.jpcc.6b09446 [18] WANG H, SU X, SONG T, et al. Scalable exfoliation and dispersion of few-layer hexagonal boron nitride nanosheets in NMP-salt solutions[J]. Applied Surface Science,2019,488:656-661. doi: 10.1016/j.apsusc.2019.05.296 [19] LIU A, SHI Z, REDDY R G. Mechanism study of Cu-Zn alloys electrodeposition in deep eutectic solvents[J]. Ionics,2020,26:3161-3172. doi: 10.1007/s11581-019-03418-2 [20] LIN H, GONG K, HYKYS P, et al. Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation[J]. Chemical Engineering Journal,2021,405:126961. doi: 10.1016/j.cej.2020.126961 [21] SERT M. Catalytic effect of acidic deep eutectic solvents for the conversion of levulinic acid to ethyl levulinate[J]. Renewable Energy,2020,153:1155-1162. doi: 10.1016/j.renene.2020.02.070 [22] JING W, JING X A, Xd B, et al. Antimicrobial properties of benzalkonium chloride derived polymerizable deep eutectic solvent - ScienceDirect[J]. International Journal of Pharmaceutics,2020,575:119005. doi: 10.1016/j.ijpharm.2019.119005 [23] SHEN J, HE Y, WU J, et al. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components[J]. Nano Letters,2015,15:5449-54. doi: 10.1021/acs.nanolett.5b01842 [24] LIN Y, CONNELL J W. Advances in 2 D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene[J]. Nanoscale,2012,4:6908. doi: 10.1039/c2nr32201c [25] WANG B, YIN X, PENG D, et al. Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks[J]. Composites Part B:Engineering,2020,191:107978. doi: 10.1016/j.compositesb.2020.107978 [26] WANG M, JIAO Z, CHEN Y, et al. Enhanced Thermal Conductivity of Poly(vinylidene fluoride)/Boron Nitride Nanosheet Composites at Low Filler Content[J]. Composites Part A:Applied Science & Manufacturing,2018,109:321-329. [27] SONG Q, ZHU W, DENG Y, et al. Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite nanoplatelets insulation films with high breakdown strength and reliability[J]. Composites Science and Technology,2018,168:381-387. doi: 10.1016/j.compscitech.2018.10.015 [28] QI X D, WANG W Y, XIAO Y J, et al. Tailoring the hybrid network structure of boron nitride/carbon nanotube to achieve thermally conductive poly(vinylidene fluoride) composites[J]. Composites Communications,2019,13:30-36. doi: 10.1016/j.coco.2019.02.004 [29] 贾奇博, 刘宇, 张先宏, 等. 甲基乙烯基硅橡胶和氧化铝的干燥温度对其复合材料导热性能的影响[J]. 合成橡胶工业, 2011, 34(2):147-151. doi: 10.3969/j.issn.1000-1255.2011.02.016JIA Qibo, LIU Yu, ZHANG Xianhong, et al. Effect of drying temperature of methyl vinyl silicone rubber and aluminium oxide on thermal conductivity of methyl vinyl silicone rubber/aluminium oxide composites[J]. China Synthetic Rubber Industry,2011,34(2):147-151(in Chinese). doi: 10.3969/j.issn.1000-1255.2011.02.016 [30] 王天伦, 秦文波, 黄飞, 等. 热界面材料可靠性能研究进展[J]. 高分子材料科学与工程, 2022, 38(7):183-190. doi: 10.16865/j.cnki.1000-7555.2022.0157WANG Tianlun, QIN Wenbo, HUANG Fei, et al. Progress on Research of Reliability of Thermal Interface Materials[J]. Polymer Materials Science and Engineering,2022,38(7):183-190(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0157 -